原子的核式结构
- 格式:docx
- 大小:28.85 KB
- 文档页数:13
原子和原子核 ——知识介绍一.原子结构(一)原子的核式结构人们认识原子有复杂结构是从1897年汤姆生发现电子开始的。
汤姆生通过研究对阴极射线的分析发现了电子,从而知道,电子是原子的组成部分,为了保持原子的电中性,除了带负电的电子外,还必须有等量的正电荷。
因此汤姆生提出了“葡萄干面包”模型:正电荷部分连续分布于整个原子,电子镶在其中。
1909年卢瑟福在α粒子散射实验中,以α粒子轰击重金属箔发现:大多数α粒子穿过薄膜后的散射角很小,但还有八千分之一的α粒子,散射角超过了900,有些甚至被弹回来,散射角几乎达到1800。
1911年卢瑟福提出了原子核式结构模型:在原子的中心有一个很小的核称为原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核高速旋转。
从α粒子散射实验的数据可以估计出原子核的大小约为10-15——10-14米,原子半径大约为10-10米。
原子核式结构模型较好的解释了α粒子散射实验现象,也说明了汤姆生的“葡萄干面包”模型是错误的。
(二)玻尔的氢原子理论1.1.巴耳末公式1885年,瑞士物理学家巴耳末首先发现氢原子光谱中可见光区的四条谱线的波长,可用一经验公式来表示:)121(122n R -=λ n =3,4,5……式中λ为波长,R =×10 7米-1称为里德伯恒量,上式称为巴耳末公式。
2.2.里德伯公式1889年,里德伯发现氢原子光谱德所有谱线波长可用一个普通的经验公式表示出来:)11(122n m R -=λ式中n=m+1,m+2,m+3……,上式称为里德伯公式。
对于每一个m ,上式可构成一个光谱系: m=1,n=2,3,4……赖曼系(紫外区)m=2,n=3,4,5……巴尔末系(可见光区)m=3,n=4,5,6……帕邢系(红外区)m=4,n=5,6,7……布喇开系(远红外区)3.3.玻尔的氢原子理论卢瑟福的原子核式结构模型能成功地解释α粒子散射实验,但无法解释原子的稳定性和原子光谱是明线光谱等问题。
《原子的核式结构》作业设计方案一、作业目标1、帮助学生理解原子的核式结构模型的基本概念和特点。
2、培养学生运用核式结构模型解释原子现象的能力。
3、强化学生对微观世界物质结构的科学思维和探究精神。
二、作业内容1、知识回顾(1)让学生简述汤姆孙的原子模型,并指出其局限性。
(2)提问学生α粒子散射实验的现象和结论。
2、概念理解(1)画出原子的核式结构模型示意图,并标注原子核和电子的位置、大小比例关系。
(2)解释为什么原子核带正电,而电子带负电。
3、计算练习(1)已知某种原子的原子核半径为 10^-15 米,电子在离核 10^-10 米处运动,计算电子受到原子核的库仑力大小。
(2)若原子核所带电荷量为+Ze,电子所带电荷量为 e,计算原子核与电子之间的电势能。
4、应用拓展(1)解释为什么原子通常呈电中性。
(2)探讨当原子失去或得到电子时,原子的核式结构会发生怎样的变化。
5、实验设计(1)假设你要通过实验验证原子的核式结构,设计一个简单的实验方案,并说明实验原理和预期结果。
(2)思考在实际操作中可能会遇到哪些困难,以及如何解决这些困难。
三、作业形式1、书面作业(1)完成上述的概念理解、计算练习和应用拓展部分的题目,要求书写工整、步骤清晰。
(2)撰写一篇关于原子的核式结构对现代科学发展影响的短文,字数不少于 500 字。
2、实践作业(1)利用身边的材料(如小球、丝线等)制作一个简单的原子模型,拍照并附上简短的说明。
(2)以小组为单位,进行关于原子的核式结构的讨论,并记录讨论过程和结果,形成报告。
四、作业时间安排1、书面作业安排在课后两天内完成,预计花费时间约 90 分钟。
2、实践作业在一周内完成,其中制作模型预计花费时间 60 分钟,小组讨论和报告撰写预计花费时间 120 分钟。
五、作业评价1、书面作业(1)对概念理解和计算练习部分,根据答案的准确性和步骤的完整性进行评分。
(2)短文部分主要评价学生对核式结构与现代科学发展关系的理解深度、逻辑清晰度和语言表达能力。
原子核式结构模型
1 什么是原子核式结构模型
原子核式结构模型是指以原子核为中心,以其结构核素为外围组成的一种模型,是现代物理学提出的一种量子力学模型。
根据这种模型,原子核由质子和中子构成,其外围有质子、中子和费米子存在,使原子核具有特殊的结构。
2 原子核式结构模型的特点
1、核子的发明:今年是发现原子核的百年纪念,由爱因斯坦和玻尔在1905年提出核子模型,只有由正质子、负质子和中子组成。
2、结构特性:原子核由核子和核质子共同构成,核子质量极小,要比中子大2000倍以上,构成原子核的核质子的构成数量为其质量的比例,有的原子核还带有中性的费米子。
3、区别:原子核式结构模型与物理学里的分子模型完全不同,分子模型是以分子的中心的分子键为中心的,原子核式结构模型是以原子核的结构核素构成一个完整的模型。
3 原子核式结构模型的应用
原子核模型对物理学、化学、核物理学等多领域有重大影响,它可以解释原子中核子的形成、核素的变异等现象,为大规模原子核研究奠定了坚实的理论基础。
此外,它还可以用来解释原子构型的形成
以及其价态间的相互作用等,广泛应用于原子核反应和量子表现、原子与微粒子的测定等。
一、教学目标:1. 让学生了解原子的核式结构模型的提出背景和发展历程。
2. 使学生掌握原子的核式结构模型的基本内容,包括原子核、电子云等概念。
3. 培养学生运用核式结构模型解释化学现象和解决问题的能力。
4. 提高学生对科学研究的认识,培养其科学思维和探究精神。
二、教学重点与难点:1. 教学重点:原子的核式结构模型的基本内容,核式结构与化学性质的关系。
2. 教学难点:电子云的概念及其分布规律。
三、教学方法:1. 采用问题驱动的教学方法,引导学生探究原子的核式结构模型。
2. 运用多媒体课件,直观展示原子核式结构模型的相关知识。
3. 结合化学实验,让学生直观感受核式结构与化学性质的关系。
4. 开展小组讨论,培养学生合作探究的能力。
四、教学准备:1. 课件:制作关于原子的核式结构模型的多媒体课件。
2. 实验器材:准备相关的化学实验器材,如原子模型、电子云模型等。
3. 教材:准备《高中化学》等相关教材。
4. 参考资料:收集关于原子的核式结构模型的研究历史和相关论文。
五、教学过程:1. 导入:通过展示原子模型,引导学生思考原子的结构。
2. 探究原子核式结构模型的提出背景和发展历程。
3. 讲解原子核式结构模型的基本内容,包括原子核、电子云等概念。
4. 结合实验,让学生直观感受核式结构与化学性质的关系。
5. 开展小组讨论,运用核式结构模型解释化学现象。
6. 总结本节课的主要内容,布置课后作业。
7. 课后反思:根据学生的反馈,对教学过程进行调整和改进。
六、教学评价:1. 评价学生对原子的核式结构模型的了解程度,包括原子核、电子云等概念。
2. 评价学生运用核式结构模型解释化学现象和解决问题的能力。
3. 评价学生在小组讨论中的表现,包括合作探究和科学思维的运用。
七、教学拓展:1. 介绍原子的核式结构模型在现代科学研究中的应用。
2. 探讨原子的核式结构模型对化学教育和发展的影响。
八、教学反思:1. 反思教学目标是否明确,是否符合学生的学习需求。
原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。
这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。
二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。
同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。
这一发现,彻底改变了我们对原子的理解。
三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。
原子核由质子和中子组成,其质量约占原子质量的99.9%,而电子的质量几乎可以忽略不计。
因此,原子的大部分体积是由原子核占据的。
四、核式结构模型的意义核式结构模型的提出,为我们理解原子的性质和行为提供了基础。
它解释了为什么原子在化学反应中会形成稳定的化合物,为什么元素之间会有不同的化学亲和力等等。
这一模型成为了现代化学的基础,为我们的科技发展提供了重要的理论基础。
五、结论总的来说,原子的核式结构模型是科学史上的一个重大突破,它为我们打开了理解物质世界的新视角。
然而,随着科技的发展,我们还需要更深入的研究和探索,以揭示原子内部的更多秘密。
让我们期待更多的科学发现,以更好地理解这个美丽的物质世界。
原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。
这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。
二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。
同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。
这一发现,彻底改变了我们对原子的理解。
三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。
名师教学设计《原子的核式结构模型》完整教学教案一、教学目标1. 让学生了解原子的核式结构模型的概念及其发展过程。
2. 使学生掌握原子核和电子云的基本性质和相互作用。
3. 培养学生的实验操作能力和科学思维。
二、教学内容1. 原子的核式结构模型的提出2. 原子核和电子云的基本性质3. 原子核式结构模型的验证实验4. 原子核式结构模型在现代物理中的应用5. 原子核式结构模型的意义和局限性三、教学方法1. 采用讲授法,讲解原子的核式结构模型的概念、发展过程及其应用。
2. 利用多媒体演示原子核式结构模型的实验现象和原理。
3. 引导学生进行分组讨论,分析原子核式结构模型的验证实验结果。
4. 组织学生进行实验操作,培养学生的实践能力。
5. 采用提问、答疑等方式,激发学生的思考和探究兴趣。
四、教学准备1. 教学课件和视频资料。
2. 实验器材和试剂。
3. 分组讨论的指导材料。
五、教学过程1. 导入:通过回顾原子的基本概念,引导学生思考原子的内部结构。
2. 讲解:讲解原子的核式结构模型的提出背景、发展过程及其基本原理。
3. 演示:利用多媒体演示原子核式结构模型的实验现象和原理。
4. 分组讨论:引导学生分析原子核式结构模型的验证实验结果,培养学生的科学思维。
5. 实验操作:组织学生进行实验,使学生掌握原子核式结构模型的实际应用。
6. 总结:总结原子的核式结构模型的意义、局限性和在现代物理中的应用。
7. 作业布置:布置相关思考题和练习题,巩固所学知识。
8. 课后辅导:针对学生疑问进行解答,指导学生完成作业。
9. 课程反馈:收集学生对教学过程和教学内容的反馈意见,不断改进教学方法。
10. 教学评价:通过对学生的作业、实验表现和课堂讨论等方面的评价,了解学生对原子核式结构模型的掌握程度。
六、教学评估1. 评估内容:学生对原子的核式结构模型的理解、实验操作能力和科学思维的培养。
2. 评估方法:通过学生的作业、实验报告、课堂讨论和提问等方式进行评估。
原子核式结构:
原子核式结构是1911年由卢瑟福提出的一种原子结构模型。
核式原子结构认为:原子的质量几乎全部集中在直径很小的核心区域,叫原子核,电子在原子核外绕核作轨道运动。
原子核带正电,电子带负电。
在卢瑟福提出其核式原子结构之前,汤姆逊提出了一个被称为“枣糕式”的电子模型。
该模型认为,原子是正电部分是一个原子那么大的、具有弹性的冻胶状的球,正电荷均匀地分布着,在这球内或球上,有负电子嵌着。
这些电子能在它们的平衡位置上作简谐运动。
观察到的原子所发出的光谱的各种频率认为就相当于这些振动的频率。
卢瑟福的核式原子结构模型准确地反应了原子内部结构的基本形态,然而核式结构还是遇到了困难。
核式结构认为原子内部电子是做轨道运动,无法解释观测到的原子所发出的各种光谱的频率。
此外,原子内部的电子不断向外辐射能量必然会导致电子轨道的缩小最终与原
子核所带的正电子中和,事实并非如此。
高考物理原子的核式结构知识点原子由原子核和绕核运动的电子组成,小编为大家整理了物理原子的核式结构知识点,希望大家认真阅读做好复习!1、原子的核式结构(1) 粒子散射实验结果:绝大多数粒子沿原方向前进,少数粒子发生较大偏转。
(2)原子的核式结构模型:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核旋转.(3)原子核的大小:原子的半径大约是10-10米,原子核的半径大约为10-14米~10-15米.2、玻尔理论有三个要点:(1)原子只能处于一系列的不连续的能量状态中,在这些状态中原子是稳定的.电子虽然绕核旋转,但并不向外辐射能量,这些状态叫定态.(2)原子从一种定态跃迁到另一定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两个定态的能量差决定.即hν=E2-E1(3)原子的不同能量状态对应于电子沿不同圆形轨道运动.原子的定态是不连续的,因而电子的可能轨道是分立的. 在玻尔模型中,原子的可能状态是不连续的,各状态对应的能量也是不连续的,这些不连续的能量值的能量值叫做能级。
3、原子核的组成核力原子核是由质子和中子组成的.质子和中子统称为核子.将核子稳固地束缚在一起的力叫核力,这是一种很强的力,而且是短程力,只能在2.0X10-15的距离内起作用,所以只有相邻的核子间才有核力作用.4、原子核的衰变(1)天然放射现象:有些元素自发地放射出看不见的射线,这种现象叫天然放射现象.(2)放射性元素放射的射线有三种:、射线、射线,这三种射线可以用磁场和电场加以区别,如图15.2-1 所示(3)放射性元素的衰变:放射性元素放射出粒子或粒子后,衰变成新的原子核,原子核的这种变化称为衰变.衰变规律:衰变中的电荷数和质量数都是守恒的.(4)半衰期:放射性元素的原子核有半数发生衰变所需要的时间称为半衰期.不同的放射性元素的半衰期是不同的,但对于确定的放射性元素,其半衰期是确定的.它由原子核的内部因素所决定,跟元素的化学状态、温度、压强等因素无关.(5)同位素:具有相同质子数,中子数不同的原子在元素周期表中处于同一位置,互称同位素。
原子的核式结构原子的能级原子的核式结构由原子核和电子云组成。
原子核位于原子的中心,由质子和中子组成。
质子带有正电荷,中子不带电荷。
原子核的质量约等于整个原子质量的99.9%,但体积非常小,约占整个原子体积的1/10,000。
电子云围绕着原子核的核式结构。
电子带有负电荷,质量很小。
电子云的半径可以看作是电子能级的大小,每个能级可以容纳一定数量的电子。
电子能级按照一定规律排列,较近原子核的能级能量较低,较远原子核的能级能量较高。
电子能级之间的能量差叫做能级间隔,对应于光的频率和波长。
当电子从低能级跃迁到高能级时,吸收能量;反之,从高能级跃迁到低能级时,放出能量。
原子的核式结构对物质的性质和结构起着重要的影响。
原子核决定了原子的质量和化学性质,例如质子数决定了元素的种类,质子数与中子数之和决定了原子的质量数。
电子云则决定了元素的化学反应性质,例如原子的化学键形成和断裂等。
原子核和电子云之间的相互作用力决定了原子的稳定性和化学行为。
原子的能级对化学反应和物质的性质也有着重要的影响。
根据泡利不相容原理和泡利排斥原理,每个能级上的电子自旋和量子数必须不同。
这种能级的填充规则决定了元素的电子构型和化学结构。
原子的化学反应和化学键的形成和断裂都涉及到电子的跃迁和能级的变化。
总结起来,原子的核式结构是由原子核和电子云组成的。
原子核决定了原子的质量和化学性质,电子云决定了原子的化学反应性质。
原子的能级决定了电子的运动状态和能量变化,对原子的化学反应和物质的性质有着重要的影响。
易错点29 原子 原子核易错总结一、氢原子光谱、氢原子的能级、能级公式1.原子的核式结构(1)电子的发现:英国物理学家汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱(1)光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝⎛⎭⎫122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。
3.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n 。
(h 是普朗克常量,h =6.63×10-34 J·s ) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
4.氢原子的能级、能级公式(1)氢原子的能级能级图如图所示(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV。
②氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10m。
原子的核式结构模型核式结构模型最早由英国物理学家卢瑟福在1911年提出。
他的实验是在散射实验的基础上进行的,通过让高能α粒子正入射到金箔上观察散射的粒子轨迹,研究原子的内部结构。
核式结构模型的基本假设是原子由一个带正电荷的中心核和围绕核运动的电子组成。
核中包含质子和中子,质子带正电荷,中子不带电荷。
电子带负电荷,具有质量,绕核轨道运动。
根据核式结构模型,核中的质子和中子集中在原子的中心,形成原子核,质子和中子的数量决定了元素的原子序数和质量数。
围绕核的是电子云,电子云具有质量很小的特点,且电子数与质子数相等,以达到整个原子中的总正电荷等于总负电荷的平衡。
核式结构模型的主要特点有以下几点:1.原子核是原子的中心,质子和中子集中在这个中心,形成一个紧密结合的核。
质子带正电荷,中子不带电荷,所以核带正电荷。
原子核是非常小而密集的,但也是非常重要的,因为其中的质子和中子决定了元素的化学性质和质量数。
2.电子围绕着原子核,形成电子云。
电子云由负电荷的电子组成,它们被正电荷的核吸引,使得整个原子中的正电荷和负电荷保持平衡。
电子云的位置和运动状态是不确定的,只有在特定距离和特定能级上才能稳定地存在。
3.不同元素的原子核中质子和中子的数量不同,决定了元素的原子序数和质量数。
原子序数是指元素中的质子数,决定了其在元素周期表中的位置。
质量数是指一种元素中质子和中子的总数,决定了元素的相对原子质量。
核式结构模型的提出对后来的原子结构研究和理解有着重要的意义。
虽然核式结构模型无法解释电子云的具体结构和能级分布,也无法解释更微观的原子核内部结构和核反应的发生机制,但它奠定了原子结构领域的基础,并为后来量子力学的发展提供了重要的思路和依据。
总结起来,核式结构模型是描述原子内部结构的模型,认为原子由带正电荷的中心核和围绕核运动的电子组成。
质子和中子集中在核中,电子围绕着核形成电子云。
核式结构模型的提出为后来对原子结构的研究奠定了基础,也为量子力学的发展提供了启示。
原子的核式结构
中子+质子=原子核
原子核+电子=原子
中子= 质子+电子+中微子
质子是合成粒子,属于费米子,有夸克组成
电子属于基本粒子,目前无法细分更小,属于轻子类
扩展资料
原子(atom)指化学反应不可再分的基本微粒,原子在化学反应中不可分割。
但在物理状态中可以分割。
原子由原子核和绕核运动的电子组成。
原子构成一般物质的最小单位,称为元素。
已知的元素有119种。
因此具有核式结构。
质子(proton)是一种带1.6 ×10-19 库仑(C)正电荷的亚原子粒子,直径约1.6~1.7×10−15 m ,质量是938百万电子伏特/c²(MeV/c²),即
1.672621637(83)×10-27千克,大约是电子质量的1836.5倍(电子的质量为9.10938215(45)×10-31千克),质子比中子稍轻(中子的质量为1.674927211(84)×10-27千克)。
质子属于重子类,由两个上夸克和一个下夸克通过胶子在强相互作用下构成。
原子核中质子数目决定其化学性质和它属于何种化学元素。
原子的核式结构原子的核式结构玻尔理论天然放射现象一、知识点梳理1、原子的核式结构(1)粒子散射实验结果:绝大多数粒子沿原方向前进,少数粒子发生较大偏转。
(2)原子的核式结构模型:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核旋转.(3)原子核的大小:原子的半径大约是10-10米,原子核的半径大约为10-14米~10-15米.2、玻尔理论有三个要点:(1)原子只能处于一系列的不连续的能量状态中,在这些状态中原子是稳定的.电子虽然绕核旋转,但并不向外辐射能量,这些状态叫定态.(2)原子从一种定态跃迁到另一定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两个定态的能量差决定.即hν=E2-E1(3)原子的不同能量状态对应于电子沿不同圆形轨道运动.原子的定态是不连续的,因而电子的可能轨道是分立的.在玻尔模型中,原子的可能状态是不连续的,各状态对应的能量也是不连续的,这些不连续的能量值的能量值叫做能级。
3、原子核的组成核力原子核是由质子和中子组成的.质子和中子统称为核子.将核子稳固地束缚在一起的力叫核力,这是一种很强的力,而且是短程力,只能在2.0X10-15的距离内起作用,所以只有相邻的核子间才有核力作用.4、原子核的衰变(1)天然放射现象:有些元素自发地放射出看不见的射线,这种现象叫天然放射现象.(2)放射性元素放射的射线有三种:、射线、射线,这三种射线可以用磁场和电场加以区别,如图15.2-1所示(3)放射性元素的衰变:放射性元素放射出粒子或粒子后,衰变成新的原子核,原子核的这种变化称为衰变.衰变规律:衰变中的电荷数和质量数都是守恒的.(4)半衰期:放射性元素的原子核有半数发生衰变所需要的时间称为半衰期.不同的放射性元素的半衰期是不同的,但对于确定的放射性元素,其半衰期是确定的.它由原子核的内部因素所决定,跟元素的化学状态、温度、压强等因素无关.(5)同位素:具有相同质子数,中子数不同的原子在元素周期表中处于同一位置,互称同位素。
二、典型例题例1如图15-2-2所示为卢瑟福和他的同事们做粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,观察到的现象,下述说法中正确的是A.放在A位置时,相同时间内观察到屏上的闪光次数最多B.放在B位置时,相同时间内观察到屏上的闪光次数只比A位置时稍少些C.放在C、D位置时,屏上观察不到闪光D.放在D位置时,屏上仍能观察一些闪光,但次数极少[解析]根据α粒子散射现象,绝大多数粒子沿原方向前进,少数粒子发生较大偏转,本题应选择A、B、D [点评]本题考查学生是否掌握卢瑟福的α粒子散射实验结果。
例2氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道过程中()A.原子要吸收光子,电子的动能增大,原子的电势能增大,原子的能量增大B.原子要放出光子,电子的动能减小,原子的电势能减小,原子的能量也减小C.原子要吸收光子,电子的动能增大,原子的电势能减小,原子的能量增大D.原子要吸收光子,电子的动能减小,原子的电势能增大,原子的能量增加[解析]根据玻尔理论,氢原子核外电子在离核越远的轨道上运动时,其能量越大,由能量公式En=(E1=-13.6eV)可知,电子从低轨道(量子数n小)向高轨道(n值较大)跃迁时,要吸收一定的能量的光子.故选项B可排除.氢原子核外电子绕核做圆周运动,其向心力由原子核对电子的库仑引力提供,即=,电子运动的动能Ek=mv2=.由此可知:电子离核越远,r越大时,则电子的动能就越小,故选项A、C均可排除.由于原子核带正电荷,电子带负电荷,事实上异性电荷远离过程中需克服库仑引力做功,即库仑力对电子做负功,则原子系统的电势能将增大,系统的总能量增加,故选项D正确.[点评]考查对玻尔理论、库仑定律、圆周运动规律及电场力做功性质的综合运用的能力.例3关于天然放射现象,以下叙述正确的是()A.若使放射性物质的温度升高,其半衰期将减小B.β衰变所释放的电子是原子核内的中子转变为质子时所产生的C.在α、β、γ这三种射线中,γ射线的穿透能力最强,α射线的电离能力最强D.铀核()衰变为铅核()的过程中,要经过8次α衰变和10次β衰变[解析]半衰期是由放射性元素原子核的内部因素所决定,跟元素的化学状态、温度、压强等因素无关.A 错;β衰变所释放的电子是原子核内的中子转变为质子时所产生的,,B对;根据三种射线的物理性质,C对;U的质子数为92,中子数为146,Pb的质子数为82,中子数为124,因而铅核比铀核少10个质子,22个中子。
注意到一次α衰变质量数减少4,故α衰变的次数为x==8次。
再结合核电荷数的变化情况和衰变规律来判定β衰变的次数y应满足2x-y+82=92,y=2x-10=6次。
故本题正确答案为B、C。
[点评]1本题考查α衰变、β衰变的规律及质量数,质子数、中子数之间的关系。
2β衰变放出的电子并不是由核外电子跃迁出来的,而是从核中衰变产生的。
例4、如图15-2-3K-介子衰变的方程为,其中K-介子和π-介子带负的基元电荷,π0介子不带电。
一个K-介子沿垂直于磁场的方向射入匀强磁场中,其轨迹为圆弧AP,衰变后产生的π-介子的轨迹为圆弧PB,两轨迹在P点相切,它们的半径RK-与Rπ之比为2∶1。
π0介子的轨迹未画出。
由此可知π-介子的动量大小与π0介子的动量大小之比为A.1∶1B.1∶2C.1∶3D.1∶6[解析]根据题意,分别计算出带电粒子在磁场中作圆周运动的轨道半径。
根据动量的定义,分别求出两个介子的动量大小,再从图中确定两个介子动量的方向,最后运用动量守恒,计算出粒子的动量大小。
qvKB=mK,RK=R,,pK=-p+p,p。
正确选项为(C)[点评]这题以基本粒子的衰变为情景,涉及带电粒子在磁场中运动规律和动量守恒等知识点,是一道综合性题目。
带电粒子在磁场中受到洛伦磁力作用,该力的方向与粒子的速度方向垂直,因此,带电粒子作圆周运动。
根据动量守恒,基本粒子衰变前后的总动量不变,但计算过程要主注意动量的方向问题。
例5若原子的某内层电子被电离形成空位,其它的电子跃迁到该空位上时,会将多余的能量以电磁辐射的形式释放出来,此电磁辐射就是原子的特征X射线。
内层空位的产生有多种机制,其中的一种称为内转换,即原子中处于激发态的核跃迁回基态时,将跃迁时释放的能量交给某一内层电子,使此内层电子电离而形成空位(被电离的电子称为内转换电子)。
的原子核从某一激发态回到基态时,可将能量E0V交给内层电子(如K、L、M层电子,K、L、M标记原子中最靠近核的三个电子层)使其电离。
实验测得从原子的K、L、M层电离出的动能分别为EK=1.323MeV、ELV、EM=1.412MeV.则可能发射的特征X射的能量为A0.013MeVB0.017MeVC0.076MeVD0.093MeV[解析]电子电离后的动能等于吸收的能量减去电子原来所处的能级的能量,所以原子核的K层的能量为0.093MeV,原子核的L层的能量为0.017MeV,原子核的M层的能量为0.004MeV。
所以可能发射的特征X射的能量为0.076MeV、0.087MeV、0.013MeV。
故正确为A、C[点评]这是一道信息题要求学生能把题中所给的知识与已学知识有机结合。
学生首先要弄清电子的电离能、动能与吸收能量的关系。
三、过关测试1、用a、b两束单色光分别照射同一双缝干涉装置,在距双缝恒定距离的屏上得到图示的干涉图样,其中甲图是a光照射时形成的,乙图是b光照射时形成的。
则关于a、b两束单色光,下述正确的是BA.a光光子的能量较大B.在水中a光传播的速度较大C.若用a光照射某金属时不能打出光电子,则用b 光照射该金属时一定打不出光电子D.若a光是氢原子从n=4的能级向n=2的能级跃迁时产生的,则b光可能是氢原子从n=3的能级向n=2的能级跃迁时产生的2、德国物理学家弗兰克林和赫兹进行过气体原子激发的实验研究。
如图(1)他们在一只阴极射线管中充了要考察的汞蒸气。
极射发出的电子受阴极K和栅极R之间的电压UR加速,。
电子到达栅极R时,电场做功eUR。
此后电子通过栅极R和阳极A之间的减速电压UA。
通过阳极的电流如图(2)所示,随着加建电压增大,阳极电流在短时间内也增大。
但是到达一个特定的电压值UR 后.观察到电流突然减小。
在这个电压值上,电于的能量刚好能够激发和它们碰撞的原子。
参加碰撞的电子交出其能量,速度减小,因此刻达不了阳极.阳极电流减小。
eUR即为基态气体原于的激发能。
得到汞原子的各条能级比基态高以下能量值:4.88eV,6.68eV,8.78eV,10.32eV(此为汞原子的电离能)。
若一个能量为7.97eV电子进入汞蒸气后测量它的能量大约是A.4.88eV或7.97eVB.4.88eV或6.68eVC.2.35eV或7.97eVD.1.29eV或3.09eV或7.97eVD3、某原子核的衰变过程是ABC,下述说法中正确的是,A.核C比核B的中子数少2B.核C比核A的质量数少5C.原子核为A的中性原子的电子数比原子核为B的中性原子的电子数多2D.核C比核A的质子数少14、原子从一个能级跃迁到一个较低的能级时,有可能不发射光子.例如在某种条件下,铬原子的n=2能级上的电子跃迁到n=1能级上时并不发射光子,而是将相应的能量转交给n=4能级上的电子,使之能脱离原子,这一现象叫做俄歇效应.以这种方式脱离了原子的电子叫做俄歇电子.已知铬原子的能级公式可简化表示为En=-,式中n=1,2,3…表示不同能级,A是正的已知常数.上述俄歇电子的动能是(A)A(B)A(C)A(D)A5、地球的年龄到底有多大,科学家利用天然放射性元素的衰变规律,通过对目前发现最古老的岩石中铀和铅含量来推算。
测得该岩石中现含有的铀是岩石形成初期时(岩石形成初期时不含铅)的一半,铀238衰变后形成铅206,铀238的相对含量随时间变化规律如图所示,图中N为铀238的原子数,N0为铀和铅的总原子数.由此可以判断出BDA.铀238的半衰期为90亿年B.地球的年龄大致为45亿年C.被测定的古老岩石样品在90亿年时的铀、铅原子数之比约为1∶4D.被测定的古老岩石样品在90亿年时铀、铅原子数之比约为1∶36.关于氢原子能级的跃迁,下列叙述中正确的是() A.用波长为60nm的伦琴射线照射,可使处于基态的氢原子电离出自由电子B.用能量为10.2eV的光子照射,可使处于基态的氢原子跃迁到激发态C.用能量为11.0eV的自由电子轰击,可使处于基态的氢原子跃迁到激发态D.用能量为12.5eV的光子照射,可使处于基态的氢原子跃迁到激发态7、氢原子从能级A跃迁到能级B时,辐射出波长为λ1的光子,从能级A跃迁到能级C时,辐射出波长为入2的光子.若入1入2,则氢原子从能级B跃迁到能级C 时,将______光子,光子的波长为_______。