第五章 连锁遗传规律
- 格式:ppt
- 大小:2.31 MB
- 文档页数:92
连锁遗传知识点总结一、连锁遗传的概念连锁遗传是指两个或多个基因由于它们位于同一染色体上,所以它们的分离并不是独立的,而是非常接近的现象。
在正常情况下,染色体上的基因是独立分离的,即每个基因的遗传方式是独立的。
但是当两个或多个基因位于同一染色体上时,由于这些基因的位点之间存在着连锁现象,它们的分离并不是独立的,而是受到位点之间连锁现象的影响。
因此,这些基因的遗传方式也会随之发生改变,这就是连锁遗传。
二、连锁遗传的规律1. 连锁基因的近体效应在连锁遗传中,由于两个或多个基因位于同一染色体上,它们的分离会受到染色体的连锁效应的影响。
如果两个基因位点之间距离较近,它们在染色体上的连锁作用就会更加明显,相对来说,两个基因遗传方式的改变也会更为一致。
这种连锁基因的现象叫做连锁基因的近体效应。
在实际研究中,连锁基因的近体效应是研究连锁遗传规律的重要依据。
2. 连锁基因的远体效应与连锁基因的近体效应相对应的是连锁基因的远体效应。
当两个基因位点之间的距离较远时,由于它们在染色体上的连锁作用并不是很明显,所以两个基因的遗传方式的改变也会相对独立。
这种连锁基因的现象叫做连锁基因的远体效应。
连锁基因的远体效应在某种程度上也可以解释为连锁基因之间的连锁率被打破,从而使得二者的遗传方式相对独立。
3. 连锁基因的重组在连锁遗传中,由于两个或多个基因位点之间的连锁效应,它们的遗传方式受到了相对的限制。
但是在某些情况下,由于染色体发生了重组,导致连锁基因之间的连锁效应被打破,使得两个基因的遗传方式发生了改变。
这种现象叫做连锁基因的重组。
连锁基因的重组是连锁遗传中的重要现象,它可以解释为何在连锁基因存在的情况下,仍然存在着不同基因型的组合。
三、连锁遗传的实验与应用1. 连锁遗传的实验研究通过实验研究连锁遗传,可以揭示其规律和机理。
在实验中,可以通过杂交、连锁基因的分离分析、连锁基因的重组等方法来研究连锁遗传。
这些实验方法可以帮助科学家们更好地理解连锁遗传的基本原理,并且为相关领域的研究提供了重要的理论依据。
连锁遗传和性连锁连锁遗传和性连锁连锁遗传和性连锁第五章连锁遗传和性连锁(一) 名词解释:1. 2. 率。
3. 4. 5. 6. 7. 8. 9.基因定位:确定基因在染色体上的位置。
主要是确定基因之间的距离和顺序。
符合系数:指理论交换值与实际交换值的比值,符合系数经常变动于0—1之间。
换与重组。
交换值(重组率):指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频交换:指同源染色体的非姊妹染色单体之间的对应片段的交换,从而引起相应基因间的交干扰(interference):一个单交换发生后,在它邻近再发生第二个单交换的机会就会减少的连锁遗传图(遗传图谱):将一对同源染色体上的各个基因的位置确定下来,并绘制成图的连锁群(linkagegroup) :存在于同一染色体上的基因群。
叫做连锁遗传图。
性连锁(sexlinkage) :指性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象,性染色体(sex-chromosome):与性别决定有直接关系的染色体叫做性染色体。
又称伴性遗传(sex-linkedinheritance) 。
10. 常染色体(autosome):性染色体以外其他的染色体称为常染色体。
同配性别基因所控制的遗传性状只限于雄性或雌性上表现的现象。
12. 从性遗传(sex-influencedinheritance) :常染色体上基因所控制的性状,在表现型上受个体性别的影响,只出现于雌方或雄方;或在一方为显性,另一方为隐性的现象。
13. 交叉遗传:父亲的性状随着X 染色体传给女儿的现象。
(二) 是非题:1. 2. 3. 4. 5.14. 连锁遗传:指在同一同源染色体上的非等位基因连在一起而遗传的现象。
雄果蝇完全连锁是生物界少见的遗传现象。
这仅指X 染色体上的连锁群而言。
因为它的X 基因连锁强度与重组率成反比。
(+)11. 限性遗传(sex-limitedinheritance) :是指位于Y 染色体(XY型) 或W 染色体(ZW型) 上的染色体只有一条,所以,不会发生交换。
连锁遗传定律连锁遗传定律是指在同一染色体上的基因遗传方式。
这些基因位于同一染色体上,它们的遗传方式与常规的孟德尔遗传规律不同。
下面将从以下几个方面详细介绍连锁遗传定律。
一、连锁假说的提出连锁假说最早是由美国生物学家托马斯·摩根在1910年左右提出的。
他通过对果蝇(Drosophila melanogaster)进行实验,发现了某些特定性状(如眼睛颜色和翅膀形态等)之间存在联系,这表明它们位于同一染色体上。
这一发现为后来的连锁遗传理论奠定了基础。
二、连锁基因在同一染色体上的基因会共同遗传给子代,这些基因被称为连锁基因。
由于它们位于同一个染色体上,所以它们之间具有相对稳定的距离关系,即越靠近的两个基因越容易被联合遗传。
三、连锁分离如果两个连锁基因之间发生了重组,则它们就会被分离,并且以不同的方式遗传给子代。
这种现象被称为连锁分离。
连锁分离的概率与两个基因之间的距离成反比,即两个基因之间的距离越远,发生重组的概率就越大。
四、连锁图为了更好地理解连锁基因之间的关系,科学家们通常会绘制一张连锁图。
这张图可以清晰地展示出每个基因在染色体上的位置以及它们之间的距离关系。
通过连锁图,人们可以预测不同基因之间可能发生的重组情况,并且可以更好地理解染色体上基因遗传方式。
五、连锁遗传定律根据以上内容,我们可以总结出连锁遗传定律:1. 在同一染色体上的基因会共同遗传给子代。
2. 由于它们位于同一个染色体上,所以它们之间具有相对稳定的距离关系。
3. 如果两个连锁基因之间发生了重组,则它们就会被分离,并且以不同的方式遗传给子代。
4. 连锁分离的概率与两个基因之间的距离成反比。
5. 通过连锁图,人们可以预测不同基因之间可能发生的重组情况,并且可以更好地理解染色体上基因遗传方式。
六、连锁遗传在人类疾病中的应用连锁遗传定律不仅对基础科学有着重要意义,还被广泛应用于人类疾病的研究。
由于许多遗传性疾病都与染色体上特定基因的突变有关,因此通过分析这些基因在家族中的连锁关系,可以更好地了解这些疾病的遗传方式和机制。
连锁遗传规律•连锁与交换规律•基因定位和遗传学图•链孢霉的连锁、互换和基因定位•性别决定•人类性别异常•伴性遗传、限性遗传和从性遗传粗糙链孢菌(Neurospora crassa)粗糙链孢菌的特点:⒈子囊孢子是单倍体,表型直接反映基因型。
⒉一次只分析一个减数分裂产物。
⒊体积小,易繁殖,易于培养。
⒋可进行有性生殖,染色体结构和功能类似于高等生物。
粗糙链孢酶的生活史:顺序四分子分析及其特点减数分裂产生4个孢子,按一定顺序排列在子囊内,叫顺序四分孢子或顺序四分子,对其进行分析叫顺序四分子分析。
特点:①一个顺序四分子是一个合子一次减数分裂的产物,它不和其它合子的减数分裂产物相混合,因此能够对合子进行单个的分析。
②顺序四分子中的四分孢子来源清楚。
③链孢霉是单倍体,无显隐性之分,不管显性还是隐性都能表现,表现型就代表基因型。
着丝粒作图(centromere mapping)利用四分子分析法,测定基因与着丝粒之间的距离。
将着丝粒作为一个位点(locus)来计算基因与着丝粒之间的距离。
链孢霉的野生型又称为原养型(prototroph),子囊孢子按时成熟呈黑色。
营养缺陷型(auxotroph),只能在完全培养基上生长,成熟较慢,子囊孢子呈灰白色。
Prototrophauxotroph测定营养缺陷型的方法:重组值=(交换型子囊数/交换+非交换型子囊数)×100% × 1/2例:++++---- 105----++++ 129++--++-- 9--++--++ 5++----++ 10--++++-- 16重组值=(9+5+10+16/9+5+10+16+105+129)×100% ×1/2=7.3%Lys 基因与着丝粒之间的距离是7.3cM 。
1/2的含义:在子囊孢子发生交换时,每发生一个交叉,一个子囊中有半数孢子发生重组。
配子数与子囊数性染色体决定型-XY型果蝇:2n=8 人类:雌性:AA(44)+XX(2)雄性:AA(44)+XY(2)性染色体决定型-XY型果蝇、鼠、牛、羊、人等属于这一类型。
连锁遗传规律讲义连锁遗传是指遗传物质在基因组中通过染色体的连锁现象传递给下一代的过程。
它是遗传学的重要理论之一,对于人类和许多其他生物的遗传现象有着重要的指导意义。
连锁遗传最早由美国遗传学家摩尔根在20世纪初发现,并由此获得诺贝尔奖。
他通过研究果蝇的眼色突变体,并发现不同位点上的基因间存在一种连锁,这些基因在染色体上位于同一条染色体上。
这意味着这些基因在遗传过程中会一起遗传给下一代,相互之间难以独立地进行重新组合。
连锁遗传可通过遗传映射来研究。
遗传映射是指将基因在染色体上的位置与遗传行为之间的关系进行定量化的过程。
通过将遗传物质在不同染色体上的基因与它们的表型联系起来,可以测定这些基因之间的连锁程度。
连锁遗传规律主要包括连锁分离和连锁重组两种情况。
连锁分离是指在连锁群体中,经常表现为一组对基因座的情况,也就是一组相连的基因。
这是因为这些基因在遗传过程中很少或几乎不会发生重组。
与此相关的是连锁重组,即在连锁基因的基础上发生一系列的重组事件。
重组是指两个基因座之间的某些位点进行了交换,导致基因座在染色体上重新排列的过程。
连锁重组的频率可以用连锁分离的概率来衡量。
连锁遗传的原因主要是由于基因位点在染色体上的靠近程度。
基因在染色体上的相对位置越近,它们之间发生重组的机会就越小,因此它们在遗传过程中更可能连锁的概率就越大。
另一方面,基因在染色体上的距离越远,它们之间发生重组的机会就越多,连锁的概率就越低。
连锁遗传的应用非常广泛。
首先,它可以用来研究染色体结构和功能。
通过连锁分离和重组的测定,可以了解不同基因座在染色体上的相对位置,进而探索染色体的结构和功能。
其次,连锁遗传也可以用于遗传疾病的研究。
一些遗传疾病往往与染色体上的特定基因突变相关,通过研究连锁遗传情况,可以确定这些基因的位置,从而更好地了解和治疗相应的疾病。
最后,连锁遗传还可以应用于亲缘关系的确定。
通过研究不同人群中基因连锁方式的差异,可以确定不同组织或个体之间的亲缘关系。
高中生物连锁遗传连锁遗传是指两个或多个基因位点位于同一染色体上,因此它们在遗传中往往一起传递给后代。
在连锁遗传中,这些基因位点会以一种特定的方式遗传给下一代,从而影响个体的表型特征。
连锁遗传的发现对于理解遗传规律和进化机制具有重要意义。
连锁遗传的概念最早由托马斯·亨特·摩尔根在20世纪初提出。
他通过对果蝇的实验观察发现,染色体上的基因位点在遗传中往往以一种固定的方式组合,这种组合称为连锁。
摩尔根发现,某些基因位点之间存在较小的重组频率,即它们在染色体分离时容易发生重组,而另一些基因位点则很少发生重组。
这种差异导致了连锁遗传的形成。
连锁遗传的机制可以通过遗传图谱来描述。
遗传图谱是一种以染色体上的基因位点为单位,记录它们之间连锁关系的图表。
根据遗传图谱,可以推断出基因位点之间的距离和相对顺序。
遗传图谱的构建需要进行交配实验,并观察后代的表型特征。
通过统计分析各个表型特征在不同基因位点之间的分离情况,可以推断出它们之间的连锁关系。
连锁遗传的形成与染色体的结构密切相关。
染色体是由DNA和蛋白质组成的复杂结构,它们在细胞分裂过程中会发生缠绕和解缠,从而实现染色体的复制和遗传。
连锁遗传是由于染色体上的基因位点在染色体复制和分离时无法独立分离而形成的。
当两个基因位点位于同一染色体上时,它们会以染色体为单位一起复制和分离,从而保持它们之间的连锁关系。
连锁遗传的发生对于个体的遗传多样性和进化具有重要影响。
连锁的基因位点在遗传中往往以一种固定的方式组合,这会限制基因的重新组合和重组。
当两个基因位点之间的连锁关系较强时,它们会以一种固定的方式一起传递给后代,从而保持了特定的表型特征。
这种连锁关系在一定程度上限制了基因组的多样性,但也为进化提供了一定的遗传基础。
除了连锁遗传,还存在着基因重组的现象。
基因重组是指染色体上的基因位点在染色体复制和分离过程中发生重组,从而改变了它们之间的连锁关系。
基因重组是遗传多样性产生的重要机制之一,它增加了基因组的可变性,并为进化提供了更多的遗传变异。