数值分析Euler方法
- 格式:pdf
- 大小:3.42 MB
- 文档页数:31
求解常微分方程初值问题的方法分为单步法和多步法,单步法主要有欧拉法和Runge- Kutta 法,多步法主要有Adams 法和Milne 法,本文仅以最常用的Runge- Kutta 法和Adams 法分别作为单步法和多步法的例子,对两种方法进行分析比较。
Euler 法是最简单的一种求解常微分方程初值问题的数值方法,但其局部截断误差仅为,是一阶方法,为了达到更高的精度,我们构造了RK 法.通过构造高阶单步法来提高精度,而较高的精度意味着计算结果更加精确,误差随着的减小迅速减小,考虑常微分方程:常用的多步法主要有Adams 法和Milne 法,本文仅以Adams 法为例介绍多步法,其中Adams 法又包括显式Adams 法和隐式Adams 法。
显式Adams 法:Adams- Bashforth 公式:公式(2.7)又称为Adams 外插公式[2]。
为方便计算,改用函数值表示后差:因(2.7)或(2.8)是显式公式,所以又称它们为显式Adams 公式, 易见显式Adams 公式(2.7)或(2.8)是线性步公式。
常用的四阶显式Adams 公式为[2]隐式Adams 法称(2.10)为Adams-Moulton 公式.所用的牛顿向后插值多项式基点为,而积分区间为,故上式又称为Adams 内插公式,该式为隐式公式,故又称为隐式Adams 公式。
这是一个关于的隐式方程,在计算中,需要将式(2.12)写成显式格式,但一些方程难以求出其显式格式,这就需要将四阶显式Adams 法和四阶隐式Adams 法结合起来,用显式公式(2.9)作为预测,然后用隐式公式(2.12)作校正,构造Adams预测- 校正公式[2]式(2.13)为四阶公式,式中的初始值除y0 已给定,y1,y2,y3 常用四阶RK法计算.四级RK 法每前进一步需要计算四个函数值,对N级RK法,每计算一步,函数f 需要计算N次。
因此,对给定的N,我们总是希望构造阶数最高的方法,记是N级RK法所能达到的最高的阶数,已经得到下面的结果[4]:由此可见,当时,,从而四级四阶RK法是较受欢迎的方法。
显示Euler法引言对于很多数学问题,我们往往需要求解微分方程。
微分方程描述了物理、化学、生物等领域中许多现象的变化规律。
然而,解析求解微分方程通常非常困难,甚至无法找到解析解。
因此,我们需要借助数值方法来近似求解微分方程。
Euler法是最简单且最早的一种数值方法之一,它可以用于求解一阶常微分方程。
本文将详细介绍Euler法的原理、步骤和应用。
一阶常微分方程在介绍Euler法之前,我们先来回顾一下一阶常微分方程的一般形式:dydt=f(t,y)其中,y为未知函数,t为自变量,函数f(t,y)描述了y关于t的变化规律。
Euler法原理Euler法的基本思想是将微分方程中的导数用差分的形式来近似表示。
我们将自变量t划分为若干个离散的点,步长为ℎ,即t0,t1,t2,…,t n,其中n为划分的个数。
在每个t i点,我们需要求解y(t i)的近似值y i。
根据微分的定义,可以得到:dy dt =limℎ→0y(t+ℎ)−y(t)ℎ为了用差分形式近似表示导数,我们可以将上式改写为:y(t+ℎ)−y(t)ℎ≈f(t,y)对上式进行变形可得:y(t+ℎ)≈y(t)+ℎf(t,y)这就是Euler法的基本迭代公式。
Euler 法步骤按照Euler 法的基本迭代公式,我们可以得到求解微分方程的步骤: 1.选择划分间隔步长ℎ,确定划分点个数n 。
2.给定初始条件y 0,即t =t 0时的y 值。
3.根据Euler 法迭代公式,计算y 1=y 0+ℎf (t 0,y 0)。
4. 重复步骤3,直到计算出所有的y i 。
Euler 法应用举例现在我们通过一个具体的例子来演示Euler 法的应用。
考虑一阶常微分方程:dy dt=−ty 初始条件为y (0)=1。
我们将该微分方程数值解与解析解进行比较。
划分步长和确定划分点个数为了开始计算,我们需要选择一个适当的步长ℎ和划分点个数n 。
在这个例子中,我们选择ℎ=0.1,n =10。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载微分方程常用的两种数值解法:欧拉方法与龙格—库塔法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容四川师范大学本科毕业论文四川师范大学教务处二○一○年五月微分方程常用的两种数值解法:欧拉方法与龙格—库塔法学生姓名:xxx 指导教师:xx【内容摘要】微分方程是最有生命力的数学分支,在自然科学的许多领域中,都会遇到常微分方程的求解问题。
当前计算机的发展为常微分方程的应用及理论研究提供了非常有力的工具,利用计算机解微分方程主要使用数值方法,欧拉方法和龙格——库塔方法是求解微分方程最典型常用的数值方法。
本文详细研究了这两类数值计算方法的构造过程,分析了它们的优缺点,以及它们的收敛性,相容性,及稳定性。
讨论了步长的变化对数值方法的影响和系数不同的同阶龙格—库塔方法的差别。
通过编制C程序在计算机上实现这两类方法及对一些典型算例的结果分析比较,能更深切体会它们的功能,优缺点及适用场合,从而在实际应用中能对不同类型和不同要求的常微分方程会选取适当的求解方法。
关键词:显式单步法欧拉(Euler)方法龙格—库塔(Runge—Kutta)方法截断误差收敛性Two commonly used numerical solution of differential equations:Euler method and Runge - Kutta methodStudent Name: Xiong Shiying Tutor:Zhang Li【Abstract】The differential equation is the most vitality branch in mathematics. In many domains of natural science, we can meet the ordinary differential equation solution question. Currently, the development of computer has provided the extremely powerful tool for the ordinary differential equation application and the fundamental research, the computer solving differential equation mainly uses value method. The Euler method and the Runge—Kutta method are themost typical commonly value method to solve the differential equation. This article dissects the structure process of these two kinds of values commonly value method to solve the analyses their good and bad points, to their astringency, the compatibility, and the stabilityhas made the proof. At the same time, the article discuss the lengthof stride to the numerical method changing influence and thedifference of the coefficient different same step Runge—kutta method. Through establishing C program on the computer can realize these two kind of methods, Anglicizing some models of calculate example result can sincerely realize their function, the advantage and disadvantage points and the suitable situation, thus the suitable solution method can be selected to solve the different type and the different request ordinary differential equation in the practical application .Keywords: Explicit single-step process Euler method Runge—Kutta method truncation error convergence目录微分方程常用的两种数值解法:欧拉方法与龙格—库塔法前言常微分方程的形成与发展是和力学、天文学、物理学以及其他科学技术的发展密切相关的。
数学物理方程的数值解法数学物理方程是自然界和科学中描述物体运动、能量转化和相互作用的基本规律。
我们通常使用数值解法来求解这些方程,以得到近似的解析解。
数值解法既可以用于数学问题,也可以用于物理问题。
本文将介绍几种常见的数学物理方程的数值解法。
一、微分方程的数值解法微分方程是描述物体运动和变化的重要工具。
常见的微分方程有常微分方程和偏微分方程。
常见的数值解法包括:1. 欧拉法(Euler's method)欧拉法是最简单的数值解法之一,通过将微分方程离散化为差分方程,在每个小时间步长上近似计算微分方程的导数。
欧拉法易于实现,但精度相对较低。
2. 龙格-库塔法(Runge-Kutta method)龙格-库塔法是一类常用的数值解法,包括二阶、四阶等不同的步长控制方法。
龙格-库塔法通过计算多个离散点上的导数来近似微分方程,精度较高。
3. 有限差分法(Finite difference method)有限差分法是一种常用的数值解法,将微分方程转化为差分方程并在网格上逼近微分方程的导数。
有限差分法适用于边值问题和初值问题,且精度较高。
二、积分方程的数值解法积分方程描述了给定函数的积分和积分变换之间的关系。
常见的数值解法有:1. 数值积分法数值积分法是通过数值逼近求解积分方程,常用的数值积分法包括梯形法则、辛普森法则等。
数值积分法适用于求解一维和多维积分方程。
2. 蒙特卡洛法(Monte Carlo method)蒙特卡洛法通过随机采样和统计分析的方法,将积分方程转化为概率问题,并通过大量的随机样本来估计积分值。
蒙特卡洛法适用于高维空间和复杂积分方程。
三、优化问题的数值解法优化问题是寻找在给定约束条件下使目标函数取得极值的数学问题。
常见的数值解法有:1. 梯度下降法(Gradient descent method)梯度下降法是一种常用的优化算法,通过迭代和梯度方向来寻找目标函数的局部最优解。
梯度下降法适用于连续可导的优化问题。