球体参数方程详解教学教材
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
第二讲 参数方程一、曲线的参数方程第2课时 圆的参数方程A 级 基础巩固一、选择题1.已知圆P :⎩⎪⎨⎪⎧x =1+10cos θ,y =-3+10sin θ(θ为参数),则圆心P 及半径r 分别是( ) A .P(1,3),r =10B .P(1,3),r =10C .P(1,-3),r =10D .P(1,-3),r =10解析:由圆P 的参数方程可知圆心(1,-3),半径r =10.答案:C2.圆x 2+y 2+4x -6y -3=0的参数方程为( )A.⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(θ为参数) B.⎩⎨⎧x =-2+4cos θ,y =3+4sin θ(θ为参数) C.⎩⎨⎧x =2-4cos θ,y =3-4sin θ(θ为参数) D.⎩⎨⎧x =-2-4cos θ,y =3-4sin θ(θ为参数) 解析:圆的方程配方为:(x +2)2+(y -3)2=16,所以圆的圆心为(-2,3),半径为4,故参数方程为B 选项.答案:B3.已知圆O 的参数方程是⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),圆上点A 的坐标是(4,-33),则参数θ=( )A.7π6B.4π3C.11π6D.5π3解析:由题意⎩⎨⎧4=2+4cos θ,-33=-3+4sin θ(0≤θ<2π), 所以⎩⎪⎨⎪⎧cos θ=12,sin θ=-32(0≤θ<2π),解得θ=5π3. 答案:D4.若P(x ,y)是圆⎩⎨⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:依题意P(2+cos α,sin α),所以(x -5)2+(y +4)2=(cos α-3)2+(sin α+4)2=26-6cos α+8sin α=26+10sin(α-φ)⎝⎛⎭⎪⎫其中cos φ=45,sin φ=35, 所以当sin(α-φ)=1,即α=2k π+π2+φ(k ∈Z)时,有最大值为36. 答案:A5.直线:3x -4y -9=0与圆:⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( ) A .相切B .相离C .直线过圆心D .相交但直线不过圆心 解析:圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2. 所以直线与圆相交,但不过圆心.答案:D二、填空题6.已知圆的方程为x 2+y 2=2x ,则它的一个参数方程是______.解析:将x 2+y 2=2x 化为(x -1)2+y 2=1知圆心坐标为(1,0),半径r =1,所以它的一个参数方程为⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数). 答案:⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数) 7.已知曲线方程⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数),则该曲线上的点与定点(-1,-2)的距离的最小值为________. 解析:设曲线上动点为P(x ,y),定点为A ,则|PA|=(1+cos θ+1)2+(sin θ+2)2= 9+42sin ⎝ ⎛⎭⎪⎫θ+π4, 故|PA|min =9-42=22-1.答案:22-18.曲线C :⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)的普通方程为__________.如果曲线C 与直线x +y +a =0有公共点,那么a 的取值范围是________.解析:⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)消参可得 x 2+(y +1)2=1,利用圆心到直线的距离d ≤r 得|-1+a|2≤1, 解得1-2≤a ≤1+ 2. 答案:x 2+(y +1)2=1 [1-2,1+2]三、解答题9.已知曲线C 的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =32t +m ,y =12t(t 为参数). (1)求曲线C 的直角坐标方程和直线l 普通方程;。
参数方程的概念一、教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析曲线的几何性质,选择适当的参数写出它的参数方程。
二、教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
三、教学方法:启发诱导,探究归纳 四、教学过程(一).参数方程的概念1.问题提出:铅球运动员投掷铅球,在出手的一刹那,铅球的速度为0ν,与地面成α2.分析探究理解: (1)、斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα (2)、抽象概括:参数方程的概念。
说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
(3)平抛运动:为参数)t gt y t x (215001002⎪⎩⎪⎨⎧-== (4)思考交流:把引例中求出的铅球运动的轨迹的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用。
(二)、应用举例:例1、已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数)(1)判断点1M (0,1), 2M (5,4)与曲线C 的位置关系;(2)已知点3M (6,a )在曲线C 上,求a 的值。
分析:只要把参数方程中的t 消去化成关于x,y 的方程问题易于解决。
学生练习。
反思归纳:给定参数方程要研究问题可化为关于x,y 的方程问题求解。
例2、设质点沿以原点为圆心,半径为2的圆做匀速(角速度)运动,角速度为60πrad/s,试以时间t 为参数,建立质点运动轨迹的参数方程。
解析:如图,运动开始时质点位于A 点处,此时t=0,设动点M (x,y )对应时刻t,由图可知2cos 602sin {x y t θθθ=π==又,得参数方程为60602cos 2sin (0){x t y t t ππ==≥。
《球体的参数方程》教学案4球体的参数方程一、教学目标1. 理解球体的参数方程的定义和意义;2. 学会根据给定条件构造球体的参数方程;3. 掌握使用参数方程绘制球体的方法。
二、教学内容1. 球体的参数方程的定义;2. 构造球体的参数方程的方法;3. 使用参数方程绘制球体的步骤。
三、教学准备1. 教学工具:计算器、白板、投影仪;2. 教学材料:球体参数方程的示例、绘制球体的示意图。
四、教学过程1. 引入通过展示球体的示意图,引发学生对球体的兴趣,并提出以下问题引导学生思考:- 如何用数学方式来描述球体?- 是否存在一种方式,能够使用少量的参数来准确表示球体上的每个点?2. 讲解球体的参数方程的定义和意义- 解释参数方程的含义:通过使用参数来表示某一物体的坐标,进而可以简洁地描述该物体上的所有点;- 介绍球体的参数方程:球体的参数方程通过三个参数来表示球体上的每个点的坐标,具体形式为:- x = r * sinθ * cosφ- y = r * sinθ * sinφ- z = r * cosθ其中,r为球体的半径,θ为极角,φ为方位角。
3. 构造球体的参数方程的方法- 根据给定的半径r,分别选取角度θ和φ的范围;- 设定步长,以便生成足够多的坐标点;- 利用参数方程计算每个点的坐标。
4. 使用参数方程绘制球体的步骤1. 在笛卡尔坐标系中确定x、y、z的取值范围;2. 遍历每个参数组合,计算对应的x、y、z坐标;3. 将计算得到的坐标点连接起来,形成球体的曲线;4. 根据需要进行调整和美化。
5. 实例演示通过一个具体的实例演示如何利用参数方程绘制球体,引导学生理解和掌握构造球体参数方程和使用参数方程绘制球体的方法。
6. 练与讨论安排学生进行个别或小组练,运用所学知识构造球体的参数方程,并尝试用参数方程绘制球体。
7. 总结总结球体的参数方程的定义、构造方法和绘制步骤,强调参数方程在数学建模和几何绘图中的应用价值。
球体参数方程详解
精品资料
仅供学习与交流,如有侵权请联系网站删除谢谢2
球体参数方程详解
被球面紧贴包围的立体称为球体,简称球。
在空间 直角坐标系中,以坐标原点 为球心,半径为R 的球面的方程为x A 2+y A 2+z A 2=R A 2,它的参数方程为
兀二 Rsm 理 os&
iy-Rsin<psin&
z~Rcos<p
(0<9< 2n, 0<^<n)
在解析几何,球是中心在(xO,yO,zO),半径是r 的所有点(x, y, z)的集合:
(x-x0)2+(y-y0)2+(z-z0)2=r2
使用极座标来表示半径为r 的球面:
x=xO+r sin 0 cos ©
y=yO+r sin 0 sin ©
z=zO+r cos 0
(0的取值范围:O WBW n 和-n <©<n )
圆的参数方程:
参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或 自变 量,以决定因变量的结果。
例如在 运动学,参数通常是“时间”,而方程的结 果是速度、位置等。
,半径帧,则圜的参数方程为
K =K 'H^coa 9
0 y=y。
球体参数方程详解
精品资料 仅供学习与交流,如有侵权请联系网站删除
谢谢2 球体参数方程详解
被球面紧贴包围的立体称为球体,简称球。
在空间直角坐标系中,以坐标原点为球心,半径为R 的球面的方程为x^2+y^2+z^2=R^2,它的参数方程为
(0≤θ≤2π,0≤φ≤π)
在解析几何,球是中心在(x0,y0,z0),半径是r 的所有点(x, y, z)的集合: (x-x0)2+(y-y0)2+(z-z0)2=r2
使用极座标来表示半径为r 的球面:
x=x0+r sinθcosφ
y=y0+r sinθsinφ
z=z 0+r cosθ
(θ的取值范围:0≤θ≤ n 和 -∏<φ≤∏)
圆的参数方程:
参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。
例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。