【解析】
7.20世纪60年代,日本数学家角谷发现了一个奇怪现象:一 个自然数,如果它是偶数,就用2除它;如果是奇数,则将它 乘以3后再加1,反复进行这样两种运算,必然会得到一种结果, 试考查几个数并给出这一结果的猜想. 【解析】取自然数6,按角谷的做法有:
6÷2=3,3×3+1=10,10÷2=5,3×5+1=16,16÷2=8,8÷2=4,4÷
此表构成的规则是:第一行是0,1,2,„,999,以后下一 行的数是上一行相邻两数的和. 问:第四行的数中能被999整除的数是什么? 【解析】首先找出第四行数的构成规律,通过观察、分析,可 以看出:第四行的任一个数都和第一行中相应的四个相邻的数 有关,具体关系可以从下表看出:
如果用an表示第四行的第n个数,那么an=8n+4,现在要找出
999的倍数an,设an=999k(k∈N),显然k应是4的倍数,注意到
第四行中最大的数是7 980<999×8,所以k=4,由此求出第四
行中能被999整除的数是999×4=3 996,这是第四行的第
(3 996-4)÷8=499项,即a499=3 996.
2=2,2÷2=1,其过程简记为6→3→10→5→16→8→4→2→1,
若取自然数7,则有
7→22→11→34→17→52→26→13→40→20→10→5→16→8→
4→2→1,
若取自然数100,则有
100→50→25→76→38→19→58→29→88→44→22→11→34→
„→1.
归纳猜想:这样反复运算,必然会得到1.
1.(5分)把1,3,6,10,15,21,„这些数叫做三角形数,
这是因为这些数目的点子可以排成一个正三角形如下图,则第 n个三角形数是( )