六年级分数乘法复习史上最全
- 格式:docx
- 大小:127.59 KB
- 文档页数:7
小学六年级分数乘法知识点在小学六年级学习数学的过程中,分数乘法是一个重要的知识点。
通过掌握分数乘法,我们可以解决实际问题,并且提高数学计算的准确性和效率。
本文将介绍小学六年级分数乘法的知识点及其应用。
一、分数乘法的基本概念分数乘法是指两个分数相乘的运算。
在分数乘法中,我们需要掌握以下几个基本概念:1. 分数的乘法法则:分数乘法满足乘法交换律和结合律。
即对于任意的分数a、b和c,都有a×b=b×a和(a×b)×c=a×(b×c)。
2. 分数的乘法运算:分数的乘法运算可以通过将分子相乘、分母相乘得到结果。
例如,1/2 × 3/4 = (1×3) / (2×4) = 3/8。
二、分数乘法的应用分数乘法在生活中有很多应用场景,如购物打折、食谱调配等。
下面列举几个常见的应用案例。
1. 打折问题:商场正在进行打折活动,某商品原价为120元,现打7折出售。
我们可以使用分数乘法来计算打折后的价格,即120 × (7/10) = 84元。
2. 食谱问题:做蛋糕的食谱中需要1/2杯的鸡蛋液。
如果要翻倍的制作蛋糕,我们可以使用分数乘法来计算所需的鸡蛋液的量,即1/2 × 2 = 1杯。
3. 长度问题:某段路程的长度为3/4公里,一共要走5次。
我们可以使用分数乘法来计算总的路程长度,即3/4 ×5 = 15/4公里。
三、常见的分数乘法题型在小学六年级数学课本中,常见的分数乘法题型有:1. 分数与整数的乘法:如1/4 × 3、2 × 2/5等。
解决这类题目时,我们可以将整数转化为分数,然后按照分数乘法的规则进行计算。
2. 分数乘分数:如1/2 × 3/4、2/3 × 4/5等。
对于这类题目,我们需要先进行分子相乘,再进行分母相乘,最后化简结果。
3. 分数与分数的乘除混合运算:如2/3 × 6 ÷ 4/5等。
复习分数乘法7、已知比一个数多(少)几分之几是多少,求这个数1美术小组有25人,美术小组的人数比航模小组多1•问航模小组有多少人?4随堂检测11、甲数的2与乙数的3相等.甲数是3,乙数是多少?5 4 82、一个数的2等于120的1,这个数是多少?3 413、食堂运进540千克大米,大米比运进的面粉多.食堂运进大米和面粉共多少千克?91台笔记本电脑原价4200元,现在降价―,请问现在的售价是多少?34、四、解分数方程1、解方程2 3 5 3 53 484 62x 3x 3x2、应用题解方程的步骤找出单位“ 1”,设未知量为X.找出题中的数量关系式,转化为分数乘除法问题列出方程——解方程.指导训练21、食堂买了60千克的西红柿,西红柿的量是青菜的2,请问买了青菜多少千克?32、小明要下载一份稿件,已经下5,下载了1200字,请问这份稿件一共有多少字?13、农机厂10月份生产抽水机8000台,比9月份增长4,9月份生产的抽水机多少台?五、分数的混合运算分数混合运算的运算顺序和整数的运算顺序(相同)指导训练39 11 2240 5 546346 12 2372377、填空“一桶油的3重6千克”,把()看作单位“ 1”,()x 3=(44“男生占全班人数的4 5 ”,把()看作单位“ 1”,()X5=( 992“鸭只数的2等于鸡”把( )看作单位“ 1”,( )X 6 =(7745是( )的5, 7吨是()吨的1,()是3平方米的1910243二、应用题1、 X公顷玉米匸多少分?棉花」50公顷2、小红体重42千克,小云体重40千克,小新的体重相当于小红和小云体重总和的 千克?3、六年级三个班学生帮助图书室修补图书 的是二班的4/3.三班修补图书多少本?4、小丽比小兰多12张彩色画片,这个数目正好相当于小兰画片张数的 3/10.小兰有多少张彩色画片? 小丽有多少张?5、2009年9月份红星乡晴天有20天,雨天的天数比晴天少 4/5,阴天的天数比雨天多1/2.这个月阴 天有多少天?47、建一座厂房,计划投资 200万元,实际比计划节约了 —.实际比计划节约投资多少万元?实际投资5016、一套西服原价250兀,现在降价-.现在买这套西服要多少兀? 多少万元?8王阳期末数学成绩是96分,孙月的成绩比王阳低1/6,王华的成绩是王阳和孙月总分的1/2.王华得课内练习与训练1/2.小新体重多少.一班修补了 54本,二班修补的本数是一班的5/6,三班修补四、拓展题1、一种国产冰箱原来每台售价2700元,现在比原来降低了1/10,现在每台多少元?(1)应把_______________________ 作单位1.(2)2700X 1/10 求的是____________________________..(3)1-1/10 求的是__________________________________ .(4)2700X 9/10 求的是_____________________________ .2、有一批货物,第一天运走了这批货物的1/4,第二天运的是第一天的3/5,还剩下180吨没有运.这批货物有多少吨?3、小明三天看一本书,第一天看了全书的1/4,第二天看了余下的2/5 ,第二天比第一天多看了21页, 这本书共多少页?4、昆虫飞行时经常振动翅膀.蜜蜂每秒振动翅膀236次,蜱虫每秒振动次数比蜜蜂少.那么蝗虫每秒118能振动多少次?5、青山镇修一条公路,实际投资56万元,比计划节约1•修这条公路计划投资多少万元?86、商场销售一种学习机,它的原价是180元,,价格先上涨了1销售了一部分后,又下降了—,这种学9 10习机的现价是多少元?作业。
六年级数学第二单元分数乘法常考知识点归纳六年级数学第二单元分数乘法常考知识点归纳在我们的学习时代,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
想要一份整理好的知识点吗?以下是店铺收集整理的六年级数学第二单元分数乘法常考知识点归纳,仅供参考,欢迎大家阅读。
六年级数学第二单元分数乘法常考知识点归纳 1(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:分数乘整数指的是第二个因数必须是整数,不能是分数。
例如: 7表示: 求7个的和是多少? 或表示:的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:一个数乘分数指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:表示: 求的是多少?9 表示: 求9的是多少?A 表示: 求a的是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
ab=c,当b 1时,ca.一个数(0除外)乘小于1的数,积小于这个数。
分数是数学中的重要概念,分数的乘法是学习分数的重要环节之一、下面将对六年级的分数乘法知识点进行复习。
一、如何相乘:对于两个分数相乘,在分子与分母之间运用乘法运算即可。
具体步骤如下:1.首先把两个分数的分子相乘。
2.接着把两个分数的分母相乘。
3.最后把得到的乘积的分子与分母约分,使得分数更简化。
例如:2/5×3/8=2×3/5×8=6/40,然后再约分得到3/20。
二、分数乘法的应用:1.乘一个整数:把整数看作分母为1的分数,计算得到分数结果后进行约分。
例如:3/4×5=3/4×5/1=15/4,然后约分得到33/42.乘一个带分数:将带分数转换为假分数,然后按照上述步骤进行计算。
例如:3/4×12/3=3/4×5/3=15/12,然后约分得到11/43.乘以一个小数:将小数转化为分数,然后按照上述步骤进行计算。
例如:2/3×0.25=2/3×1/4=2/12,然后约分得到1/6三、分数乘法的性质:1.任何数与0相乘的结果都是0。
例如:2/3×0=0。
2.任何数与1相乘的结果都是这个数本身。
例如:2/3×1=2/33.两个数相乘,结果与因数的顺序无关。
例如:2/3×3/4=3/4×2/3四、分数乘法的简便运算:当两个分数的分母相同时,可以简化计算。
具体步骤如下:1.直接将两个分数的分子相乘。
2.结果的分母保持不变。
例如:3/4×5/4=3×5/4=15/4五、分数乘以分数:当两个分数相乘时,可以先将一个分数的分子与另一个分数的分子相乘,再将两个分数的分母相乘。
例如:(2/3)×(3/5)=(2×3)/(3×5)=6/15,然后约分得到2/5六、分数乘以整数:将整数看作分母为1的分数,按照分数乘法的规则进行计算。
例如:(2/3)×4=(2/3)×(4/1)=8/3。
六年级分数乘除知识点在六年级数学学习中,分数的乘除运算是一个重要的知识点。
通过掌握分数的乘法和除法,学生可以更好地应用于解决实际问题,提高数学运算的能力。
本文将详细介绍六年级分数乘除的相关知识点。
一、分数的乘法分数的乘法是指两个分数相乘的运算。
在进行分数乘法时,我们需要掌握以下几个要点:1.1 分数乘法的定义分数乘法的定义是:两个分数a/b与c/d相乘的结果为(a×c)/(b×d),其中a、b、c、d为整数,b和d不为0。
1.2 分数乘法的性质分数乘法满足交换律和结合律。
即对于任意分数a/b、c/d和e/f,有以下性质:- 交换律:a/b × c/d = c/d × a/b- 结合律:(a/b × c/d) × e/f = a/b × (c/d × e/f)1.3 分数乘法的简化在进行分数乘法时,我们可以对分子和分母进行约分,得到最简分数。
约分的方法是找到分子和分母的最大公约数,然后同时除以最大公约数。
二、分数的除法分数的除法是指一个分数除以另一个分数的运算。
在进行分数除法时,我们需要掌握以下几个要点:2.1 分数除法的定义分数除法的定义是:两个分数a/b与c/d相除的结果为(a×d)/(b×c),其中a、b、c、d为整数,b、c不为0。
2.2 分数除法的性质分数除法不满足交换律,即a/b ÷ c/d不等于c/d ÷ a/b。
但是,它满足结合律。
即对于任意分数a/b、c/d和e/f,有以下性质:- 结合律:(a/b ÷ c/d) ÷ e/f = a/b ÷ (c/d ÷ e/f)2.3 分数除法的简化在进行分数除法时,我们可以将除法转换成乘法,即将除数倒数后与被除数相乘。
然后,我们再对乘积进行约分。
三、应用举例下面通过一些实际问题的例子,进一步说明分数的乘除运算。
知识点一:分数乘法的计算1、分数乘以整数的计算⑴ =⨯22312 ⑵ 3212⨯= ⑶ 216512⨯⨯= ⑷ =⨯⨯12132 小结:分数乘整数的计算方法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
2、分数乘以分数的计算⑴ =⨯4121 ⑵ =⨯5165 ⑶ =⨯11462312 ⑷ =⨯154975 小结:分数乘分数的计算方法:分子与分子相乘的积作分子,分母与分母相乘的积作分母。
3、带分数乘以分数的计算⑴ =⨯125211 ⑵ 263413⨯= ⑶ 1415312⨯= ⑷ 73655⨯= 小结:先把带分数化成假分数,分子与分子相乘的积作分子,分母与分母相乘的积作分母。
4、带分数乘带分数的计算⑴ =⨯312211 ⑵ =⨯522313 ⑶ =⨯721655 ⑷ =⨯⨯31221214132 小结:先把带分数化成假分数,分子与分子相乘的积作分子,分母与分母相乘的积做分母。
5、带分数乘整数的计算⑴ 15522⨯= ⑵ =⨯9313 ⑶ =⨯12655 ⑷ 671×21×322= 小结:先把带分数化成假分数,分子与整数相乘的积作分子,分母与分母相乘的积做分母。
6、小数乘分数的计算⑴ 0.3=⨯65 ⑵ 0.25×32= ⑶ 0.75=⨯98 ⑷ 0.125×=⨯75.043 小结:先把小数化成分数,分子与分子相乘的积作分子,分母与分母相乘的积做分母。
练一练:1. 填一填51m=( )dm 256dm=( )cm 53小时=( )分 1257吨=( )千克 1.判断(1)143273273=⨯=⨯ ( ) (2)37645=⨯ ( ) (3)14412979127==⨯=⨯ ( ) (4)655⨯=61 ( ) (5)16398⨯=62 ( ) (6)731514⨯=52 ( ) 知识点二:分数的运算定律和分数的简便计算题型一 ⑴ 341543⨯⨯ ⑵ 15120315⨯⨯ ⑶ 512100125⨯⨯ 题型二 ⑴ )7161(42+⨯ ⑵ 81618167⨯-⨯ ⑶ )44183(88+⨯ 题型三 ⑴ 5411853114⨯+⨯ ⑵ 43432110432115-⨯+⨯ ⑶ 3232236322317-⨯+⨯ 题型四 ⑴ (1015131--)30⨯ ⑵ 60)1526351(⨯-+ 题型五 ⑴ 0.2⨯615165⨯+ ⑵ 0.375948395⨯+⨯ ⑶ 855625.03485+⨯+⨯ 题型六 ⑴(14123611⨯⨯) ⑵ 136212137212⨯+⨯ ⑶ 51245313⨯⨯ 题型七 ⑴ 1618)161181(⨯⨯+ ⑵ 888789⨯ ⑶ 46)4165(⨯⨯+ 题型八 ⑴ 613875.0651287⨯+⨯ ⑵ 213212131321+⨯+⨯ ⑶512655346551565⨯+⨯+⨯ 题型九 ⑴ 651541431321211⨯+⨯+⨯+⨯+⨯ ⑵ 3012011216121++++ (三)知识点三:分数的比较大小例1、比较因数和积之间的大小关系,从中发现规律。
分数乘法知识点六年级在六年级学习数学的过程中,分数乘法是一个重要的知识点。
通过掌握分数乘法的规则和方法,可以帮助学生更好地解决实际问题,提高数学运算能力。
本文将介绍分数乘法的概念、性质和基本运算方法,帮助读者全面了解和掌握相关知识。
一、分数乘法的概念分数乘法是指两个分数相乘的运算。
分数由一个分子和一个分母组成,分子表示分数的份数,分母表示分数的总份数。
当我们对两个分数进行乘法运算时,需要将它们的分子相乘,分母相乘,最后简化结果。
例如,计算1/3与2/5的乘积,首先将分子相乘得到1 × 2 = 2,然后将分母相乘得到3 × 5 = 15。
最后将得到的分子2和分母15简化,得到最简形式的乘积2/15。
二、分数乘法的性质分数乘法具有以下性质:1. 交换律:a/b × c/d = c/d × a/b。
即,两个分数的乘积不受次序的影响。
2. 结合律:(a/b) × (c/d) × (e/f) = a/b × (c/d × e/f)。
即,三个及以上分数的乘积,可以按任意次序进行运算。
3. 单位元素:a/b × 1 = a/b。
即,任何一个分数与1相乘,结果为其本身。
三、分数乘法的基本运算方法根据分数乘法的性质,我们可以灵活运用不同的方法来进行计算。
1. 简单分数的乘法:当两个分数都是简单分数时,可以直接将分子相乘得到乘积的分子,分母相乘得到乘积的分母,然后简化结果。
例如,计算2/3 × 3/4,将分子相乘得到2 × 3 = 6,分母相乘得到3 × 4 = 12,最后简化得到乘积1/2。
2. 带分数的乘法:当一个分数为带分数时,可以将其化简为假分数,再进行乘法运算。
例如,计算1/2 × 3 4/5,将3 4/5化简为17/5,然后按照简单分数乘法的方法进行计算,得到乘积为17/10。
知识点一:分数乘法的计算
1、分数乘以整数的计算
⑴
=⨯22312 ⑵ 3212⨯= ⑶ 216512⨯⨯= ⑷ =⨯⨯12132 小结:分数乘整数的计算方法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
2、分数乘以分数的计算
⑴
=⨯4121 ⑵ =⨯5165 ⑶ =⨯11462312 ⑷ =⨯154975 小结:分数乘分数的计算方法:分子与分子相乘的积作分子,分母与分母相乘的积作分母。
3、带分数乘以分数的计算
⑴ =⨯125211 ⑵ 263413⨯= ⑶ 1415312⨯= ⑷ 7
3655⨯= 小结:先把带分数化成假分数,分子与分子相乘的积作分子,分母与分母相乘的积作分母。
4、带分数乘带分数的计算
⑴ =⨯312211 ⑵ =⨯522313 ⑶ =⨯721655 ⑷ =⨯⨯3
1221214132 小结:先把带分数化成假分数,分子与分子相乘的积作分子,分母与分母相乘的积做分母。
5、带分数乘整数的计算
⑴ 15522⨯= ⑵ =⨯9313 ⑶ =⨯12655 ⑷ 671×21×3
22=
小结:先把带分数化成假分数,分子与整数相乘的积作分子,分母与分母相乘的积做分母。
6、小数乘分数的计算
⑴ 0.3=⨯
65 ⑵ 0.25×32= ⑶ 0.75=⨯98 ⑷ 0.125×=⨯75.043 小结:先把小数化成分数,分子与分子相乘的积作分子,分母与分母相乘的积做分母。
练一练:
1. 填一填
51m=( )dm 256dm=( )cm 53小时=( )分 125
7吨=( )千克 1.判断
(1)143273273=⨯=⨯ ( ) (2)3
7645=⨯ ( ) (3)14412979127==⨯=⨯ ( ) (4)655⨯=6
1 ( ) (5)16398⨯=6
2 ( ) (6)731514⨯=5
2 ( ) 知识点二:分数的运算定律和分数的简便计算
题型一 ⑴ 341543⨯⨯ ⑵ 15120315⨯⨯ ⑶ 5
12100125⨯⨯ 题型二 ⑴ )7161(42+⨯ ⑵ 81618167⨯-⨯ ⑶ )44
183(88+⨯ 题型三 ⑴ 5411853114⨯+⨯ ⑵ 43432110432115-⨯+⨯ ⑶ 3
232236322317-⨯+⨯
题型四 ⑴ (1015131--)30⨯ ⑵ 60)15
26351(⨯-+ 题型五 ⑴ 0.2⨯615165⨯+ ⑵ 0.375948395⨯+⨯ ⑶ 8
55625.03485+⨯+⨯ 题型六 ⑴(141236
11⨯⨯) ⑵ 136212137212⨯+⨯ ⑶ 51245313⨯⨯ 题型七 ⑴ 1618)161181(⨯⨯+ ⑵ 888789⨯ ⑶ 46)4
165(⨯⨯+ 题型八 ⑴ 613875.0651287⨯+⨯ ⑵ 213212131321+⨯+⨯ ⑶5
12655346551565⨯+⨯+⨯ 题型九 ⑴ 651541431321211⨯+⨯+⨯+⨯+⨯ ⑵ 30
12011216121++++ (三)知识点三:分数的比较大小
例1、比较因数和积之间的大小关系,从中发现规律。
(1)
2183⨯ 83 (2)3
483⨯ 83 (3)1
83⨯ 83 (4)08
3⨯ 83 小结:因数与积的关系:一个数(0除外)乘大于1的数,积大于这个数;一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘1,积等于这个数;一个数乘0积等于0.
练一练:
1. 填上“<”“>”或“=”
例2、已知a ,b ,c 为三个不为0的整数,98651312⨯=⨯=⨯
c b a ,a ,b ,c 这三个数谁最大?
谁最小?
(四)知识点四:分数的解决问题
1、我每小时粉刷这面墙的51。
41小时粉刷这面墙的几分之几?4
3小时粉刷多少呢? 2、要挖一条长54千米的水渠,第一天挖了全长的8
1,挖了多少千米?还剩多少千米没挖? 3、(变式题)一根铁棒长52米,截取了全长的4
3,还剩多少米? 4、一根水管,第一次截去全长的
41,第二次截去余下的的32,两次一共截去全长的几分之几?
5、果园里苹果树有60棵,梨树的棵树相当于苹果树棵树的5
3,杏树的棵树相当于梨树棵树的3
1。
杏树有多少棵? 6、一捆电线全长36米,第一次用去的长度比全长的
34
多4米,第二次用去的长度比第一次的331 少1米。
第二次用去多少米? 【应用题的几个基本类型】
1、求A 的几分之几是多少。
方法:
2、求A 是B 的几分之几。
方法 :
3、求A 比B 多(或少)几分之几。
方法: 小结:单位“1”已知 ( 用乘法)
①分数(分率)前没有“多”、“少”:
单位“1”×几(百)分之几 = 具体数
单位“1”(标准量)×分率=对应量(比较量) ②分数(分率)前有“多”: 一个数×(1+几
几或 %) ③分数(分率)前有“少”: 一个数×(1-几
几或 %) 注意:有些应用题分率前没出现“多”“少”,但根据题意有时需要用到加减法来算,如食堂有大米40吨,吃去了14
后,还剩多少吨? 练一练:
题型一、连线:
1、果园里有桃树120棵, ,梨树有多少棵?
梨树比桃树多51 120×5
1 梨树比桃树少51 120×(1+5
1) 梨树相当于桃树的51 120×(1-5
1) 题型二、填空题
1、一根绳子长8米,用去了
54米,还剩下( )米。
2、男生人数占全班的43
,把( )看成单位“1”
3、1米的53与( )米的101
相等。
4、比51千米的43
多2千米是( )千米。
题型三、我是聪明小法官。
1、真分数的倒数小于1 ( )
2、8吨的41
和4吨的81
相等 ( )
3、若甲数的21和乙数的31
相等,则甲数大于乙数( )
4、15米长的电线,用去全长的51
,还剩下12米。
( )
5、10千克苹果,第一次吃去总数的21
,第二次又吃去余下的21
,这时苹果全部吃完。
(
) 6、甲数乘以真分数,乘得的积一定小于甲数。
( )
题型四、看一看,选一选。
1、一个数乘它的倒数,结果是( )
A 、大于1
B 、小于1
C 、等于1
2、a,b,c 是自然数,a ×1213=1514
×b=c ×1,那么( )。
A 、a>b>c
B 、b>c> a
C 、 b>a> c
3、两根同样长的绳子,如果从第一根上截取它的
52,从第二根上截去5
2米,那么两根绳子余下的部分( )。
A 、同样长 B 、第一根长 C 、第二根长 D 、无法确定
4、对于76×a ,当( )时,积小于7
6。
A 、a<1 B 、a=1 C 、a>1 D 、无法确定
题型五、解决问题。
1、 某房共有具名360人,其中少年儿童占
41,中青年占21,其余的是老年人,求少年儿童、中青年、老年人各有多少人?
2、 六年级(1)班有48人,体育达标的人数占全班人数的8
5,女生达标人数占总达标人数的31,求女生达标人数。