积分变换 第6讲拉氏变换的性质及应用
- 格式:ppt
- 大小:301.00 KB
- 文档页数:36
拉氏变换与Z变换的基本公式及性质拉氏变换(Laplace Transform)是一种重要的信号分析工具,它将时域函数转换为复域函数,使得分析和处理复杂的差分方程、微分方程、线性时不变系统等问题变得更加简单。
拉氏变换的定义如下:对于一个定义在半轴t≥0上的实值函数f(t),它的拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0,∞] e^(-st) f(t) dt其中s是一个复变量,e^(-st)是一个复数系数。
拉氏变换的基本公式:1.映射常数L{1}=1/s2. $L{e^{at}}=\frac{1}{s-a}, Re(s)>a$3.时间平移L{f(t-a)u(t-a)} = e^(-as)F(s)4.频域平移L{e^(as)f(t)} = F(s-a)5.合并函数L{f(t)+g(t)}=F(s)+G(s)6.乘法L{f(t)g(t)}=F(s)*G(s)7.单位冲激函数L{δ(t-a)} = e^(-as)拉氏变换的性质:1.线性性质L{af(t) + bg(t)} = aF(s) + bG(s)2.积分性质L{∫[0,t]f(τ)dτ}=1/s*F(s)3.拉氏变换的导数性质L{f'(t)}=sF(s)-f(0)4.初始值定理f(0+) = lim(s->∞) sF(s)5.最终值定理lim(t->∞) f(t) = lim(s->0) sF(s)Z变换是一种由离散信号而来的变换,它将离散序列变换到复平面上。
Z变换的定义如下:对于一个离散序列x[n],它的Z变换X(z)定义为:X(z)=Z{x[n]}=∑[-∞,∞]x[n]z^(-n)其中z是一个复变量。
Z变换的基本公式:1.映射常数Z{1}=12.单位序列Z{δ[n]}=13.线性性质Z{ax[n] + by[n]} = aX(z) + bY(z)4.平移Z{x[n-a]}=z^(-a)X(z)5.单位冲激响应函数Z{h[n]}=H(z)6.时域乘法Z{x[n]y[n]}=X(z)Y(z)Z变换的性质:1.线性性质Z{ax[n] + by[n]} = aX(z) + bY(z)2.移位性质Z{x[n-k]}=z^(-k)X(z)3.初始值定理x[0] = lim(z->∞) X(z)4.最终值定理lim(n->∞) x[n] = lim(z->1) (1-z^(-1))*X(z)5.时域卷积性质Z{x[n]*y[n]}=X(z)Y(z)6.时域乘法性质Z{x[n]y[n]}=X(z)Y(z)总结:拉氏变换和Z变换都是用于信号分析和处理的重要工具。
§2-3拉普拉斯变换及其应用时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。
例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。
一、拉氏变换的定义已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为(2-45)式中,称为原函数,称为象函数,变量为复变量,表示为(2-46)因为是复自变量的函数,所以是复变函数。
有时,拉氏变换还经常写为(2-47)拉氏变换有其逆运算,称为拉氏反变换,表示为(2-48)上式为复变函数积分,积分围线为由到的闭曲线。
二、常用信号的拉氏变换系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。
现复习一些基本时域信号拉氏变换的求取。
(1)单位脉冲信号理想单位脉冲信号的数学表达式为(2-49)且(2-50)所以(2-51)说明:单位脉冲函数可以通过极限方法得到。
设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。
当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。
在坐标图上经常将单位脉冲函数表示成单位高度的带有箭头的线段。
由单位脉冲函数的定义可知,其面积积分的上下限是从到的。
因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。
由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。
所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。
为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。
(2)单位阶跃信号单位阶跃信号的数学表示为(2-52)又经常写为(2-53)由拉氏变换的定义式,求得拉氏变换为(2-54)因为阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。
(3)单位斜坡信号单位斜坡信号的数学表示为(2-55)图2-15单位斜坡信号另外,为了表示信号的起始时刻,有时也经常写为(2-56)为了得到单位斜坡信号的拉氏变换,利用分部积分公式得(2-57)(4)指数信号指数信号的数学表示为(2-58)拉氏变换为(2-59)(5)正弦、余弦信号正弦、余弦信号的拉氏变换可以利用指数信号的拉氏变换求得。
控制原理补充讲义——拉氏变换拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
注意:六大性质一定要记住1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见下表:拉氏变换对照表)1sin(122ϕξωξωξω----t e n t nn三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s), 则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有,其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)是由正向使的f(t)值。
常见信号拉氏变换拉普拉斯变换是一种非常重要的数学工具,广泛应用在信号处理和控制系统中。
在这篇文章中,我们将介绍一些常见的信号及其拉普拉斯变换,并解释其在实际应用中的意义和作用。
首先,我们来了解一下拉普拉斯变换的基本概念。
拉普拉斯变换是一种积分变换,它将一个时间域上的函数转变为一个复平面上的函数。
在连续时间系统中,拉普拉斯变换可以将微分和积分方程转化为代数方程,从而简化系统的分析和求解。
在信号处理中,常见的信号类型包括连续时间信号和离散时间信号。
在连续时间信号中,最常见的信号包括单位阶跃函数、冲激函数和正弦函数等。
单位阶跃函数在时间t=0时从0跳变到1,描述了系统的开关行为,其拉普拉斯变换可以表示为1/s,其中s是复频域变量。
冲激函数表示一个瞬时的脉冲信号,其拉普拉斯变换为1,即δ(t)的拉普拉斯变换为1。
而正弦函数在时间域中以周期性振荡的形式出现,在频域中则表现为位于正负无穷处的脉冲,其拉普拉斯变换可以用1/(s^2+w^2)来表示,其中w是正弦函数的频率。
在离散时间信号中,最常见的信号是单位样值函数和指数函数等。
单位样值函数表示在t=0时为1,其它时刻为0的序列,其拉普拉斯变换可以表示为1/(1-e^-s),其中s是离散频域变量。
指数函数在离散时间序列中以指数增长或衰减的形式出现,其拉普拉斯变换可以用1/(1-e^(-a*s))来表示,其中a是指数函数的增长或衰减系数。
拉普拉斯变换在实际应用中扮演着重要的角色。
在信号处理中,拉普拉斯变换可以帮助我们理解信号的频域特性,如频率响应和滤波器设计等。
在控制系统中,拉普拉斯变换可以将微分方程转换为代数方程,从而使系统的分析和设计更加简单和直观。
除了上述介绍的常见信号类型,还有许多其他类型的信号也可以通过拉普拉斯变换进行分析和处理。
例如,矩形波、三角波和高斯函数等都有其特殊的拉普拉斯变换表达式,它们在不同的应用中起到了重要的作用。
综上所述,拉普拉斯变换是一种非常强大的数学工具,用于信号处理和控制系统分析。