图像处理基础概念

  • 格式:docx
  • 大小:222.89 KB
  • 文档页数:13

下载文档原格式

  / 13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像处理基础概念

2.2 图像基本概念

2.2.1 像素与灰度

像素和分辨率在计算机中,有两个大家都熟悉的概念:像素(pixel)和分辨率(resolution)。我们将图像进行采样的单位称为像素,像素是是组成图像的最基本元素,是数字图像显示的基本单位。像素是一个逻辑尺寸单位,比如一台计算机,其屏幕大小为17英寸,可以用800行*1280列个像素(格子)来显示桌面的图像,也可以用768行*1024列来显示桌面图像,不过显示的图像的清晰度会有差别。在计算机编程中,由像素组成的图像也通常叫“位图”或“光栅图像”。而分辨率狭义的是指显示器所能显示的像素的多少,当用户设置桌面分辨率为1280*800时,表示的意思就是在这个屏幕大小的物理尺寸上,显示器所显示的图像由800行*1280列个像素组成;可以看出,在同样大小的物理尺寸上,分辨率越高的图像,其像素所表示的物理尺寸越小,画面也就越精细,整个图像看起来也就越清晰。广义的分辨率是指对一个物体成像数字时化时进行采样的物理尺寸的大小,比如我们嫦娥一号卫星拍摄的月亮的照片,其分辨率是个很大的数(通常称分辨率很低),如几千平方公里,意思是说,在拍摄的月球的照片上,一个像素点相当于月球上几千公里见方。

2.2.2 采样量化

将空间上连续的图像变换成离散点的操作称为采样。采样间隔和采样孔径的大小是两个很重要的参数。当对图像进行实际的抽样时,怎样选择各抽样点的间隔是个非常重要的问题。关于这一点,图像包含何种程度的细微的浓淡变化,取决于希望忠实反映图像的程度。

经采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理。将像素灰度转换成离散的整数值的过程叫量化。表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。一幅数字图像中不同灰度级的个数称为灰度级数,用G表示。灰度级数就代表一幅数字图像的层次。图像数据的实际层次越多视觉效果就越好。一般来说,G=2g,g就是表示存储图像像素灰度值所需的比特位数。若一幅数字图像的量化灰度级数G=256=28级,灰度取值范围一般是0~255的整数,由于用8bit就能表示灰度图像像素的灰度值,因此常称8 bit 量化。从视觉效果来看,采用大于或等于6比特位量化的灰度图像,视觉上就能令人满意。一幅大小为M×N、灰度级数为G的图像所需的存储空间,即图像的数据量,大小为M×N×g (bit)。

图2.4 分辨率与图像清晰度图2.5 量化等级与图像清晰度

一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大,如图2.4

所示,图像越来越模糊。同样,量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。如图2.5所示,图像的质量越来越差,左上角的图像质量最好,但数据量也越大。但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。例如对细节比较丰富的图像数字化。数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。

彩色图像、灰度图像与二值图像按所能呈现的色彩和灰度等级我们可以将任何图像(物理的和数字的)图像分为彩色图像、灰度图像和二值图像。彩色图像是指图像中含有色彩信息的图像,在数字图像中,每一个像素都有相应的数值来表示该像素的信息,彩色图像的信息就是颜色信息。根据三基色原理,任何颜色都可以表示为三个基本颜色红、绿、蓝(RGB)按不同比例合成产生。通常所说的24位(bit)位图(windows 画图器程序中有相应的保存选项)就是每个像素由24位信息来表示颜色的位图,R、G、B每种颜色通道信息各8位,因此有224(16777216)种不同的颜色(人眼对色彩的分辨能力大致是一千万色),这些颜色足以表达出人眼能够辨别的所有信息,因此也叫做真彩色图像。而灰度图像是指只有亮度差别,而没有颜色差别的图像,例如黑白的老照片。由于人眼能够辩出的亮度等级是有限的,因此数字图像中也可以用有限的等级来描述一副图像。例如,每个像素采用一个字节来表示其亮度信息,就有256级的亮度(28),等级越多的图像效果越好。当灰度图像的灰度只有两个等级的时候,这种图像就叫做二值图像(黑白图像)。可以只用“全黑”和“全白”两种方式对图像进行描述和记录。二值图像所含的信息较少,占用的存储空间也相应较少,但二值图像也有不少的应用,如指纹图像以及文字的识别等,都需要获得二值图像。

(a)黑白图像的像素值(b)灰度图像的像素值

(c)彩色图像的像素值

图2.6 图像与像素值

黑白图像图像的每个像素只能是黑或白,没有中间的过渡,故又称为二值图像。二值图像的像素值为0或1。如图2.6(a)所示

灰度图像灰度图像是指灰度级数大于2的图像。但它不包含彩色信息。如图2.6(b)所示

彩色图像彩色图像是指每个像素由R、G、B分量构成的图像,其中R、B、G是由不同的灰度级来描述(后面我们知道,还有其他的颜色空间来描述彩色图像)。每个分量的值如图2.6(c)所示。

2.2.3 三基色原理

相加混色与RGB 在中学的物理课中我们可能做过棱镜的试验,白光通过棱镜后被分解成多种颜色逐渐过渡的色谱,颜色依次为红、橙、黄、绿、青、蓝、紫,这就是可见光谱。其中人眼对红、绿、蓝最为敏感,人的眼睛就像一个三色接收器的体系,大多数的颜色可以通过红、绿、蓝三色按照不同的比例合成产生,同样绝大多数单色光也可以分解成红绿蓝三种色光。这是色度学的最基本原理,即三基色原理(如图2.7所示)。三种基色是相互独立的,任何一种基色都不能由其它两种颜色合成。红绿蓝是三基色,这三种颜色合成的颜色范围最为广泛。红绿蓝三基色按照不同的比例相加合成混色称为相加混色。其中一些混色的规律有:

红色+绿色=黄色;绿色+蓝色=青色;红色+蓝色=品红;红色+绿色+蓝色=白色;另外:红色+青色=白色;绿色+品红=白色;蓝色+黄色=白色。

图2.7 三基色原理

当两种光按照适当比例混合得到白光时,称这两种光为互补光。所以,按照上述的混色规律我们可以得到,青色、黄色、品红分别是红色、蓝色、绿色的补色。

由于每个人的眼睛对于相同的单色感受不同,所以,如果用相同强度的三基色混合时,假设得到白光的强度为100%,这时,人的主观感受是,绿光最亮,红光次之,蓝光最弱。如果用Y表示景物的亮度,则通常有:

Y=0.299R+0.587G+0.114B

因为红、绿、蓝三基色能够合成自然界所有的色彩,因此在电子设备和软件中,经常使用红绿蓝三基色合成五颜六色的图像。用以上的相加混色所表示的颜色模式成为RGB模式。

相减混色与CMY(CMYK)大家知道,显示器采用RGB模式,就是因为显示器是电子光束轰击荧光屏上的荧光材料发出亮光从而产生颜色。当没有光的时候为黑色,光线加到最大时为白色。而打印机呢?它的油墨不会自己发出光线。因而只有采用吸收特定光波而反射其它光的颜色,所以需要用减色法来解决。CMYK颜色模式是一种印刷模式。其中四个字母分别指青(Cyan)、洋红(Magenta)、黄(Yellow)、黑(Black),在印刷中代表四种颜色的油墨。CMYK模式在本质上与RGB模式没有什么区别,只是产生色彩的原理不同,在RGB模式中由光源发出的色光混合生成颜色,而在CMYK模式中由光线照到有不同比例C、M、Y、K油墨的纸上,部分光谱被吸收后,反射到人眼的光产生颜色。由于C、M、Y、K在