大学物理复习资料
- 格式:doc
- 大小:3.55 MB
- 文档页数:59
大学物理复习资料一、简答题1.利用所学的物理知识解释花样滑冰运动员在双手合拢时旋转速度增大,双手展开时旋转速度减小。
答:当合外力矩等于0时物体对轴的角动量守恒,即JW=常量。
当双手合拢时旋转半径变小,J变小,旋转角速度W增大,将双手展开,J增大了,旋转角速度W又会减小。
2.“河道宽处水流缓,河道窄处水流急”,如何解释?答:由不可压缩流体的连续性方程V1△S1=V2△S2即V△S=恒量,知河流宽处△S大,V小,河流窄处△S小,V大。
3.为什么从水龙头徐徐流出的水流,下落时逐渐变细,请用所学的物理知识解释。
答;有机械能守恒定理知,从水龙头流出的水速度逐渐增大,再由不可压缩流体的连续性方程V△S=常量知,V增大时△S变小,所以水流变细。
4.请简述机械振动与机械波的区别与连续答:区别:机械振动是在某一位置附近做周期性往返运动5.用所学的物理知识总结一下静电场基本性质及基本规律。
答:性质:a.处于电场中的任何带电体都受到电场所作用的力。
b.当带电体在电场中移动时,电场力将对带电体做功。
规律:高斯定理:通过真空中的静电场中任一闭合面的电通量Φe等于包围在该闭合面内的电荷代数和∑qi的ε0分之一,而与闭合面外的电荷无关。
ΦEdSSqSε0环流定理:在静电场中,场强E的环流恒等于零。
Edl0l6.简述理想气体的微观模型。
答:①分子可以看做质点②分子作匀速直线运动③分子间的碰撞是完全弹性的7.一定质量的理想气体,当温度不变时,其压强随体积的减小而增大,当体积不变时,其压强随温度的升高而增大,请从微观上解释说明,这两种压强增大有何区别。
答:当温度不变时,体积减小,分子的平均动能不变,但单位体积内的气体分子数增加,故而压强增大;当体积不变时,温度升高,单位体积内的气体分子数不变,但分子的平均动能增加,故压强增大。
这两种压强增大是不同的,一个是通过增加分子数密度,一个是通过增加分子的平均平动动能来增加压强的。
9.请简述热力学第一定律的内容及数学表达式。
一、填空题1.杨氏双缝的间距为0.3mm ,双缝距离屏幕1500mm ,若第四到第七明纹距离为7.5mm ,则入射光波长为500 nm ;若入射光的波长为600nm ,则相邻两明纹的间距 3 mm 。
2. 单色光在折射率为n=1.4的介质中传播的几何路程长度为30m ,则相当于该光在真空中传播的路程长度为_42 m _____。
4. 已知玻璃的折射率为1.5 ,在其上面镀一层氟化镁(MgF 2)薄膜(n =1.38),放在空气中,白光垂直照射到膜的表面,欲使反射光中波长为550nm 的光相消,此膜的最小厚度为42 m 。
6. 波长为λ的单色光照在双缝上,在屏上产生明暗相间的干涉条纹。
从两缝S 1和S 2到屏上第二级明纹中心点P 的两条光线S 2P 和S 1P 的光程差为42 m ,位相差Δφ=42 m 。
2. 单色平行光垂直入射于单缝上,观察夫琅禾费衍射,若屏上P 点处为第5级暗纹,则单缝处波面相应地可划分为 10 个半波带。
3. 单色平行光垂直入射于单缝上,观察夫琅禾费衍射,若屏上P 点处为第3级明纹,则单缝处波面相应地可划分为 ___7__个半波带。
1. 一束强度为I 0的自然光垂直穿过两个叠合在一起、偏振化方向成45゜角的理想偏振片,则透射光强为__1/4___I 02.光的 干涉 和 衍射 现象反映了光的波动性质.光 偏振 现象说明光波是横波. 1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。
2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。
13、导体在__电场_______作用下产生电荷重新分布的现象叫做__静电感应___________;而电介质在外电场作用下产生极化面电荷的现象叫做__电介质的极化_________。
第1章(上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt)m,y=10sin(0.5πt)m,则质点运动方程的矢量式为r= ,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v= ,加速度 = ,速度的大小为,加速度的大小为,切向加速度的大小为0 ,法向加速度的大小为。
2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI)。
它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。
3、某质点做直线运动规律为x= t2-4t+2(m),在(SI)单位制下,则质点在前5s内通过的平均速度和路程为( C )A、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5mE、2m﹒s-1,13m4、某质点的运动规律为d v/dt=-k v2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是(C )A、v=½k t2+ v0B、v=-½k t2+ v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =k t2∕2- v05、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。
在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?第4章(P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r= cos wt i+b sin wt j,式中 、b、w为正的常量。
大学物理复习资料### 大学物理复习资料#### 一、经典力学基础1. 牛顿运动定律- 描述物体运动的基本规律- 惯性、力与加速度的关系2. 功和能量- 功的定义与计算- 动能定理和势能3. 动量守恒定律- 动量的定义- 碰撞问题的处理4. 角动量守恒定律- 角动量的概念- 旋转物体的稳定性分析5. 简谐振动- 振动的周期性- 共振现象#### 二、热力学与统计物理1. 热力学第一定律- 能量守恒- 热量与功的转换2. 热力学第二定律- 熵的概念- 热机效率3. 理想气体定律- 气体状态方程- 温度、压力、体积的关系4. 相变与相平衡- 相变的条件- 相图的解读5. 统计物理基础- 微观状态与宏观性质的联系 - 玻尔兹曼分布#### 三、电磁学1. 电场与电势- 电场强度- 电势差与电势能2. 电流与电阻- 欧姆定律- 电路的基本组成3. 磁场与磁力- 磁场的产生- 洛伦兹力4. 电磁感应- 法拉第电磁感应定律- 感应电流的产生5. 麦克斯韦方程组- 电磁场的基本方程- 电磁波的传播#### 四、量子力学简介1. 波函数与薛定谔方程- 波函数的概率解释- 量子态的演化2. 量子态的叠加与测量- 叠加原理- 测量问题3. 能级与光谱线- 原子的能级结构- 光谱线的产生4. 不确定性原理- 位置与动量的不确定性关系5. 量子纠缠与量子信息- 量子纠缠现象- 量子计算与量子通信#### 五、相对论基础1. 狭义相对论- 时间膨胀与长度收缩- 质能等价原理2. 广义相对论- 引力的几何解释- 弯曲时空的概念3. 宇宙学与黑洞- 大爆炸理论- 黑洞的物理特性#### 六、现代物理实验方法1. 粒子加速器- 加速器的工作原理- 粒子探测技术2. 量子纠缠实验- 实验设计- 纠缠态的验证3. 引力波探测- 引力波的产生与传播- 探测器的工作原理通过上述内容的复习,可以全面地掌握大学物理的核心概念和原理。
在复习过程中,建议结合实际例题和实验操作,以加深理解和应用能力。
第1章<上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt>m,y=10sin(0.5πt>m,则质点运动方程的矢量式为r=,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v=,加速度=,速度的大小为,加速度的大小为,切向加速度的大小为0,法向加速度的大小为。
2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI>。
它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s 末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。
b5E2RGbCAP3、某质点做直线运动规律为x=t2-4t+2(m>,在(SI>单位制下,则质点在前5s内通过的平均速度和路程为< C )p1EanqFDPwA、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5m E、2m﹒s-1,13mDXDiTa9E3d4、某质点的运动规律为dv/dt=-kv2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是< C )RTCrpUDGiTA、v=½ kt2+v0B、v=-½ kt2+v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =kt2∕2-v05PCzVD7HxA5、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。
在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?jLBHrnAILg6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?xHAQX74J0X第4章<P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r=coswti+bsinwtj,式中、b、w为正的常量。
大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。
大学物理复习资料(超全)(一)引言概述:大学物理是大学阶段的一门重要课程,涵盖了广泛的物理知识和原理。
本文档旨在为大学物理的复习提供全面的资料,帮助学生回顾和巩固知识,以便更好地应对考试。
本文档将分为五个大点来详细讲解各个方面的内容。
一、力学1. 牛顿力学的基本原理:包括牛顿三定律和作用力的概念。
2. 运动学的基本概念:包括位移、速度和加速度的定义,以及运动的基本方程。
3. 物体的受力分析:重点介绍平衡、力的合成和分解、摩擦力等。
4. 物体的平衡和动力学:详细解析物体在平衡和运动状态下所受的力和力矩。
5. 力学定律的应用:举例说明力学定律在各种实际问题中的应用,如斜面、弹力等。
二、热学和热力学1. 理想气体的性质:通过理想气体方程和状态方程介绍气体的基本性质。
2. 热量和温度:解释热量和温度的概念,并介绍温标的种类。
3. 热传导和热辐射:详细讲解热传导和热辐射的机制和规律。
4. 热力学定律:介绍热力学第一定律和第二定律,并解析它们的应用。
5. 热力学循环和热效率:介绍热力学循环的种类和热效率的计算方法,以及它们在实际应用中的意义。
三、电学和磁学1. 电荷、电场和电势:介绍电荷的基本性质、电场的概念,以及电势的计算方法。
2. 电场和电势的分析:详细解析电场和电势在不同形状电荷分布下的计算方法。
3. 电流和电路:讲解电流的概念和电路中的串联和并联规律。
4. 磁场和电磁感应:介绍磁场的基本性质和电磁感应的原理。
5. 麦克斯韦方程组:简要介绍麦克斯韦方程组的四个方程,解释它们的意义和应用。
四、光学1. 光的传播和光的性质:解释光的传播方式和光的特性,如反射和折射。
2. 光的干涉和衍射:详细讲解光的干涉和衍射现象的产生机制和规律。
3. 光的色散和偏振:介绍光的色散现象和光的偏振现象的产生原因。
4. 光的透镜和成像:讲解透镜的类型和成像规律,包括凸透镜和凹透镜。
5. 光的波粒二象性和相干性:介绍光的波粒二象性和相干性的基本概念和实验现象。
大学物理复习资料第1章质点的运动与牛顿定律一、选择题易1、对于匀速圆周运动下面说法不正确的是()(A)速率不变;(B)速度不变;(C)角速度不变;(D)周期不变。
易:2、对一质点施以恒力,则;()(A)质点沿着力的方向运动;( B)质点的速率变得越来越大;(C)质点一定做匀变速直线运动;(D)质点速度变化的方向与力的方向相同。
易:3、对于一个运动的质点,下面哪种情形是不可能的()(A)具有恒定速率,但有变化的速度;(B)加速度为零,而速度不为零;(C)加速度不为零,而速度为零。
(D) 加速度恒定(不为零)而速度不变。
中:4、试指出当曲率半径≠0时,下列说法中哪一种是正确的()(A) 在圆周运动中,加速度的方向一定指向圆心;(B) 匀速率圆周运动的速度和加速度都恒定不变;(C)物体作曲线运动时,速度方向一定在运动轨道的切线方向,法线分速度恒等于零,因此法问加速度也一定等于零;(D) 物体作曲线运动时,一定有加速度,加速度的法向分量一定不等于零。
难:5、质点沿x方向运动,其加速度随位置的变化关系为:.如在x = 0处,速度,那么x=3m处的速度大小为(A); (B) ; (C) ; (D)。
易:6、一作直线运动的物体的运动规律是,从时刻到间的平 均速度是 (A); (B);(C); (D)。
中7、一质量为m 的物体沿X 轴运动,其运动方程为t x x ωsin 0=,式中0x 、ω均为正的常量,t 为时间变量,则该物体所受到的合力为:( ) (A )、x f 2ω=; (B )、mx f 2ω=; (C )、mx f ω-=; (D )、mx f 2ω-=。
中:8、质点由静止开始以匀角加速度沿半径为R 的圆周运动.如果在某一时刻此质点的总加速度与切向加速度成角,则此时刻质点已转过的角度为 (A); (B) ; (C) ; (D)。
难9、一质量为本10kg 的物体在力f=(120t+40)i (SI )作用下沿一直线运动,在t=0时,其速度v 0=6i 1-⋅s m ,则t=3s 时,它的速度为:(A )10i 1-⋅s m ; (B )66i 1-⋅s m ; (C )72i 1-⋅s m ; (D )4i 1-⋅s m 。
难:10、一个在XY 平面内运动的质点的速度为,已知t = 0时,它通过(3,-7) 位置处,这质点任意时刻的位矢为 (A); (B) ;(C) ;(D) 。
易11、下列说法正确的是:()(A)质点作圆周运动时的加速度指向圆心;(B)匀速圆周运动的速度为恒量;(C)、只有法向加速度的运动一定是圆周运动;(D)直线运动的法向加速度一定为零。
易:12、下列说法正确的是:()(A)质点的速度为零,其加速度一定也为零;(B)质点作变加速直线运动,其加速度的方向与初速度的方向相同;(C)力是改变物体运动状态的原因;(D)质点作直线运动时,其位移的大小和路程相等。
中;13、某质点的运动方程为2569x t t=-+(SI),则该质点作()(A)匀加速直线运动,加速度沿X轴正方向;(B)匀变速直线运动,加速度沿X轴负方向;(C)变加速直线运动,加速度沿X轴正方向;(D)变减速直线运动,加速度沿X轴负方向。
易:14、一质点沿x轴作直线运动,其运动方程为x=3+3t2(米),则:在t=2秒时的速度、加速度为;()(A)12m/s ,6m/s2;(B)2m/s ,12m/s2;(C)6m/s ,2m/s2;(D)无正确答案。
易:15、质点作半径为R的匀速圆周运动,经时间T转动一周。
则在2T时间内,其平均速度的大小和平均速率分别为()(A)、2RTπ、2RTπ;(B)、0,2RTπ;(C)、0,0 ;(D)、2RTπ,0。
中16、物体沿一闭合路径运动,经Δt 时间后回到出发点A ,如图16所示,初速度v 1,末速度v 2,则在Δt 时间内其平均速度v 与平均加速度a 分别为: (A ) v =0,;0=a (B )v =0,0≠a ; (C )v ;,00≠≠a (D )v .,00=≠a二、 填空题易:1、某直线运动的质点,其运动方程为230x x at bt ct =+++(其中x 0、a 、b 、 c 为常量)。
则质点的加速度为 ;初始速度为 。
中2 一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是t t 6122-=β(SI )则 质点的角速度=ω___________; 切向加速度a t =___________。
易:3、一质量为5kg 的物体(视为质点)在平面上运动,其运动方程为r=6i-3t 2j (SI ),式中i 、j 分别为X 、Y 正方向的单位矢量,则物体所受的合外力f 的大小为 ;其方向为 。
易:4、一质量为M 的木块在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始减速,经过距离S 停止,则木块的加速度大小为 , 木块与水平面的摩擦系数为 。
中:5、一质点沿半径为R 的圆周运动,其路程S 随时间t 变化的规律为212s bt ct =-(其中b ,c 为大于零的常数,且2b Rc >),则:质点运动的切向加速度a τ= ,法向加速度n a = ;质点运动经过t = 时,n a a τ= 。
易:6、质量为0.1kg 的质点的运动方程为20.100.02r ti t j =+v v v ,则其速度为υ=v,所受到的力为 F =u v易:7、质量为10kg 的物体沿x 轴无摩擦地运动。
设t =0时,物体位于原点,速度为零。
物体在力的作用下,运动了3s ,则此时物体的加速度=____,速度 = _____。
难:8、某质点在XY 平面内的运动方程为:,则t = 1s 时,质点的切向加速度大小为______,法向加速度大小为______。
三、判断题易1、质点作匀速圆周运动的速度为恒量。
( )易2、在一质点作斜抛运动的过程中,若忽略空气阻力,则矢量dv/dt 是不断变化的。
( )易3、物体作曲线运动时,必有加速度,加速度的法向分量一定不等于零。
( )易4、惯性离心力是一种虚构力,它只能出现在非惯性系中。
( ) 中5、万有引力恒量G 的量纲为 -T ML 2。
( )中6、质点作曲线运动,质点的加速度为一恒量,但各点加速度与轨道切线间夹角不一样,则该质点一定不能作匀变速率运动。
( )中7、物体所受合外力的方向必与物体的运动方向一致。
( )中8、当n a 0,a 0τ≠≠,ρ为有限值,υ≠恒量,物体有可能作直线运动。
( ) 中9、质点在恒力作用下的运动一般都是平面运动。
在一定条件下可以是直线运动。
( )易10、质点作匀速圆周运动的角速度方向与速度方向相同。
( )四、计算 题易1、已知一质点的运动方程为23x 6t 2t =-(单位为SI 制),求:(1)第2秒内的平均速度; (2)第3秒末的速度; (3)第一秒末的加速度;中2、已知一质点由静止出发,其加速度在x 轴和y 轴上分别为x a 4t =,2y a 15t =(a 的单位为SI 制),试求t 时刻质点的速度和位置。
易.3、质点的运动方程为2311(t)(35t t )(4t t )23=+-++r i j ,求t 时刻,质点的速度υ和加速度a 以及t =1s 时速度的大小。
易:4、质点沿半径为R 的圆周运动,运动方程为223t +=θ(S1),求:t 时刻质点的法向加速度大小和角加速度大小。
易5、质量m = 2kg 的物体沿x 轴作直线运动,所受合外力,如果在处时速度,试求该物体移到时速度的大小。
易6、物体沿直线运动,其速度为32t 3t 2=++υ(单位为SI 制)。
如果t=2(s)时,x=4(m),求此时物体的加速度以及t=3(s)时物体的位置。
易7 一质点作半径为r=10(m)的圆周运动,其角坐标θ可用224t θ=+(单位为SI 制)表示,试问:(1)t=2(s)时,法向加速度和切向加速度各是多少? (2)当θ角等于多少时,其总加速度与半径成045?易8、已知质点的运动方程21r (3t 5)(t 3t 4)2=+++-i j (单位为SI 制)。
求t=4s 时质点的速度、加速度、位矢。
易9、一质点作一维运动,其加速度与位置的关系为a kx =-,k 为正常数。
已知t=0时,质点瞬时静止于0x x =处。
试求质点的运动规律。
中10、一质量为40kg 的质点在力F 120t 40N =+的作用下沿x 轴作直线运动。
在t=0时,质点位于0x 2.0m =处,速度为10 4.0m s υ-=⋅,求质点在任意时刻的速度和位置。
参考答案: 一、 选择题1、B2、 D3、D4、D5、A6、A7、D8、D9、C 10、B 11、 D 12、C 13、B 14、A 15、B 16、B二、填空题1、26b ct +、a ;2、3243t t -、2126t t -;3、30N 、y 轴的负方向;4、22s υ、22sg υ; 5、-C 、2()b ct R -、b cR cm ; 6、0.010.04t +i j 、0.004(N)j ;7、1. 52/m s 、2.7/m s ; 8、6.42/m s 、4.82/m s 。
三、判断题1、×2、×3、√4、√5、×6、√7、×8、×9、√ 10、×四、计算 题1、解: 由23=62x tt - 知质点在任意时刻的速度与加速度分别为:2126dx t t dt υ==-; =1212d a =t dt υ- (1)第2秒内的平均速度 ()()2323_121(6222)61214211x x x m s t υ-⨯-⨯-⨯-⨯-∆====⋅∆- (2)第3秒末的速度 ()22131261236318t st t m s υ-==-=⨯-⨯=⋅-,与运动方向相反。
(3)第一秒末的加速度()21121212121t satm s -==-=-⨯=⋅2、解: 由4xat=,215y a t =可知质点在任意时刻的速度分量式和位移分量式分别为:4xx d a t dtυ==,变形后再两边积分为:04xtx d tdtυυ=⎰⎰22x t υ=215y y d a t dtυ==,变形后再两边积分为:2015yty d t dtυυ=⎰⎰35y t υ=t 时刻质点的速度为:2325txyt t υυυ=+=+i j i j22x dxt dtυ==,变形后再两边积分为:202xt dx t dt=⎰⎰323x t =35y dyt dtυ==,变形后再两边积分为:⎰⎰=ytdtt dy 035445t y =t 时刻,质点的位置为:342534tr x y t t =+=+i j i j 3、解:质点在任意时刻的速度为:()()254d t t dt==-++ri j υ则 5xtυ=-,24yt υ=+ 当t=1(s)时,质点的速度大小为:()())22215441t t m s υ-=-++=⋅质点在任意时刻的加速度为:==+2d t dta i j υ- 4、解: (1)由于232t θ=+,则角速度d θω==4t dt,角加速度2d ==4rad/s dtωβ 在时刻,法向加速度和切向加速度的大小分别为:2216n a =r =Rt ω4a r Rτβ==5、解:由牛顿第二定律得22210653()2x F x a x m s m +===+由x xx x d d dx a dx dt dxυυυ=⋅= 得 ()2053xt x x x x d a dx x dx υυυ==+⎰⎰⎰质点在任意位置的速度:23102x x x υ=+该物体移到x=4.0m 时速度的大小为:3310210424168/x x m sυ+=⨯+⨯=6、解: 由3232tt υ=++可知物体在任意时刻的加速度和位移分别为:2d a ==3t +6t dtυ3232dr t t dtυ=++=上式变形后再两边积分为:3224(32)trtt dt dr++=⎰⎰4312124r =t +t +t -当t=2(s)时,物体的加速度为:2=2=3+6=32+62=2422t sat t m.s -()×× 当t=3(s )时物体的位置为:4343311=++212=3+3+2312=41.344t s=rt t t m --()××7、解: (1)由于224t θ=+,则角速度8d θω==t dt,在=2t s 时,法向加速度和切向加速度的数值分别为:223264210=2.5610()-n t=2s a =r =m.s ω⨯⨯⨯22==108=80tt s d ωa rm s dt-=⨯⋅当总加速度与半径成045时,此时应有:=nτa a即: 28=64r t r ×× 21=8t 于是 212424 2.5()8trad θ=+=+⨯=8、此题的解在书中P13:例题1-19、此题的解在书中P15:例题1-310、解:由牛顿第二定律得21204031()40x F t a t m s m +===+由xx d a dtυ= 得 ()4.031xttx x d a dt t dtυυ==+⎰⎰⎰质点在任意时刻的速度:23 4.02x t t υ=++由xdx dtυ=得 22.0003 4.02xt t x dx dt t t dt υ⎛⎫==++ ⎪⎝⎭⎰⎰⎰质点在任意时刻的位置: 3211=++4.0+2.022x tt t m ()第五章气体分子动理论5-6 在容积为332.010m -⨯的容器中,有内能为26.7510⨯J 的刚性双原子分子理想气体。