博弈论的基概念
- 格式:doc
- 大小:56.00 KB
- 文档页数:7
博弈论的定义1. 博弈论的基本概念博弈论,是现代数学的一个分支学科,研究在多人决策环境中人们的策略选择以及可能产生的结果。
从经济学、管理学、政治学、心理学等方面来分析和解决问题时,博弈论可以为人们提供决策的基础。
因此,博弈论不仅在学术上很有价值,在实践中也具有很高的应用价值。
2. 博弈论的应用范围博弈论的应用范围广泛,如军事策略、商业竞争、政治谈判、社会决策、环境决策等领域。
另外,也被广泛应用于运输、公共建设、医学治疗等社会实践活动中。
3. 博弈论的基本元素博弈论的基本元素是“参与者”、“策略”、“收益”和“信息”。
“参与者”是指在某一决策环境中的所有相关人员,如消费者、企业、政府或其他组织和个人等。
“策略”是参与者在决策过程中选择的行动方案,也是促进参与者在决策中优化收益的关键。
“收益”或“效用”是参与者最终得到的结果,通常在博弈论中用数字来表示,这些数字可以是财务收入、数字权益等。
“信息”也是参与者在决策中极为重要的因素。
它可以分为完全信息和不完全信息两种,完全信息是指参与者对决策过程中的所有信息都有充分了解,而不完全信息是指参与者对决策过程中的某些信息存在不确定性。
因此,在不完全信息博弈中,有时决策者需要采取一些策略来“模糊化”自己的策略,以避免让其他人知道他们实际上所做的决策。
4. 博弈论的经典模型- 零和博弈零和博弈是博弈论的基本模型之一,是指参与者的利益总和为零。
在这种情况下,一个人赢得的收益等于另一个人失去的收益,如象棋、扑克等所有参与者的输赢情况总是相互抵消的。
- 非零和博弈非零和博弈是一种参与者的利益总和不为零的博弈。
在这种情况下,一方的收益可以与另一方的收益同时增加,如合作博弈中的合作关系。
- 合作博弈合作博弈是指参与者可以在决策中合作以实现双方或多方的利益最大化。
在此类博弈中,参与者通常需要通过协商和合作达成共识。
- 非合作博弈非合作博弈是指参与者在决策中只考虑自己的利益。
博弈论无名氏定理引言:博弈论是研究决策制定和行为选择的数学模型,并在许多领域发挥重要作用。
在博弈论中,无名氏定理是一项非常重要的结论,它对于理解玩家之间的互动和找到最佳策略提供了指导。
本文将就博弈论无名氏定理展开详细阐述。
一、博弈论基本概念博弈论研究决策者在决策制定中的相互影响,主要分为以下几个基本概念:1.玩家:参与博弈的个体或群体,每位玩家需根据自身利益作出决策。
2.策略:玩家在博弈中可采取的行动方案。
每位玩家需从多个策略中选择一个。
3.收益:玩家基于自己的策略和其他玩家的策略,所获得的结果。
4.纳什均衡:指在博弈中各个玩家选择了最佳策略,无法通过单方面改变策略来获得更好结果。
二、无名氏定理的内容无名氏定理由约翰·纳什于1950年提出,它在博弈论中具有重要意义。
该定理的内容可以概括为:在任意有限次博弈中,至少存在一个纳什均衡。
也就是说,在博弈中,无论玩家有多少,无论策略有多复杂,至少会有一个纳什均衡点。
这意味着无论其他玩家选择什么策略,玩家都无法通过单方面改变自己的策略来获得更好的结果。
三、无名氏定理的证明无名氏定理的证明过程比较复杂,需要运用到博弈论中的一些数学理论和方法。
在证明过程中,通常会利用到反证法、最优响应函数、偏微分方程等工具。
具体证明过程如下:1.反证法:首先假设不存在纳什均衡点,即每个玩家都能通过改变自己的策略来获得更好结果。
2.最优响应函数:然后,分别对每个玩家的每种策略进行最优响应函数的计算,即找到玩家最好的策略选项。
3.偏微分方程:最后,通过偏微分方程等工具推导,得出存在纳什均衡的结论,从而证明无名氏定理。
四、无名氏定理的应用无名氏定理在经济学、政治学、生物学等多个领域有广泛的应用。
它可以帮助人们理解玩家之间的互动关系,揭示各种冲突与合作的策略选择。
无名氏定理的应用举例:1.在市场竞争中,企业可以利用无名氏定理来确定最佳的定价策略,以获取最大利润。
2.在国际关系中,国家之间的冲突和合作可以通过博弈论无名氏定理来研究和解析。
博弈论在市场分析中的应用前言:市场分析是金融领域中的重要一环,而博弈论则是解决决策问题的理论基础。
将博弈论应用于市场分析中,有助于我们更好地理解市场行为和参与者的决策。
本文将探讨博弈论在市场分析中的应用,并分析其对决策的影响。
一、博弈论的基本概念博弈论是以参与者之间的决策和行为互动为基础的数学模型。
在一个博弈中,每个参与者都会根据自己的利益和目标来做出决策。
博弈论假设参与者都是理性的,即他们会选择能给自己带来最大利益的决策。
二、1. 竞争策略分析在市场竞争中,不同企业之间存在着一种相互制衡的关系。
博弈论可以帮助研究人员分析企业之间的竞争策略。
通过建立数学模型,可以模拟不同企业在不同策略下的行为和结果,进而预测市场的发展和企业之间的相互影响。
2. 价格战分析价格战是市场竞争中常见的一种策略。
博弈论可以帮助我们分析不同参与者在价格战中的决策和行为。
通过建立数学模型,可以预测价格战的结果以及参与者所能获得的最大利益。
这有助于企业在市场中做出更明智的决策。
3. 股市分析博弈论在股市分析中也有广泛的应用。
股市中的投资者都希望通过买卖股票获取更多的回报。
博弈论可以帮助分析投资者之间的博弈关系,预测市场的走势。
例如,股市中的牛市和熊市往往是由投资者的预期和行为共同决定的,博弈论可以帮助我们理解这种行为背后的机制。
4. 市场操纵分析市场操纵是指通过不正当手段控制市场价格或者制造虚假交易来获利的行为。
博弈论可以帮助分析市场操纵者的策略和行为,并预测他们可能采取的举措。
这对于监管部门来说是非常重要的,可以借助博弈论的分析结果来制定相应的监管措施。
三、博弈论对决策的影响博弈论的应用对于市场参与者的决策具有重要的影响。
通过博弈论的分析,参与者可以更好地了解不同策略下的利弊和风险,从而做出更明智的决策。
同时,博弈论的应用也可以帮助市场参与者预测其他参与者的行为,提前做出应对措施。
此外,博弈论在市场分析中的应用也可以对政策制定者产生一定的影响。
《博弈论》知识点总结归纳《博弈论》知识点总结归纳摘要:博弈论是研究决策者之间相互影响和决策制定的数学分析工具。
本文对博弈论的基本概念、解的概念、均衡理论、博弈策略和应用等方面进行了总结归纳,以帮助读者更好地理解和应用博弈论的相关知识。
关键词:博弈论、基本概念、解的概念、均衡理论、博弈策略、应用引言博弈论是研究决策者之间相互影响和决策制定的数学分析工具,源自于经济学和数学两大学科的交叉。
博弈论在经济学、管理学、政治学、社会学、计算机科学等多个领域都有广泛的应用。
本文将对博弈论的相关知识进行详细的总结和归纳。
一、基本概念1.1 博弈博弈是指决策者之间相互影响和策略选择的过程。
博弈的基本要素包括:参与者、策略、收益和信息。
1.2 参与者参与者是指博弈中的决策者,可以是个人、团体、企业、国家等。
参与者的目标是实现自身利益的最大化。
1.3 策略策略是指参与者在博弈中所能采取的行动或选择。
通常分为纯策略和混合策略。
1.4 收益收益是指在博弈中参与者根据所选择的策略所能得到的结果或利益。
收益可以用来衡量参与者的利益大小。
1.5 信息信息是指参与者在博弈中所了解的有关其他参与者或博弈环境的信息。
信息可以分为对称信息和非对称信息。
二、解的概念2.1 均衡均衡是指在博弈中各参与者选择了策略后,没有动力再改变策略,从而达到一种稳定状态。
常见的均衡概念有纳什均衡、帕累托最优和博弈解。
2.2 纳什均衡纳什均衡是指在博弈中的一组策略选择,使得每个参与者选择的策略是对其他参与者的策略选择的最佳应对,没有动机再改变策略。
2.3 帕累托最优帕累托最优是指在博弈中的一组策略选择,使得至少有一个参与者的收益达到最大,而其他参与者的收益至少不会减小。
帕累托最优是一种资源分配的有效方式。
2.4 博弈解博弈解是指在博弈中的一组策略选择,使得没参与者都没有动力再改变策略。
博弈解往往是均衡的特殊情况。
三、均衡理论3.1 零和博弈零和博弈是一种特殊的博弈形式,即参与者的利益总和为零。
博弈论的基本概念•博弈论是研究两人或多人谋略和决策的理论。
•博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著.博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。
1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系.纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的的学科.•参与者:参与者是指一个博弈中的决策主体,通常又称为参与人或局中人。
参与人的目的是通过合理悬着自己的行动,以便取得最大化的收益。
参与者可以是自然人,也可以是团体。
•信息:信息是指参与者在博弈过程中能了解和观察到的知识。
信息对参与者是至关重要,每一个参与者在每一次进行决策之前必须根据观察到的其他参与者的行动和了解到的有关情况作出自己的最佳选择。
完全信息是指所有参与者各自选择的行动的不同组合所决定的收益对所有参与者来说是共同知识。
•策略:策略是参与者如何对其他参与者的行动作出反应的行动规则,它规定参与者在什么时候选择什么行动。
通常用s i表示参与者i的一个特定策略,用S i表示参与者i的所有可选择的策略的集合(又成为而i的策略空间)。
如果n个参与者没人选择一个策略,那么s=(s1,s2,…,s n)称为一个策略组合。
•收益:收益是在一个特定的策略组合下参与者能得到的确定的效用。
通常用u i表示参与者i的收益,它是策略组合的函数。
•均衡:均衡是所有参与者的最优策略组合,记为s*。
博弈论在管理心理学中的应用博弈论,作为一门研究决策制定者在交互行为中的最佳策略的学科,近年来在管理心理学领域逐渐引起了人们的重视。
博弈论的概念可以帮助管理者更好地理解和应对团队内部和外部的冲突与合作,从而提高团队的协作效率和整体绩效。
在本文中,我将探讨博弈论在管理心理学中的应用,并结合个人观点和理解进行深入分析。
1. 博弈论的基本概念博弈论是一门研究参与者在决策制定过程中互相影响的学科。
它通过建模和分析参与者的策略选择,寻找最优的决策方案。
在管理心理学中,团队成员之间存在着各种各样的利益冲突和合作关系,而博弈论的基本概念可以帮助管理者理解和引导团队成员的决策行为。
2. 博弈论在团队冲突管理中的应用团队中经常会出现各种形式的冲突,如利益冲突、角色冲突、认知冲突等。
管理者可以运用博弈论的思维模式,分析冲突的双方策略选择和可能的结果,从而找到最佳的冲突解决方案。
通过博弈论的应用,管理者可以更客观地认识到每个决策对团队整体利益的影响,避免利益受损和团队合作的破裂。
3. 博弈论在团队合作中的应用除了冲突管理外,博弈论也可以帮助管理者促进团队的合作。
在团队合作中,博弈论可以帮助管理者分析团队成员的合作策略选择,找到最优的合作方式,并设定激励机制来促进成员的合作行为。
通过博弈论的应用,管理者可以更有效地管理团队的合作关系,提高团队的整体绩效。
4. 个人观点和理解在我看来,博弈论在管理心理学中的应用是一种理性思维和决策分析的工具。
管理者可以通过学习和运用博弈论的方法,更好地理解和引导团队成员的决策行为,从而提高团队的协作效率和整体绩效。
然而,博弈论也有其局限性,例如在实际团队管理中,个体的心理因素和情感因素也会对决策行为产生影响,因此管理者需要综合运用多种管理工具和方法来促进团队的协作与发展。
总结回顾通过本文的探讨,我们了解到博弈论在管理心理学中的重要应用。
博弈论的基本概念可以帮助管理者更好地理解和应对团队内部和外部的冲突与合作,从而提高团队的协作效率和整体绩效。
博弈论,又称为对策论(Game Theory)、赛局理论等,既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
在博弈论中,通常包括以下基本概念:
局中人:在一场竞赛或博弈中,具有决策权的参与者被称为“局中人”。
在一个博弈中,每个局中人都要做出选择。
行动:局中人在博弈中的每一个决策或选择被称为“行动”。
信息:局中人在博弈中所知道的关于其他局中人的选择和条件被称为“信息”。
策略:局中人基于可获得的信息,制定的决策方案或规则称为“策略”。
收益:局中人在博弈中的得失或输赢称为“收益”。
均衡:当所有局中人都认为自己的策略选择最优,并且其他局中人也认为该策略选择是最优时,这种状态被称为“均衡”。
结果:在一场博弈结束后,所有局中人的收益总和被称为“结果”。
博弈论的基本要素包括局中人、策略、信息、收益、均衡和结果等。
其中,局中人、策略和收益是最基本要素。
发展过程方面,博弈论是在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。
目前,博弈论在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
西方经济学中的博弈论理论博弈论是西方经济学中的一种重要理论工具,用于研究决策者在面对不确定环境下的行为。
通过分析各种冲突和合作的情况,博弈论揭示了经济参与者之间的相互作用、策略选择和最终结果。
本文将从博弈论的起源、基本概念、应用场景以及对经济学的启示等方面进行论述。
一、博弈论的起源博弈论最早可以追溯到数学家冯·诺伊曼(John von Neumann)和经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern)的合著《博弈论与经济行为》。
他们在20世纪50年代提出了博弈论的数理模型,开创了这一领域的研究。
二、博弈论的基本概念1. 游戏(Game):博弈论研究的基本单位,是指参与者之间的相互作用的环境。
2. 策略(Strategy):参与者为达到自己的目标所选择的行动方案。
3. 支付(Payoff):参与者在游戏结束后所获得的效用或报酬。
4. 策略组合(Strategy Profile):所有参与者所选择的策略的集合,也称为策略向量(Strategy Vector)。
5. 纳什均衡(Nash Equilibrium):在参与者选择自己最佳策略的情况下,没有任何人可以通过单方面改变策略来获得更好的结果。
三、博弈论的应用场景博弈论在经济学中有广泛的应用,以下是一些常见的应用场景。
1. 产业竞争博弈论可以用来研究市场中多个企业之间的竞争行为。
例如,某一市场中存在两个主要竞争对手,它们可以选择不同的定价策略。
博弈论可以帮助我们分析并预测各种策略选择下的最终结果。
2. 合作与博弈博弈论也可以应用于研究合作与博弈之间的平衡。
例如,合作是指多个参与者通过共同努力达到某种目标。
博弈论可以帮助我们分析参与者是否会遵守合作协议以及如何制定最佳的合作策略。
3. 公共物品的供给博弈论可以用来研究公共物品的供给问题。
公共物品指的是任何人都可以使用且一个人的使用不会妨碍他人使用的物品。
博弈论可以帮助我们理解为什么有些人可能会免费享受公共物品而不愿意为其付费,从而导致公共物品的供给不足。
博弈论的基本概念1.博弈论:博弈论,又称对策论,是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。
博弈论的定义可以这样理解:博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自可选择的行为或策略中进行选择并加以实施,并从中取得相应收益的过程。
2.参与人:参与人指的是博弈中选择行动以最大化自己效用的决策主体(个人、团体)。
3、行动:行动是参与人在博弈的某个时点的决策变量。
一般来讲,把第i个参与人的一个行动为ai,其可供i选择的行动集合表示为Action set: Ai ={ai}。
在一个n人博弈中,n个参与人的行动的有序集为a={a1,…,an},称为行动组合。
根据行动顺序,可以把博弈分为静态博弈、动态博弈。
静态博弈:一般来讲,如果行动时同时发生的或相当于同时发生的,则称之为静态博弈。
动态博弈:如果行动的发生有先后顺序,则称之为动态博弈。
4.信息:信息指的是参与人有关博弈的知识,特别是有关“自然”的选择、其他参与人的特征和行动的知识。
信息集是指参与人在特定时刻所拥有的有关变量的值的知识。
例如:囚徒困境甲不知乙的选择,则甲的信息集为{坦白或者抵赖}乙已经行动,甲观察到乙的选择,则甲的信息集为{坦白}或者是{抵赖}。
5.战略:战略是参与人在给定信息集的情况下的行动规则,是参与人完整的一套行动计划,它规定参与人在什么时候选择什么行动。
战略不同于行动,它是行动的规则,对于战略的表述应该是完备的。
例如:人不犯我,我不犯人;人若犯我,我必犯人”例如:田忌赛马,田忌所选的赛马计划就是一套完整的行动计划,也就是一个战略。
6.战略空间:参与者可以选择的战略的全体组成了战略空间。
田忌赛马,六种行动方案可供选择:上中下,上下中,中上下,中下上,下上中,下中上。
这些可选择的战略的全体组成了战略空间。
任何一人战略的改变都将使结果也随之改变。
7、收益:支付、报酬,指在一个特定的战略组合下参与人得到的效用水平或期望效用水平。
博弈论及其在经济中的应用博弈论是一种研究决策过程中不同参与者之间相互作用的理论。
在经济领域中,博弈论被广泛应用于市场机制设计、产业组织、国际贸易、金融市场等领域。
本文将介绍博弈论的基本概念、主要内容以及在经济中的应用,并通过具体案例分析博弈论的作用及结果。
博弈论的是在一个充满竞争的环境下,多个参与者如何通过选择最优策略来获取最大利益。
博弈论的主要内容包括静态博弈和动态博弈。
静态博弈是指在博弈过程中参与者之间没有信息交流的博弈,例如囚徒困境。
动态博弈则是指在博弈过程中参与者之间可以交流信息,进行策略调整的博弈,例如价格战。
博弈论在市场机制设计中的应用旨在解决市场失灵问题。
例如,通过引入价格机制,可以调节市场的供求关系,从而实现资源的优化配置。
在拍卖中,博弈论可以研究出价者之间的竞争策略,为拍卖方设计出更合理的拍卖规则。
博弈论在产业组织中的应用主要是研究企业之间的竞争与合作。
例如,在寡头市场中,企业之间往往会形成默契合谋来维持高价,此时政府需要设计有效的监管机制来防止企业合谋。
博弈论还可以研究企业之间的策略性行为,例如在价格战中的最优策略。
在国际贸易中,国家之间往往存在关税和贸易壁垒的竞争。
博弈论可以研究国家之间的最优贸易政策,例如关税报复和最惠国待遇等。
博弈论还可以研究国际间的汇率问题,为国家之间的经济合作提供理论支持。
价格战是市场竞争中常见的一种策略,在此背景下,博弈论的价格战模型可以用来分析企业最优定价策略以及市场最终均衡结果。
假设市场上只有两家企业A和B,它们生产同质产品并互相竞争。
企业A的边际成本为CA,企业B的边际成本为CB,且CA<CB。
假设市场需求函数为D=max(pA+pB,100),其中pA和pB分别为企业A和企业B的售价。
在此模型下,企业A和企业B均面临两种策略:降价和不降价。
如果CA=CB,即两企业的边际成本相等,则两家企业都会选择不降价策略,此时市场总销量为200单位,两家企业的利润均等于50单位。
经济博弈大赛知识点总结一、博弈论基本概念1.博弈论的定义博弈论是研究决策者之间相互影响的一种数学分析方法。
在该理论中,参与者的每一种决策都会影响到其他参与者的收益,因此需要在多方利益中进行权衡和选择。
2.博弈论的基本概念(1)参与者:指参与决策的一方或多方。
(2)策略:指参与者的行动选择。
(3)效用:指参与者从某种行动选择中得到的收益。
(4)收益矩阵:指博弈过程中不同参与者在不同策略组合下得到的收益组合。
3.博弈论的基本分类(1)合作与非合作博弈:合作博弈是指参与者之间可以进行合作协商,共同选择最优策略;非合作博弈是指参与者之间没有合作协商,各自选择最优策略。
(2)零和博弈与非零和博弈:零和博弈是指参与者的利益总和为零,一方得利即另一方受损;非零和博弈是指参与者的利益总和不为零,可以互惠互利或共同受益。
二、博弈论的基本模型1.纳什均衡纳什均衡是指在博弈论中,参与者的策略选择达到一种平衡状态,任何一个参与者都没有动机改变自己的策略。
纳什均衡是博弈理论的核心概念,对于非合作博弈中的理性参与者来说,最终会达到纳什均衡状态。
2.囚徒困境囚徒困境是博弈论中的一个经典模型,描述了两名囚犯被捕后面临的选择。
在这种情况下,即使两名囚犯都采取自己最佳的策略,他们最终都会面临到一种不利的结果。
这个模型的实质是说明了在自利最大化的前提下,最终可能导致共同损失的结果。
3.拍卖博弈拍卖博弈是指卖家和买家之间进行的策略与竞争。
在这种场景下,卖家需要选择出售物品的方式,而买家需要决定出价的高低。
这种博弈的结构包括英国拍卖、封闭式拍卖、荷兰拍卖等不同的竞争方式。
4.博弈树博弈树是一种博弈模型的图形表示方式,以树状的形式展现参与者的策略选择和结果。
博弈树有助于分析博弈的决策过程和可能的结果,帮助参与者制定最优策略。
5.拉力博弈拉力博弈是指在博弈中的一种竞争形式,即参与者面对的是关于资源的竞争和纷争。
这种博弈模型常见于市场竞争和企业之间的竞争,对于提高市场份额和竞争力有重要意义。
经济学中的博弈论经济学中的博弈论是一门研究个体决策行为及其互动的学科,通过建立数学模型和理论框架来分析人们在不同情境下做出的选择,并推导出各种可能的结果。
博弈论广泛应用于经济学、政治学、管理学等领域,以解释人们在决策过程中存在的合作、冲突、竞争等行为。
1. 博弈论的基本概念博弈论的基本概念包括参与者、策略、支付和效用。
参与者是指在博弈中作出决策的个体或集体,策略是参与者可选择的行动,支付是参与者根据不同策略和结果所得到的收益或成本,效用是参与者对不同结果的主观评价。
2. Nash均衡Nash均衡是博弈论中的一个重要概念,指的是参与者在互动中无法通过单独改变策略来获得更多收益的情况。
Nash均衡的存在可能有多个,并且可能存在不稳定的均衡点。
通过寻找Nash均衡,我们可以预测和解释人们在特定情境下的决策行为。
3. 合作与冲突博弈论分析了合作与冲突的两种情况。
在合作博弈中,参与者会通过协商和合作来实现互利的结果,而在冲突博弈中,参与者通过竞争和对抗来追求自身的利益。
通过研究这两种情况,我们可以更好地理解人们如何在不同的情境下做出决策。
4. 广义博弈论广义博弈论是博弈论的一个扩展领域,它考虑了参与者对其他参与者行动的预期和判断。
在广义博弈论中,参与者的决策不仅仅取决于自身利益,还要考虑到其他参与者可能做出的决策,并基于对其他参与者的预期行动做出相应的选择。
5. 应用举例博弈论在实际经济中有着广泛的应用。
举例来说,在寡头垄断市场中,各大企业之间的价格竞争就可以通过博弈论的方法来分析。
博弈论还可以应用于拍卖市场、市场竞争中的定价策略、国际关系中的战略决策等领域。
6. 博弈论的局限性尽管博弈论在经济学中有着广泛的应用,但它也存在一些局限性。
首先,博弈论在分析中假设参与者都是理性的、全面的决策者,但实际情况下人们的决策行为不一定都是理性的。
其次,博弈论在分析中通常假设参与者具有相同的信息和评判准则,但实际情况下参与者之间的信息差异很大。
博弈论的数学原理博弈论是一门研究决策和策略的数学理论,它在经济学、政治学、生物学等领域有着广泛的应用。
博弈论的核心是研究参与者之间的相互作用和决策过程,通过数学模型和分析方法来揭示决策者的最佳策略和可能的结果。
本文将介绍博弈论的数学原理,并探讨其在实际应用中的意义。
一、博弈论的基本概念博弈论的基本概念包括博弈、策略、收益和均衡等。
博弈是指参与者之间的相互作用和决策过程,每个参与者根据自己的利益选择策略,并根据策略的结果获得相应的收益。
策略是指参与者在博弈中采取的行动或决策,可以是单一的行动,也可以是一系列的行动。
收益是指参与者根据策略的结果所获得的利益或效用。
均衡是指在博弈中各参与者选择最佳策略的状态,即没有参与者能够通过改变自己的策略来获得更高的收益。
二、博弈论的数学模型博弈论通过数学模型来描述和分析博弈过程。
最常用的数学模型是博弈矩阵,它由参与者的策略和相应的收益构成。
博弈矩阵可以是二人博弈或多人博弈,每个参与者在矩阵中选择自己的策略,然后根据矩阵中对应的收益确定自己的最终收益。
博弈矩阵可以通过纳什均衡来确定最佳策略,纳什均衡是指在博弈中各参与者选择最佳策略的状态。
三、博弈论的应用博弈论在实际应用中有着广泛的应用。
在经济学领域,博弈论可以用来分析市场竞争、价格战略和合作行为等。
在政治学领域,博弈论可以用来分析选举策略、国际关系和决策过程等。
在生物学领域,博弈论可以用来分析进化和合作行为等。
博弈论的应用还涉及到网络安全、社会科学和管理科学等领域。
四、博弈论的意义博弈论的研究对于理解和解决实际问题具有重要的意义。
通过博弈论的分析,可以揭示参与者之间的相互作用和决策过程,帮助决策者制定最佳策略和决策。
博弈论的应用可以提高经济效益、优化资源配置和改善社会福利。
此外,博弈论还可以用来解释和预测人类行为,对于心理学和社会学的研究也有一定的启示作用。
总结:博弈论是一门研究决策和策略的数学理论,通过数学模型和分析方法来揭示决策者的最佳策略和可能的结果。
博弈论的基本概念
•博弈论是研究两人或多人谋略和决策的理论。
•博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。
1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的的学科。
•参与者:参与者是指一个博弈中的决策主体,通常又称为参与人或局中人。
参与人的目的是通过合理悬着自己的行动,以便取得最大化的收益。
参与者可以是自然人,也可以是团体。
•信息:信息是指参与者在博弈过程中能了解和观察到的知识。
信息对参与者是至关重要,每一个参与者在每一次进行决策之前必须根据观察到的其他参与者的行动和了解到的有关情况作出自己的最佳选择。
完全信息是指所有参与者各自选择的行动的不同组合所决定的收益对所有参与者来说是共同知识。
•策略:策略是参与者如何对其他参与者的行动作出反应的行动规则,它规定参与者在什么时候选择什么行动。
通常用s i表示参与者i的一个特定策略,用S i表示参与者i的所有可选择的策略的集合(又成为而i的策略空间)。
如果n个参与者没人选择一个策略,那么s=(s1,s2,…,s n)称为一个策略组合。
•收益:收益是在一个特定的策略组合下参与者能得到的确定的效用。
通常用u i表示参与者i的收益,它是策略组合的函数。
•均衡:均衡是所有参与者的最优策略组合,记为s*。
几个经典的博弈实例
•例一囚徒困境两个共同作案的犯罪嫌疑人被捕,并受到指控。
除非至少一人认罪,否则警方无充分证据将他们按最论刑。
警方把他们隔离审讯,并对他们说明不同行动所带来的后果。
如果两人都采取沉默的抗拒态度,因警方证据不足,两人将均被判为轻度犯罪入狱一个月;如果双方都坦白,根据案情两人将被判入狱六个月;如果一个招认而另一个拒不坦白,招认者因由主动认罪立功的表现将立即释放,而另一人将被判入狱九个月。
• 例二 海滩占位 甲、乙两个冷饮摊贩,他们在一个直线状的海滩上,以同样的价格,相同的质量向均匀散布在海滩上的众多游客销售冷饮。
既然是做生意,目的总是多赚钱,甲乙两人有时在同一地点做同样的生意,竞争是难免的,这两个摊贩应该怎样安排自己的摊位,才能相安无事的做自己的生意?(假定游客总是到据自己最近的摊位购买冷饮)。
• 例三 智猪争食 猪圈里有一头打猪和一头小猪。
里面有一个猪食槽,槽的对面装有控制开关。
只要去拱开关,就会有一次6个单位的饲料流进槽里。
如果它们都不去拱开关,那么它们都吃不到饲料;如果小猪去拱,那么等到它跑回来时,大猪已把饲料吃光了;如果大猪去拱,等它回来时可以吃到1个单位的饲料;如果他们一起去拱,在一起跑回来,那么大猪可以抢到4个单位的饲料,小猪也能吃到2个单位的饲料。
假定每拱一次开-1,-1 -9,0 0,-9 -6,-6 坦白 沉默 坦白 沉默 囚徒一
关需要消耗0.5个单位的饲料能量。
它们长期一起进食,上面所说的情况两只猪都知道。
它们应该如何选择?
完全信息静态博弈
• 静态博弈:静态博弈指的是博弈的参与者同时选择各自的行动,即便是选择行动有先后的话,后行动者也不知道先行动者所采取的行动。
• 博弈的标准表述(策略表述)含有三个要素(1)博弈参与者集合i ∈ N ;
(2)每个参与者的策略空间S i ;(3)每个参与者的收益函数ui 。
• 定义:在一个有n 个参与者的博弈中,参与者的策略空间S 1,S 2,…,S n ,收益函数为u 1,u 2,…,u n ,称G={S 1,S 2,…,S n ;u 1,u 2,…,u n }为此博弈的一个标准表述。
• 定义:如果对任一s i ’ ∈ S i ,s i ’ ≠ s i *, 不等式u i (s 1,…,s i-1, s i *, s i+1,…,s n )> u i (s 1,…,s i-1, s i ’ ,s i+1,…,s n )对所有的策略组合(s 1,…,s i-1, s i+1,…,s n )都成立,那么 si*称为参与者i 的严格占优策略。
• 定义:在博弈的标准表述中,如果对所有的参与者i ∈N , s i * 是i 的严格0,0
6,-0.5 0.5,5 3.5,1.5 拱 不拱 拱 不拱 大猪 小猪
占优策略,那么策略组合s*=(s 1*, …,s n *)称为严格占优策略均衡。
• 定义:在标准表述的博弈中,设s i ’和s i ’’是参与者i 的两个可选策略,若u i (s 1,…,s i-1, s i ’,s i+1,…,s n )<u i (s 1,…,s i-1, s i ’’,s i+1,…,s n )对所有的策略组合(s 1,…,s i-1, s i+1,…,s n )都成立,那么称s i ’是相对于s i ’’的严格劣策略。
• 定义:如果s*=(s 1*, …,s n *)是逐步剔除严格劣策略剩下的唯一策略组合,则该策略称为逐步剔除严格劣策略均衡。
2,0 0,1 0,3 0,1 1,2 1,0 上 下 左 中 右 参与者1 参与者2 0,1 0,3 1,2 1,0 上 下 左 中 参与者1 1,2 1,0 上 下 左 中 参与者1
• 定义:在博弈G={S 1,S 2,…,S n ;u 1,u 2,…,u n },策略s*= (s 1*,…,s i-1*, s i *,s i+1*,…,s n *)满足条件:对每一个参与者i ,都有对所有的s i ∈ S i , u i (s 1*,…,s i-1*, s i ,s i+1*,…,s n *) ≤ u i (s 1*,…,s i-1*,
s i *,s i+1*,…,s n *) 成立, 则称s*为该博弈的一个纳什均衡。
• 严格占优策略均衡、逐步剔除严格劣策略均衡与纳什均衡的关系:严格占优策略均衡是纳什均衡;逐步剔除严格劣策略均衡是纳什均衡;反之不然。
完全信息动态博弈
• 动态博弈:各参与者的行动有先后顺序,而且后行动者在自己行动之前能观测到先行动者的行动。
• 定义:完全信息扩展式博弈形式是一个三元组F=(N,H,P ):其中N 是参与者的集合。
H 是A (行动的集合)中元素组成的序列的集合并且满足:
(1)空序列()∈H ;(2)如果一个h ∈H ,则h|k ∈H , h|k 表示h 的长度为k 的子序列;(3)如果一个无穷序列的所有有穷子序列都属于H ,那么h 也属于H 。
P :H/Z ➞ N ,其中Z ⊆H 且h ∈Z 当且仅当任给h ’ ∈H ,若h ’|k =h 则h ’ =h 。
• 对于n 个参与者有限战略的扩展式表述有一种直观的图形方法,就是博弈2,4 2,3 1,4 1,1 0,2 4,0 1,2 4,1 3,3 上 中 左 中 右 参与者1 下
在上面的这个博弈中既不存在严格占优策略均衡,也不存在逐步剔除严格劣策略均衡,对这样的博弈引入纳什均衡的概念。
树。
•设ui:Z ➞R,F=(N,H,P)扩展式博弈形式,我们称G=(F,(u i)i N)为一个扩展式博弈。
1
2 (0,0)(2,1)(1,2)
l L
r R。