(达利杯数学竞赛)2018-2019年七年级达利杯数学竞赛答题卷
- 格式:pdf
- 大小:436.24 KB
- 文档页数:20
2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。
(C) $-\frac{1}{3}$。
(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。
注:本题也可用特殊值法来判断。
2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。
(B) $1$。
(C) $0$。
(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。
七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。
A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。
2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。
4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。
5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。
三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。
如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。
2. 一个班级有40名学生,其中男生和女生的比例是3:2。
如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。
现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。
在一个直角三角形中,直角边的平方和等于斜边的平方。
2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。
数学竞赛试题初一及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a和b是两个非零实数,且a+b=5,那么a-b的最大值是多少?A. 5B. 4C. 3D. 23. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 44. 下列哪个选项是4的倍数?A. 7B. 8C. 9D. 105. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共10分)6. 一个数的绝对值是它与____的距离。
7. 圆的周长公式是C=__。
8. 如果一个数的立方等于它本身,那么这个数可能是____。
9. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是____。
10. 一个数的倒数是1/这个数,那么1的倒数是____。
三、简答题(每题5分,共15分)11. 解释什么是有理数,并给出两个有理数的例子。
12. 什么是质数?请列出前5个质数。
13. 描述如何使用勾股定理来计算直角三角形的斜边长度。
四、计算题(每题10分,共20分)14. 计算下列表达式的值:(2+3)×(2-3)。
15. 解下列方程:2x + 5 = 13。
五、解答题(每题15分,共30分)16. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
17. 一个班级有40名学生,其中1/4是男生,1/3是女生,剩余的是教师。
求男生、女生和教师的人数。
答案:一、选择题1. B2. A3. A4. B5. A二、填空题6. 07. 2πr(或πd,d为直径)8. 0, ±19. 5 10. 1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2和3。
12. 质数是大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。
七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。
12. 如果5个连续的整数的和是45,那么中间的数是______。
13. 一个数的2倍与7的和是35,那么这个数是______。
14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。
15. 一本书的价格是35元,如果打8折出售,那么现价是______元。
16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。
17. 一个数的3/4加上它的1/2等于5,那么这个数是______。
18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。
2018年“达利教育卓越奖”初中学科竞赛七年级数学试题(试卷总分100分;考试时间120分钟)一、单项选择题(本大题共6小题,每小题4分,共24分)1.观察按一定规律排列的一列数:1121231234, 2334445555⋯,,,,,,,,,若第n个数是1126,则n的值为(▲)A.301 B.310 C.311 D.312 2.当甲是乙现在的年龄时,乙30岁;当乙是甲现在的年龄时,甲45岁,那么(▲)A.甲比乙大5岁 B.甲比乙大10岁C.乙比甲大10岁 D.乙比甲大5岁3.关于x的不等式组23(3)1324x xxx a<-+⎧⎪⎨+>+⎪⎩有四个整数解,则a的取值范围是(▲)A.11542a-<≤- B.11542a-≤<-C.11542a-≤≤- D.11542a-<<-4.如图,△ABC 中,︒=∠90BAC ,AC AB =,︒=∠x MAB (0<x <90),B 点关于AM 的对称点为D 点,CD 交AM 于点E ,︒=∠y BEC ,则y 与x 的数量关系是( ▲ ) A .︒=90y B .︒+=302x y C .x y 3= D .︒-=304x y5.甲、乙两人沿同一路线骑车(匀速)从A 地到B 地,甲需要30分钟,乙需要40分钟,若乙比甲早出发6分钟,当甲追上乙以后,乙再经过t 分钟到达B 地,则t 的值为( ▲ ) A .25 B .20 C .16 D .106.如图,两条线段把△ABC 分为三个三角形和一个四边形,三个三角形的面积分别是3,7,7,则阴影四边形的面积是( ▲ ) A .18 B .17C .11D .10.5二、填空题(本大题共6小题,每小题4分,共24分) 7.若13210345n=++,则n 表示的数是 . 8.将一幅三角板按如图所示叠放,︒=∠90C ,︒=∠30A ,︒=∠45D ,将△DCE 绕直角顶点C 顺时针旋转一个锐角θ时,边DE 分别交AB 、AC 于点P 、Q ,当△Q AP 为等腰三角形. 则锐角θ的度数是 .ABMCADCBEADCBEPQθ9.某公司计划安排720人租车出游,要求每辆车都坐满. 每辆50座车的租金为800元,每辆40座车的租金为680元. 则该公司这次租车费用最少要 元.10.如图,凹四边形ABCD ,AE 平分∠则B ∠、D ∠、E ∠11.如果关于x 的不等式()n m x n m 52--+>0的解集为x <117,那么关于x 的不等式 mx >n (0≠m )的解集为 .12.如图,在△OAB 中,OB OA =,点C 、D 分别在OA 、OB 边上,CE 平分ACD ∠,114CEB ∠=︒,则=∠ODC 度三、解答题(本大题共5小题,共52分)13.(10分)已知△ABC 的两边上的高分别为5和20,若第三边上的高也是整数,求第三边上的高是多少?OABCDE14.(10分)已知三个非负数a b c 、、满足325a b c ++=和231a b c +-=,若37m a b c =+-,求m 的最大值与最小值之和是多少?15.(10分)若1abc =,解关于x 的方程: 2018111=++++++++cac xbc b x ab a x ..16.(10分)解方程:[]14133x x +=-,其中[a ]表示不超过a 的最大整数.17.(12分)引理:在一个三角形中,大角对大边. 如图1,△ABC 中,若B ∠>C ∠,则AC >AB .应用:如图2,点O 是边长为1的等边△ABC 内的任意一点,OC OB OA m ++=,求证:322m <<.图1AC BB图22018年“达利教育卓越奖”初中学科竞赛七年级数学试题一、选择题(每小题4分,共24分)二、填空题(每小题4分,共24分)7.4; 8.15︒或60︒; 9.11640; 10.2B D E ∠-∠=∠; 11.58x <; 12.48︒.三、解答题(本大题共5小题,共52分) 13.(10分)解:111520222222,,520a b ch S s s s a b c h a b c a b⨯=⨯==∴===-<<+设22222520520111115205203152020s s s s s h h h ∴-<<+∴-<<+<<2043h h h ∴>>∴为整数=5或6.....................3 .....................5 .....................6 (7) (8) (9) (10)14.(10分)325213a b ca b c +=-⎧⎨+=+⎩解: 解得:73711a c b c=-⎧⎨=-⎩..a b c 为非负数73071100c c c -≥⎧⎪∴-≥⎨⎪≥⎩37711c ∴≤≤ 37m a b c =+-()()373711732m c c c c ∴=-+--=-71=111135=77c m c m ∴--当时,最大为当时,最小为156211777⎛⎫∴-+-=- ⎪⎝⎭ (2) (4) (5) (6) (7) (9) (8) (10)15.(10分) 解:111 201811111120181(1)(1)12018111 2018111 x a ab b bc c ac a ab x a ab b bc a c ac ab a ab x a ab a ab abc ab abc ac ab abc a ab x a ab a ab ab a ⎛⎫++= ⎪++++++⎝⎭⎡⎤⋅⋅++=⎢⎥++++++⎣⎦⎡⎤++=⎢⎥++++++⋅⎣⎦=⎡⎤∴++=⎢⎥++++++⎣⎦1 20181 2018a ab x a abx ++⋅=++= 16.(10分)解:.....................1 .....................6 ..................7 .....................8 .....................9 (10)()()()()1134+1313341331314133131,432133111134,3918233,3915332,3912431,392131,9331185999x x x x x x x x x x x x x x -≤<-+∴-≤<-∴-≤+<-⎡⎫------⎪⎢⎣⎭∴-=-=--=-=--=-=--=-=-⎡⎫-∉--⎪⎢⎣⎭∴=---在中整数有,,,得得得得或或17.(12分)//.9090MN BC AB AC M N AMN AOM AON AOM AOM AMN AM AO ∴∆∴∠∠︒∠≥︒∴∠>∠∴>过O 作交、于、也为等边三角形与中必有一个角大于或等于设① (4).....................5 .....................6 .....................7 .....................8 .....................9 .....................10 .....................1 .....................4 (5)2018年“达利教育卓越奖”初中学科竞赛七年级数学试题 第 11 页 共 6 页 >>><BM OM OB ON CN OC AB BM OM ON CN OA OB OCAB MN CN mMN ANAB AN CN mAB AC mm +>+>∴+++>∴∴∴②③①②③得+++++++=+++2()232332322OA OB ABOA OC BCOB OC BCOA OB OC m m m +>+>+>∴++>∴>>∴<<B C .....................9 .....................10 .....................11 (12)。
初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2答案:A3. 如果一个角的补角是它的两倍,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:C4. 以下哪个选项表示的是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A5. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C6. 一个数的立方是-27,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:B7. 以下哪个选项是方程2x + 3 = 9的解?A. x = 3B. x = 6C. x = -3D. x = 0答案:A8. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 下列哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x > 2C. x < 4D. x < 2答案:A10. 如果一个三角形的两边长分别是3和4,那么第三边的长度可以是:A. 1B. 2C. 3D. 4答案:C二、填空题(每题3分,共30分)1. 一个数加上它的相反数等于______。
答案:02. 一个数的绝对值是它本身,这个数是______。
答案:非负数3. 一个角的补角是它的三倍,那么这个角的度数是______。
答案:45°4. 一次函数y = 2x + 1的图象经过点(0,1),则这个点是该函数的______。
答案:截距5. 一个数的平方是16,这个数是______。
答案:±46. 一个数的立方是8,这个数是______。
答案:27. 方程3x - 7 = 2的解是______。
2018-2019学年第一学期七年级数学竞赛试卷考试时间:120分钟 满分:100一、选择题:(每小题3分,共30分)1.如果+3吨表示运入仓库的大米吨数, 那么运出仓库5吨大米表示为( )。
A .-5吨 B .+5吨 C .-3吨 D .+3吨 2.下列各式正确的是( )。
A .33--= B .+(-3)=3C .(3)3--=D .-(-3)=-33.如图,数轴上的A 、B 两点分别表示有理数a 、b,下列式子中不正确的是( )。
A. 0a b +<B. 0a b -<C. 0a b -+>D. b a >4.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为( )。
A.149×106千米2B. 1.49×108千米2C. 14.9×107千米2D. 0.149×109千25.在数12、—20、211-、 0 、—(—5)、—|+3|中,负数有( )。
A.2 个 B. 3个 C. 4个 D.5个 6.下列说法中,正确的是( )。
A .a -是正数 B.-a 是负数 C.-a 是负数 D.a -不是负数 7.在下列的代数式的写法中,表示正确的一个是( )。
A .“负x 的平方”记作-2x B.“y 与311的积”记作y 311C.“x 的3倍”记作x3D.“a 除以2b 的商”记作ba2 8.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不另拿钱购买,最多可以喝矿泉水( )。
A. 3瓶B. 4瓶C. 5瓶D. 6瓶 9.若,0,5,7>+==y x y x 且那么y x -的值是( )。
A. 2或12B. 2或-12C. -2或12D.- 2或-1210算式4)433(⨯-可化为:( )A.44343⨯-⨯-B.343⨯⨯-C.44343⨯+⨯- D. -3×3-3二、填空题:(每小题4分,共24分。
数学竞赛试题初一及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方等于该数本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是3. 一个圆的半径是5厘米,那么它的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π4. 以下哪个表达式的结果等于0?A. 3 - 3B. 2 × 0C. 5 ÷ 5D. 4 + 05. 如果一个角的补角是它的3倍,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°二、填空题(每题2分,共10分)6. 一个数的相反数是它本身的数是______。
7. 一个数的绝对值是它本身的数是非负数,那么这个数是______或______。
8. 一个三角形的内角和等于______度。
9. 如果一个数的平方根是它本身,那么这个数是______或______。
10. 一个数的立方等于它本身,这个数是______、______或______。
三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3 + 5) × (7 - 2)。
12. 计算下列表达式的值:(-2)³ - 3 × 2²。
13. 计算下列表达式的值:√(49) + √(16)。
14. 计算下列表达式的值:(-1)⁴ - 2²。
四、解答题(每题10分,共30分)15. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
16. 一个直角三角形的两条直角边分别是3厘米和4厘米,求它的斜边长度。
17. 一个数列的前三项是1,3,6,求这个数列的第四项。
五、证明题(每题25分,共25分)18. 证明:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,那么较小的锐角的度数是30°。
答案:一、选择题1. B2. D3. C4. A5. D二、填空题6. 07. 正数,08. 1809. 0,110. 0,1,-1三、计算题11. 6412. -813. 714. 3四、解答题15. 周长:(15 + 10) × 2 = 50厘米;面积:15 × 10 = 150平方厘米。
绝密★启用前2018-2019学年人教版七年级数学竞赛试卷B注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共6小题,4*6=24)1.有一拉面师傅首先把一个面团搓成1.6米长的圆柱形面棍,对折,再拉长到1.6米;再对折,再拉长到1.6米;…这样对折10次,再拉长到1.6米,就做成了拉面.此时,若将手中的面条伸展开,把面条看作粗细均匀的圆柱形,它的粗细(直径)是原来面棍粗细(直径)的()A.B.C.D.2.某靶场有红、绿靶标共100个,其中红靶标的数量不到绿靶标数量的三分之一,若打中一个红靶标得10分,打中一个绿靶标得8.5分,小明打中了全部绿靶标和部分红靶标,在计算他所得的总分时,发现总分与红靶标的总数无关(包括打中的和没有打中的),则靶场有红靶标()个.A.22 B.20 C.18 D.163.编号为1到101的101个小球分放在两个盒子A和B中,40号小球在盒子A中,把这个小球从盒子A中移至盒子B中,这时盒子A中小球号码数的平均数增加了,B中小球号码数的平均数也增加了,则原来在盒子A中的小球个数为()A.70 B.71 C.72 D.734.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟5.将正整数按如图所示的位置顺序排列,根据图中的排列规律,2008应在()A.A位B.B位C.C位D.D位6.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为()A.1 B.2 C.3 D.5第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,4*6=24)7.现有长度分别12,3,4,7,8,9,10,13,14,15的线段各一条.若从中选出若干条(不截取)来拼接成正方形,则共有种不同的拼接法.8.袋中有红、黄、黑三种颜色的球各若干个,黄色球上标有数字5,黑色球上标有数字6,红色球上标的数字看不清.现从袋中拿出8个球,其中黄色球和黑色球的个数分别少于红色球的个数.已知8个球上的数字和是39,那么红色球上标的数字是;拿出黑色球的个数是.9.世界著名的莱布尼兹三角形如图所示,其排在第8行从左边数第3个位置上的数是.10.粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为mm.(,结果精确到1mm)11.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.12.一年共有12个月,闰年的二月是29天,又有4个小月,7个大月,所以闰年共有29×1+30×4×31×7=366(天).反过来思考:如果非负整数a,b,c满足等式:29a+30b+31c=366(*),那么a+b+c=,这样的数组(a,b,c)共有组,它们分别是.三.解答题(共4小题,52分)13.(12分)某仓库有50件同一规格的某种集装箱,准备委托运输公司送到码头,运输公司有每次可装运1件、2件、3件这种集装箱的三种型号的货车,这三种型号的货车每次收费分别为120元、160元、180元,现要求安排20辆货车刚好一次装运完这些集装箱.问这三种型号的货车各需多少辆?有多少种安排方式?哪些安排方式所需的运费最少?最少运费是多少?14.(12分)将正整数1、2、3、4、5、6…按下列规律进行排列:首先将这些数从“1”开始每隔一数取出,形成一列数:1、3、5、7排成一行;然后在剩下的数2、4、6、8…中从第一个数“2”开始每隔一数取出,形成第二列数:2、6、10、…排成第二行;照此下去,第三排的数由剩下的4、8、12、16、…中从第一个数“4”开始每隔一数取出4、12、20、…;如此一直继续下去,我们可以排成一张表如下表所示.(1)问32、42、72分别在表中的第几行?(2)对于表中第3列第n行的数,请你用关于n的代数式表示出来;(3)176在这个表中的第几行第几列.15.(14分)已知:五位数满足下列条件:(1)它的各位数字均不为零;(2)它是一个完全平方数;(3)它的万位上的数字a是一个完全平方数,干位和百位上的数字顺次构成的两位数以及十位和个位上的数字顺次构成的两位数也都是完全平方数.试求出满足上述条件的所有五位数.16.(14分)一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃:①能从任意一点(a,b),跳到点(2a,b)或(a,2b);②对于点(a,b),如果a>b,则能从(a,b)跳到(a﹣b,b);如果a<b,则能从(a,b)跳到(a,b﹣a).例如,按照上述跳跃方式,这只青蛙能够到达点(3,1),跳跃的一种路径为:(1,1)→(2,1)→(4,1)→(3,1).请你思考:这只青蛙按照规定的两种方式跳跃,能到达下列各点吗?如果能,请分别给出从点(1,1)出发到指定点的路径;如果不能,请说明理由.(1)(3,5);(2)(12,60);(3)(200,5);(4)(200,6).参考答案1.解:第一次对折后长度为1.6×2米,第二次对折后长度为1.6×2×2米,第三次对折后长度为1.6×23米,第四次对折后长度为1.6×24米,第十次对折后长度为1.6×210米,设原来直径为r,则原体积为1.6πr2,现在的体积为1.6×210πR2=1.6πr2,∴==,即它的粗细(直径)是原来面棍粗细(直径)的.故选:B.2.解:设红靶x个,则绿靶(100﹣x)个,打中红的数目为k,打中了全部绿靶标得分:S=8.5(100﹣x)=850﹣8.5x,又总分=S+10x=85+10k﹣8.5x为一常数,所以10k=8.5x,又由“靶标的数量不到绿靶标数量的三分之一“知:x<即x<25,又x,k为自然数,所以x=20,k=17,即靶场有红靶标20个.故选:B.3.解:设原来盒子A中有弹珠x个,则盒子B中有弹珠(101﹣x)个.又记原来A中弹珠号码数的平均数为a,B中弹珠号码数的平均数为b.则由题意得:,由②得:a=(159+x),由③得:b=(58+x),将a、b代入①解得:x=73,即原来盒子A中有73个弹珠.故选:D.4.解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x﹣6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以.即18路公交车总站发车间隔的时间是4分钟.故选:B.5.解:被4除余数是1的排在D位,被4除余数是2的排在A位,被4除余数是3的排在B位,被4整除的排在C位.2008÷4=502,所以2008排在C位.故选:C.6.解:由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上.由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上1是奇数,沿顺时针跳两个点,落在3上.由3起跳,是奇偶数,沿顺时针跳两个点,落在5上.2﹣1﹣3﹣5﹣2,周期为4;又由2011=4×502+3,∴经过2011次跳后它停在的点所对应的数为3.故选:C.7.解:12+3+4+7+8+9+10+13+14+15=95,故正方形的边长最多为23,而组成的正方形需要4个边长,故边长最小为22.22=10+12=9+13=8+14=7+15,22=10+12=9+13=8+14=3+4+15,23=10+13=9+14=8+15=12+4+7,故边长为22的正方形有2个,边长为23的正方形有1个,共3个.故答案为3.8.解:∵黄色球和黑色球的个数分别少于红色球的个数,∴红色球只可能有4、5、6个,∴①若红色球6个,则黄色球1个,黑色球1个,则红色球标的数字为:=(舍去);②若红色球5个,黄色球1个,黑色球2个,则红色球标的数字为:=(舍去);③若红色球5个,黄色球2个,黑色球1个,则红色球标的数字为:=(舍去);④若红色球4个,黄色球1个,黑色球3个,则红色球标的数字为:=4;⑤若红色球4个,黄色球2个,黑色球2个,则红色球标的数字为:=(舍去);⑥若红色球4个,黄色球3个,黑色球1个,则红色球标的数字为:=(舍去).∴红色球上标的数字是4;拿出黑色球的个数是3.故答案为:4,3.9.解:∵第8行最后一个数是,第7行最后一个数是,第6行最后一个数是,∴第7行倒数第二个数是﹣=,第8行倒数第二个数是﹣=,∴第8行倒数第三个数是﹣=,故答案是:.10.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′•cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.11.解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.12.解:∵一年是12个月,∴a+b+c=12∴由题意得:由②×29,得29a+29b+29c=348 ③由①﹣③,得b+2c=18∴b=18﹣2c∴0≤18﹣2c≤12∴3≤c≤9且为整数.当c=3时,b=12,a=﹣3,不符合题意,应舍去.当c=4时,b=10,a=﹣2,不符合题意,应舍去.当c=5时,b=8,a=﹣1,不符合题意,应舍去.当c=6时,b=6,a=0.当c=7时,b=4,a=1.当c=8时,b=2,a=2.当c=9时,b=0,a=3.∴原方程组的解为:,,,共4组.故答案为:12,4,(0,6,6),(1,4,7),(2,2,8),(3,0,9).13.解:设需要装运1件、2件、3件集装箱的货车分别为x辆、y辆、z辆,根据题意得.,①×3﹣②得2x+y=10则因为y≥0,所以0≤x≤5,故x只能取0、1、2、3、4、5共有、、、、、,这六种安排方法:设总运费为F元,则F=120x+160y+180z=120x+160(10﹣2x)+180(10+x),所以F=3400﹣20x,当x=5时,总运费最低,最低运费为F=3400﹣20×5=3300元.14.解:(1)∵32=1×25,∴32在第6行,∵42=2×21=21×21,∴42在第2行,∵72=8×9=9×23,∴72在第4行;(2)由分析(1)可知,第3列第n行的数为5×2n﹣1;(3)∵176=11×24,∴176必在第5行,第6列.15.解:设,且a=m2(一位数),(两位数),(两位数),则M2=m2×104+n2×102+t2①由式①知M2=(m×102+t)2=m2×104+2mt×102+t2②比较式①、式②得n2=2mt.因为n2是2的倍数,故n也是2的倍数,所以,n2是4的倍数,且是完全平方数.故n2=16或36或64.当n2=16时,得mt=8,则m=l,2,4,8,t=8,4,2,1,后二解不合条件,舍去;故M2=11664或41616.当n2=36时,得mt=18.则m=2,3,1,t=9,6,18.最后一解不合条件,舍去.故M2=43681或93636.当n2=64时,得mt=32.则m=1,2,4,8,t=32,16,8,4都不合条件,舍去.因此,满足条件的五位数只有4个:11664,41616,43681,93636.16.解:(1)能到达点(3,5)和点(200,6).从(1,1)出发到(3,5)的路径为:(1,1)→(2,1)→(4,1)→(3,1)→(3,2)→(3,4)→(3,8)→(3,5).从(1,1)出发到(200,6)的路径为:(1,1)→(1,2)→(1,4)→(1,3)→(1,6)→(2,6)→(4,6)→(8,6)→(16,6)→(10,6)→(20,6)→(40,6)→(80,6)→(160,6)→(320,6)→(前面的数反复减20次6)→(200,6);(2)不能到达点(12,60)和(200,5).理由如下:∵a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数,∴由规则①知,跳跃不改变前后两数的公共奇约数.∵如果a>b,a和b的最大公约数=(a﹣b)和b的最大公约数,如果a<b,a和b的最大公约数=(b﹣a)和b的最大公约数,∴由规则②知,跳跃不改变前后两数的最大公约数.从而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数.∵1和1的公共奇约数为1,12和60的公共奇约数为3,200和5的公共奇约数为5.∴从(1,1)出发不可能到达给定点(12,60)和(200,5).。