材料科学基础-材料的强韧化
- 格式:doc
- 大小:83.50 KB
- 文档页数:4
算的最大应力。
疑问:传统的“强度设计”合理性?是否需辅以“韧性设计”?“安全”系数从某种角度讲也是一种“无知”系数,它反映人们对于客观事物的了解程度,如应力分析是否与使用条件完全符合,施工过程引入的残余应力有多大,施工与设计的偏差等。
采用其所长>1的值来弥补这些“无知”,从而获得“安全”设计。
考虑到高温、疲劳及腐蚀的作用,在设计时引入持久强度、疲劳极限及应力腐蚀断裂强度等性能,还考虑了多向受力,这些均为强度设计,而对塑性指标和韧性指标只依据经验提出要求,未用于设计计算。
(2) 对材料的断裂判据发生了怀疑;疑问:宏观应力σ〈σs〈σb?应力状态、应变速度、环境温度对断裂有何影响?合理的断裂判据?(3) 考核了工艺的适用性;熔化焊接,不仅改变性能,还会引入残余应力、缺口、裂纹等,影响断裂。
(4) 深入理解了工作情况;使用不当,如过载、划伤、冲击、过冷等,均促进脆断。
对于材料的断裂和其它失效,设计是主导,材料是基础,工艺是保证,使用是监护。
断裂的失效机理主要因素协助因素失效机理恒载韧断及脆断交变载荷疲劳断裂力学化学、恒载应力腐蚀断裂化学、交变载荷腐蚀疲劳断裂热学(化学) 蠕变断裂、液态金属脆化三、材料科学与工程的研发思路:(1) 依据工程构件服役行为确定所需材料性能;(2) 依据性能要求,确定所需材料结构;(3) 制定材料生产工艺,获得所需材料结构;(4) 采用必要设备,保证工艺实施;或反其道而行之的思路:(5) 只有适当的设备才能保证工艺;(6) 只有通过工艺才能改变结构;(7) 结构决定性能;(8) 材料的性能决定工程构件的行为。
§2 材料的力学性能力学性能:是指材料在各种载荷(外力)作用下表现出来的抵抗能力。
包括强度、塑性、硬度、韧性和疲劳强度等。
金属、陶瓷和高分子材料具有不同的力学性能,主要是由其基本结构决定的。
如金属和陶瓷的晶体结构、缺陷是理解其力学性能的核心概念;高分子材料的构形,交联与缠结起了关键作用。
材料强韧化处理教师:赵满秀博士摘录:李丹彭凤仇才君教学内容:①有关材料的强化和韧化的基本原理②材料表面强化(重点)目录第一部分材料的强化和韧化的基本原理第一章材料的强韧化基本原理一、金属材料强韧化的意义①通过强化处理可以优化材料的力学性能指标,充分挖掘材料的潜力。
②工作表面通过表面强化处理,增加耐磨性、耐蚀性、疲劳强度,提高工件使用寿命。
综上所述,材料的强韧化处理就是在保证材料的强化的同时,尽量提高材料的韧性。
二、实现钢铁材料强韧性的两个阶段1、液态阶段(炼钢者研究的重点)方法:细化晶粒、纯洁钢材、合金化(1)、细化晶粒方法:①快速冷却(增大过冷度);②加变质剂:减少表面能,提高形核率;抑制晶粒长大;③震动搅动:机械形核;④合金化(用Al、Nb、Ti脱氧):氧化物熔点高,成为非均匀形核的核心,增加形核率。
Al脱氧的原因:Al与氧的结合力强,生成高熔点的氧化物,成为非均匀形核的核心,提高形核率,细化晶粒。
钢铁冶炼的最后阶段:①脱氧:加Al、Mg、Si与O结合,细化晶粒;②合金化。
(2)纯洁钢材:如模具、刀具(含C 量高、耐磨、高纯净) 方法:去除有害元素S 、P 、O 、H ;去除氧化物、氯化物、硅酸盐;去除有害气体。
2、固态阶段对于固体材料为提高材料的强韧化,常采用常规热处理或者形变两大方法,也可以通过表面强化提高表面强度。
(1)、常规热处理方法:正火、退火、回火、淬火(时效强化、固溶强化、细晶强化、第二相粒子强化)(2)冷变形强化机理:塑性变形使位错密度增加,位错运动受阻。
(3)热加工强化的原因:能焊合某些缺陷、破碎粗大组织、形成纤维组织。
常规热处理与形变工艺如下所示:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧热挤压热轧热锻热加工挤压滚压喷丸冷变形形变淬火回火退火正火常规热处理诱发M 相变,产生孪晶,提高硬度三、强化的两个途径1、晶体的理论强度和实际强度①理论强度:按完整晶体刚性滑移模型计算出的强度 ②实际强度:实验测得的单晶体临界分切应力 2、材料强度和位错密度的关系须晶:接近完整晶体的须状晶体 强化的两个基本途径:①尽可能减少晶体中的位错密度,使其接近完整晶体或者制成无缺陷的完整晶体,是金属的实际强度接近理论强度。
材料强韧化原理总结汇报材料强韧化是材料科学和工程领域中一个重要的研究方向,它的目标是使材料具有更好的强度和韧性,以应对各种极端环境和工况下的应力和应变。
强韧化的关键在于改变材料的微观结构和组织,通过优化晶体结构、界面微观结构、晶界结构等方面的设计来增加材料的韧性和强度。
强韧化原理可以归纳为以下几个方面:1. 平衡硬度和韧性:在材料设计中,平衡硬度和韧性是一个重要的考虑因素。
硬材料通常具有较高的强度,但韧性较低;而韧性材料往往具有较高的韧性,但是强度相对较低。
研究人员通过调整材料组分、控制材料的微观结构和制备工艺等手段,实现了硬度和韧性的平衡,从而达到强韧化的效果。
2. 晶体结构优化:晶体结构对材料的强度和韧性具有重要影响。
通过优化晶体的晶格结构、晶间间隙等因素,可以使晶体材料变得更强韧。
例如,通过控制晶体的取向和晶界的分布,可以增加材料的界面耐久性和韧性。
3. 界面微观结构设计:材料中的界面在强韧化中起着至关重要的作用。
界面是不同材料相互作用的区域,通过优化界面的微观结构,可以增强材料的界面结合力、界面位错密度等,从而提高材料的强度和韧性。
4. 晶界工程:晶界是晶体内部的缺陷,也是材料中强韧化的关键环节。
通过调控晶界的大小、方向、位错密度等参数,可以有效地延缓裂纹的扩展速度,增强材料的韧性。
晶界工程在金属、陶瓷和复合材料等领域具有广泛应用。
5. 添加强化相和纳米颗粒:通过向材料中添加强化相和纳米颗粒,可以改变材料的内部结构,增强材料的强度和韧性。
强化相和纳米颗粒可以阻碍材料中的位错和裂纹的传播路径,同时提高材料的界面结合力和位错密度,从而增加材料的韧性。
6. 合理应力分布:在材料强韧化中,合理的应力分布是关键。
通过调整材料内部的应力分布,可以有效地减少应力集中区域,降低材料的应力集中度,从而提高材料的韧性。
综上所述,材料强韧化是通过微观结构和组织设计来提高材料的强度和韧性的过程,具体包括平衡硬度和韧性、晶体结构优化、界面微观结构设计、晶界工程、添加强化相和纳米颗粒以及合理应力分布等方面的研究,通过这些措施来增强材料的界面结合力、位错密度、界面耐久性等性能,提高材料的韧性和强度。
金属材料的强韧化设计金属材料是一种常用的材料,其广泛应用于建筑、航空航天、汽车等领域。
然而,随着工程领域对材料性能的不断追求,单纯追求强度已不再满足实际需求,而需要更强的韧性。
因此,金属材料的强韧化设计成为研究的热点,旨在提高材料的耐用性和可靠性。
一、理论基础金属材料的强韧化设计基于力学原理和材料科学的基础。
力学原理提供了材料强度和应力分布的理论基础,而材料科学则关注材料的组织结构和性能。
强韧化设计将这两个方面结合起来,通过调整材料的微观结构和化学成分,实现材料强度和韧性的优化。
二、微观结构调控在金属材料的强韧化设计中,微观结构调控是关键步骤之一。
微观结构包括晶粒尺寸、晶界、相分布等。
通过控制晶粒尺寸,可以有效地提高材料的韧性。
较小的晶粒尺寸可以阻碍位错的移动,从而提高材料的强度和延展性。
此外,晶界是材料中晶粒的交界面,也是位错的集中区域。
优化晶界结构可以改善材料的力学性能。
相分布直接影响材料的力学性能,合理控制相的分布,可以增强材料的韧性。
三、化学成分调整除了微观结构调控,化学成分调整也是金属材料强韧化设计的重要手段。
通过合理选择合金元素,可以改变材料的性能。
例如,在钢铁中添加合适的合金元素,可以提高材料的强度和韧性。
添加合金元素可以改变晶粒的尺寸和形状,从而影响材料的力学性能。
化学成分调整是通过调整材料中的原子排列方式,从而改变材料的力学性能。
四、热处理工艺热处理是金属材料强韧化设计中不可或缺的一环。
通过合理的热处理工艺,可以改变材料的晶界结构、相分布和原子排列方式。
热处理过程中的加热和冷却速率对材料性能有重要影响。
通过精确控制温度和时间,可以实现材料的强韧性优化。
五、应用案例在实际工程中,金属材料的强韧化设计已经得到了广泛应用。
以航空领域为例,航空发动机涡轮叶片需要同时具备较高的强度和韧性。
通过优化材料组织结构和化学成分,以及精确的热处理工艺,可以实现叶片的强韧性提升。
类似的强韧化设计在汽车和建筑领域也存在广泛应用。
1.强化金属材料的各种手段,考虑的出发点在于制造无缺陷的晶体或者制造位错运动的障碍
2.各种强化手段对材料的性能影响
强化手段 强度 硬度 韧性 塑性 固溶强化 ↑ ↑ ↓ ↓ 位错强化 ↑ ↑ ↓ ↓ 细晶强化 ↑ ↑ ↑ ↑ 加工硬化 ↑ ↑ ↓ ↓ 沉淀相颗粒强化 ↑
↑
↓
↓
3.各种强化手段原理及特点
固溶强化
利用点缺陷对金属机体进行强化.具体的方式是通过融入某种溶质元素形成固溶体,而使金属强度,硬度提高
(1)溶质原子的原子数分数越大,强化作用越大; (2)溶质原子与基体金属原子尺寸相差越大,强化作用越大; (3)间隙型溶质原子比置换原子有更大的固溶强化作用; (3)溶质原子与基体金属的价电子数相差越大,固溶强化越明显 位错强化
位错密度达到一定值的时候,流变应力和位错密度符合佩莱-赫许公式,即位错密度增加,位错间的交互
材料的强韧化名词解释
冲击韧性
金属材料缺口试样落锤冲击试验侧得的韧性指标称为冲击韧性 冲击强度(冲击韧性) 高分子材料冲击试验的韧性指标通常称为冲击强度或冲击韧度 固溶强化 纯金属经适当的合金化后强度、硬度提高的现象;根据强化机理可分为无序固溶体和有序固溶体
细晶强化 细化晶粒产生塑性变形,从而增大外加作用力达到强化金属材料作用
位错强化 通过增大晶体中的位错密度和增加位错阻力的方式增加金属强度方法
沉淀相颗粒强化 当第二相以细小弥散的微粒均匀分布在基体相中时,将产生显著的强化作用
可形变颗粒 沉淀相通常处于与母相共格状态,颗粒尺寸小,可为运动的位错所切割的颗粒
不可形变颗粒 具有较高的硬度和一定尺寸,并于母相共格或非共格的沉淀相颗粒 加工硬化 材料经过受力超过屈服极限,然后卸载,当再次加载时,其比例极限上升而塑性变形将减小的现象
韧性 是材料变形和断裂过程中吸收能量的能力,它是强度和塑性的综合表现
强度 是材料抵抗变形和断裂的能力 塑性 表示材料断裂时总的塑变程度 断裂强度 材料能承受的最大拉力
屈服强度
材料在受拉力时开始产生塑性变形时的最小应力,又称屈服极限
作用增大,流变应力增大,从而起到增强材料硬度作用
细晶强化
晶界对位错滑移具有阻滞作用,晶粒越细小晶界越多,位错被阻滞的地方就越多,晶体的强度就越高(多晶体金属的晶粒通常是大角度晶界,相邻取向不同的的晶粒受力发生塑性变形时,部分晶粒内部的位错先开动,并沿一定晶体学平面滑移和增殖,位错在晶界前被阻挡,当晶粒细化时,需要更大外加力才能使材料发生塑性变形,从而达到强化的目的)
沉淀相颗粒强化 在外加切应力的作用下,材料中运
动着的位错线遇到沉淀相粒子,位错线会产生扭曲,并最终绕过沉淀粒子,形成一个位错环.这就造成切应力增大,提高了材料强度
相变增韧
相变吸收能量而且导致体积膨胀产生张应力,周围还会出现不少微裂纹,从而有效降低了裂纹尖端附近的有效应力强度,而且裂纹偏转还可以增加表面积,从而起到增韧作用.
试论材料强化的主要方法及其原理。
固溶强化. 原理:晶格畸变、柯氏气团,阻碍位错运动;方法:固溶处理、淬火等。
细晶强化:原理:晶界对位错滑移的阻碍作用。
方法:变质处理、退火等。
弥散强化:原理:第二相离子对位错的阻碍作用;方法:形成第二硬质相如球化退火、变质处理等。
相变强化:原理:新相为高强相或新相对位错的阻碍。
方法:淬火等。
加工硬化;原理:形成高密度位错等。
方法:冷变形等。
4.常见公式和相关计算题 公式一:霍尔-佩奇
d
21-0
s
k +=σ
σ
公式二:培莱-赫许公式ρτ
τ2
10
aGb +=
题一:若平均晶粒直径为1mm 和0.04mm 的纯铁的屈服强度分别为100mpa 和250mpa,则平均晶粒直径为0,01mm 的纯铁的屈服强度为多少? 答:根据材料的屈服强度与晶粒尺寸的霍尔佩琪公式:
d
21-
s
k +=σ
σ
有:
)(122
11
2
12
21121
1
s σσσσs s s d d
d d ---+=-
---
所以:
MPA 5.337)100250(1
110004
.001
.02
121s =---+=-
-
σ
题二:晶体滑移面上有一位错环,外力场在其柏士矢量方向的切应力为G 10
4
-=
τ,柏士矢量
m 55.2b 1010
-⨯=此位错环在晶体中能扩张的半径为多大?
答:单位长度位错受力为:
GN/m 55.255.2G b F 10101014
-10-4-⨯=⨯⨯==τ
曲率半径为R 的位错因线张力而施加于单位长度位错线的力R
2G
F b 2
≈,当此力和外加应力
场对位错的力相等所对应的R 就是此位错环在晶体中能扩张的半径,所以:
m
GN /55.22R G 10b 14
2
-⨯=,即m 275.1R 106-⨯=
5.合金强化包括固溶强化和沉淀相颗粒强化
6.陶瓷材料韧化机制为相变增韧和微裂纹增韧
7.位错在金属晶体中收到这些阻力:
8.复合材料的增韧机制有:
9.高温时细晶材料比粗晶材料软,与常温时的细晶强化作用相反.高温时可利用定向凝固来增大颗粒,而通过机械震动,添加不溶杂质,增加过冷度来细化晶粒
10.细晶强化能增大材料的韧性的原因是:晶粒越细,单位体积内晶粒越多,形变时同样的形变量分散到更多的晶粒中,产生均匀形变而不会产生应力集中,引起裂纹的过早产生和发展 11.弹性模量大一般强度和脆性大,弹性模量小不意味着不易变形,例如橡皮筋弹性模量较小但是变形大,因为机制不同
12.加工硬化应力-应变曲线一般有三个阶段:易滑移阶段,线性硬化阶段,抛物线硬化阶段 13.加工硬化原理类似与位错强化机制,是金属形变后的位错密度增加,起到了强化作用 14.形变后的屈服应力称为流变应力
15.替换式固溶强化作用小于填隙式固溶强化,但在高温时变得较为重要
16.可变形微粒的强化作用为切割机制,适用于第二相粒子较软并与基体共格的情形;不可变形微粒的强化作用为奥罗万机制(位错绕过机制),适用于第二相粒子较硬并与基体界面为非共格的情形。
17.高聚物的强化方法:
(1)引入极性基 链上极性部分越多,极性越强,键间作用力越大;
(2)链段交联 随着交联程度的增加,交联键的平均距离缩短,使材料的强度增加; (3)结晶度和取向 高聚物在高压下结晶或高度拉伸结晶性高聚物,可使材料的强度增加;
(4)定向聚合
20.应力-应变曲线解析:。