《Multisim9电子技术基础仿真实验》4.12传递函数分析
- 格式:ppt
- 大小:592.00 KB
- 文档页数:1
Multisim仿真软件在《电子技术基础》课程教学中的应用Multisim是美国国家仪器XX公司推出的以Windows为基础的仿真工具,是一个专门用于电子电路仿真与设计的工具软件,人们可以用它自由地搭建电路原理图,并用虚拟仪器技术对电路进行仿真。
职业学校的《电子技术基础》教学一般由理论教学和实验教学两个大的教学环节构成。
我们在教学过程中,结合理论教学的进程,利用Multisim仿真软件在计算机上进行电子电路实验仿真,作为教学的补充,既帮助学生更好地理解电子技术的理论知识,又能确保电子实验电路参数的准确,实践证明,这种教学、设计手段的运用,有助于增强学生的感性认识,培养学生的创新能力和综合动手能力。
1.多媒体演示仿真实验,提高课堂教学效率以前的电子技术课程教学,多数教师主要进行理论课教学,注重原理分析、公式推导,学生听起来感觉枯燥无味,难以理解。
为了提高教学效率,有时需要配合演示实验。
但实物的演示实验,需要花费较多的准备时间,将多种仪器搬到教室,使用不便,而且电子元件或示波器屏幕比较小,坐在后排的同学难以看清演示的内容。
而且演示操作过程,也会占用过多时间,影响教学进度。
现在将仿真软件引进课堂,在讲解理论的同时,利用多媒体同步演示,显示实验结果,使一些抽象的概念形象化、直观化、简单化,提高教学的效率。
下面举两个应用的实例。
在讲授三极管共发射极放大电路时,三极管具有放大和反相的作用,有的学生理解起来比较困难。
我们利用仿真软件来仿真电路的实际效果,并用虚拟示波器观测波形。
学生有了感性认识后,理解起来就轻松了不少。
在讲授振荡电路的起振时,通过电路的正反馈作用,输出信号就会逐渐由小变大,当振荡幅度增大到一定的程度后,由于三极管的限幅作用,最后使得输出的波形稳定。
其中部分原理学生比较难理解,用实验室现有的仪器根本就不能显示出起振的波形来,现在利用Multisim仿真显示出振荡波形,振荡器起振的过程非常直观,这种教学模式生动活泼,学生自始至终保持着极高的学习兴趣,加深了理解和记忆,有效地提高了课堂教学效率。
第2章Multisim9的基本分析方法主要内容2.1 直流工作点分析(DC Operating Point Analysis )2.2 交流分析(AC Analysis)2.3 瞬态分析(Transient Analysis)2.4 傅立叶分析(Fourier Analysis)2.5 失真分析(Distortion Analysis)2.6 噪声分析(Noise Analysis)2.7 直流扫描分析(DC Sweep Analysis)2.8参数扫描分析(Parameter Sweep Analysis)2.1 直流工作点分析直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。
在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。
了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。
求解电路的直流工作点在电路分析过程中是至关重要的。
2.1.1构造电路为了分析电路的交流信号是否能正常放大,必须了解电路的直流工作点设置得是否合理,所以首先应对电路得直流工作点进行分析。
在Multisim9工作区构造一个单管放大电路,电路中电源电压、各电阻和电容取值如图所示。
注意:图中的1,2,3,4,5等编号可以从Options---sheet properties—circuit—show all调试出来。
执行菜单命令Simulate/Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图A所示。
直流工作点分析对话框B。
1. Output 选项Output用于选定需要分析的节点。
左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。
右边Selected variables for 栏用于存放需要分析的节点。
第1章 Multisim 9基本操作Multisim 9是IIT 公司推出Multisim 2001之后的Multisim 最新版本(06年底又发布最新的版本Multisim10)。
Multisim 9提供了全面集成化的设计环境,完成从原理图设计输入、电路仿真分析到电路功能测试等工作。
当改变电路连接或改变元件参数,对电路进行仿真时,可以清楚地观察到各种变化对电路性能的影响 。
1.1 Multisim 9基本操作1.1.1 基本界面1.1.2 文件基本操作与Windows 常用的文件操作一样,Multisim9中也有:New--新建文件、Open--打开文件、Save--保存文件、Save As--另存文件、Print--打印文件、Print Setup--打印设置和Exit--退出等相关的文件操作。
以上这些操作可以在菜单栏File 子菜单下选择命令,也可以应用快捷键或工具栏的图标进行快捷操作。
1.1.3 元器件基本操作常用的元器件编辑功能有:90 Clockwise--顺时针旋转90︒、90 CounterCW--逆时针旋转90︒、Flip Horizontal--水平翻转、Flip Vertical--垂直翻转、Component Properties--元件属性等。
这些操作可以在菜单栏Edit 子菜单下选择命令,也可以应用快捷键进行快捷操作。
工具栏元器件栏 状态栏原始图像顺时针旋转90︒逆时针旋转90︒水平翻转垂直翻转1.1.4 文本基本编辑对文字注释方式有两种:直接在电路工作区输入文字或者在文本描述框输入文字,两种操作方式有所不同1. 电路工作区输入文字单击Place / Text命令或使用Ctrl+T快捷操作,然后用鼠标单击需要输入文字的位置,输入需要的文字。
用鼠标指向文字块,单击鼠标右键,在弹出的菜单中选择Color命令,选择需要的颜色。
双击文字块,可以随时修改输入的文字。
2. 文本描述框输入文字利用文本描述框输入文字不占用电路窗口,可以对电路的功能、实用说明等进行详细的说明,可以根据需要修改文字的大小和字体。
multisim模拟仿真实验⼀、实验⽬的和要求(1)学习⽤multisim 进⾏模拟电路的设计仿真 (2)掌握⼏种常见的实⽤电路原理图⼆、实验内容和原理2.1测量放⼤电路仿真分析在multisim11中画出如下电路原理图。
如图所⽰为测量放⼤电路,采⽤两级放⼤,前级采⽤同相放⼤器,可以获得很⾼的输⼊阻抗;后级采⽤差动放⼤器,可获得⽐较⾼的共模抑制⽐,增强电路的抗⼲扰能⼒。
该电路常常作为传感器放⼤器或测量仪器的前端放⼤器,在微弱信号检测电路设计中应⽤⼴泛。
电路的电压放⼤倍数理论计算为)1(94367R R R R R A u++=将电路参数代⼊计算:630)101001001(10300=++=uA2.2电压-频率转换电路仿真分析给出⼀个控制电压,要求波形发⽣电路的振荡频率与控制电压成正⽐,这种通过改变输⼊电压的⼤⼩来改变输出波形频率,从⽽将电压参数转换成频率参量电路成为电压—频率转换电路(VCO ),⼜称压控振荡器。
在multisim11中创建如图所⽰的电压-频率转换电路的电路原理图。
电路中,U1是积分电路,U2是同相输⼊迟滞⽐较器,它起开关左右;U3是电压跟随电流,输⼊测试电压U1。
电路的输出信号的振荡频率与输⼊电压的函数关系为Zi CU R R U R T f 31421==2.3单电源功率放⼤电路仿真分析在许多电⼦仪器中,经常要求放⼤电路的输出机能够带动某种负载,这就要求放⼤电路有⾜够⼤的输出功率,这种电路通称为功率放⼤器,简称“功放”。
⼀般对功放电路的要求有:(1)根据负载要求提供所需要的输出功率;(2)功率要⾼(3)⾮线性失真要⼩(4)带负载的能⼒强。
根据上述这些要求,⼀般选⽤⼯作在甲⼄类的共射输出器构成互补对称功率放⼤电路。
单电源功放电路中指标计算公式如下:功率放⼤器的输出功率:Lo oR U P = 直流电源提供的直流功率:CO CC E I U P ?=电路效率:%100?=EoP P η实验电路原理图如下:2.4直流稳压电源仿真分析在所以电⼦电路和电⼦设备中,通常都需要电压稳定的直流电源供电。
Multisim的使用方法和电路仿真分析一.实验目的1.学习使用Multisim软件;2.能熟练的运用Multisim进行电路的仿真分析;二.实验内容1.Multisim系统简介;2.讲解Multisim的基本操作及仪器仪表的使用;3.举例说明用Multisim实现对电路的仿真分析过程;4.完成反比例运算电路,反向加法运算电路和积分运算电路的仿真分析;三.实验仪器1.支持Win2000/2003/Me/XP/vista的PC机;2.Multisim软件;四.实验步骤1. 熟悉Multisim的基本操作命令及仪器图表的使用;2. 根据电路原理图,在Multisim上仿真实现反向比例运算电路,电路原理图如图1所示:图1 反向比例电路电路图(要求:R1取100 KΩ_5% ;R’取9.1 KΩ_5% ; Rf取100 KΩ_1%;电压源选取500mV;)在Multisim中画出实验电路图,并对输出的直流电压进行仿真分析;4.根据电路图,在Multisim上仿真实现反向加法运算电路,电路原理图如图2所示:图2 反向加法运算电路图(要求:R1取10 KΩ_1% ;R2取10KΩ_1% ; R3取10KΩ_1% ; R’取3.3 KΩ_5%;Rf取100 KΩ_1%;Ui1=100mV; Ui2=200mV; Ui3=50mV) 在Multisim中画出实验电路图,并对输出信号进行仿真分析;3. 根据电路原理图,在Multisim上仿真实现积分运算电路,电路原理图如图3所示:图3 积分运算电路(要求:R1取100 KΩ_1% ;R’取100 KΩ_1%; C=10uF;输入端接函数发生器;)在Multisim中画出实验电路图,并用双通道示波器对输入与输出信号进行仿真分析;五.实验报告要求1.写出以三个Multisim中典型的操作表示的意思和使用的场合:AC Analysis;Oscilloscope;Function Generator ;2.简要写明反比例运算电路,反向加法运算电路和积分运算电路在Multisim 上实现的过程;。
Multisim9在数字电子技术课程教学中的应用数字电子技术是当前发展最快的学科之一,也是工科电专业重要的专业基础课,该课程教学效果的好坏直接影响到后续课程的教学。
该课程的特点是既有很强的理论性,又有很强的实践性。
这就要求我们不仅要有好的教学方法、教学手段,而且还要结合一定数量的实验和实践环节,才能使学生领会、理解、掌握课程内容,做到融会贯通、学以致用。
然而在数字电子技术课程的教学中,过去一直存在着教学方法单一、实验资源不足,致使教学效果不尽人意等问题。
基于以上的原因,我们在数字电子技术课的教学中,从以下两个方面着手进行教学改革。
一、理论教学为了适应数字电子技术发展的需要,我们调整了教学内容和教学方法,修改了教学大纲和教学计划,并选择阎石《数字电子技术基础》(第五版)作为教材,使教学内容能紧跟数字电子技术的发展方向,能充分地体现该课程的先进性与实用性。
1.教学内容的调整在保持原有数字电路经典的四部分教学内容的基础上,为使教学内容能紧跟前沿技术的发展,增加了大规模可编程逻辑器件(CPLD/FPGA)的介绍,对于用于电路设计的硬件描述语言(如VHDL语言)则另外开设一门课程讲解。
逻辑代数基础、组合逻辑电路和时序逻辑电路、脉冲波形的产生与整形是该门课程的基础内容,为该课程的学习提供了足够的理论知识。
教师在该部分的讲授过程中,一定要抓住关键、解决难点、突出重要概念、基本原理和基本方法。
同时,为使学生能更深刻、形象地理解和掌握教学内容,并能使学生在计算机上对所学的单元电路进行功能验证,我们讲解了EDA工具软件――Multisim9的基本使用方法。
2.教学方法的改进传统数字电路的教学一直存在着教学方法单一的问题,既只有教师的讲解,没有实物,看不到现象,所以学生在学习的过程中存在着理解上的困难。
虽然数字电路的学习要掌握轻视内部电路,重视功能及应用的原则,然而学生在学习的过程中还是觉得内容抽象,复杂难懂,所学器件和功能表难以做到一一对应。