汽车设计课设驱动桥设计
- 格式:docx
- 大小:65.50 KB
- 文档页数:13
毕业设计任务书设计题目:比亚迪速锐驱动桥设计专业:交通10-1学号: ********* *名:***指导教师:***毕业设计开题报告目录摘要 (1)Abstract (1)第一章绪论 (2)1.1 本设计的目的与意义 (2)1.2 驱动桥国内外发展现状 (3)1.3 本设计的主要内容 (3)1.4 本次设计的其他数据 (3)第二章驱动桥的选型 (4)2.1 驱动桥的选型 (4)2.1.1 方案(一):非断开式驱动桥 (5)2.1.2 方案(二):断开式驱动桥 (6)2.1.3 方案(三):多桥驱动的布置 (7)第三章驱动半轴的设计 (9)3.1 半轴的结构形式分析 (9)3.2 半轴的强度计算 (10)半浮式半轴计算载荷的确定 (11)a 半轴在纵向力最大时 (11)b 半轴在侧向力最大时 (11)c 半轴在垂向力最大时 (13)3.3 半轴的强度计算 (13)a 纵向力最大时, (13)b 侧向力最大时 (14)c 垂向力最大时 (14)3.4 半轴花键的设计 (14)3.5 半轴的材料及热处理半轴的材料及热处理 (16)3.5.1 半轴的工作条件和性能要求 (16)3.5.2 处理技术要求 (16)3.5.3 选择用钢 (16)3.5.4 半轴的工艺路线 (17)3.5.5 热处理工艺分析 (17)第四章驱动桥壳的设计 (18)4.1 驱动桥壳结构方案选择 (18)a 可分式桥壳 (18)b 整体式桥壳 (18)c 组合式桥壳 (19)4.2 驱动桥壳强度计算 (20)4.2.1 桥壳的静弯曲应力计算 (20)4.2.2 在不平路面冲击载荷作用下的桥壳强度计算 (21)4.2.3 汽车以最大牵引力行驶时的桥壳强度计算 (22)4.2.4 紧急制动时的桥壳强度计算 (23)4.2.5 汽车受最大侧向力时的桥壳强度计算 (24)第五章轮胎的选取 (26)5.1 轮胎与车轮应满足的基本要求 (26)5.2 轮胎的特点与选用 (26)5.3 轮胎的选型及尺寸参数 (26)第六章CAD进行建模装配 (28)6.1 CAD的介绍 (28)6.2 CAD建模过程 (28)6.2.1 车桥的建模 (28)6.2.2 半轴的建模 (31)6.2.3 轴承和螺栓的建模 (31)6.2.4 车轮的建模 (33)6.3实体装配 (34)总结 .............................................................................................................................. 错误!未定义书签。
课程设计驱动桥设计一、教学目标本课程旨在让学生掌握驱动桥的设计原理和方法,理解其在工作过程中的作用和重要性。
知识目标包括:了解驱动桥的基本结构、工作原理和设计要求;掌握驱动桥的设计方法和步骤;了解驱动桥的设计标准和规范。
技能目标包括:能够运用所学知识进行驱动桥的设计;能够对驱动桥的设计方案进行评价和优化。
情感态度价值观目标包括:培养学生的创新意识和团队合作精神;增强学生对工程实践的兴趣和责任感。
二、教学内容本课程的教学内容主要包括驱动桥的基本原理、结构设计、传动设计、强度计算和实验等方面。
具体安排如下:1.驱动桥的基本原理:介绍驱动桥的工作原理、分类和性能要求。
2.结构设计:讲解驱动桥的主要组成部分,包括齿轮、轴承、轴等的结构设计和选材。
3.传动设计:介绍驱动桥的传动系统设计,包括齿轮传动、蜗轮传动等的设计方法和计算。
4.强度计算:讲解驱动桥的强度计算方法,包括接触强度、弯曲强度、齿面硬度等。
5.实验:进行驱动桥的设计实验,验证设计方案的可行性和性能。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式。
包括:1.讲授法:讲解驱动桥的基本原理、设计方法和步骤。
2.讨论法:学生进行驱动桥设计方案的讨论和评价。
3.案例分析法:分析典型的驱动桥设计案例,引导学生运用所学知识解决问题。
4.实验法:进行驱动桥的设计实验,培养学生的实践能力和创新精神。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选择合适的教材,提供学生系统学习的基础知识。
2.参考书:提供相关的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作课件、视频等多媒体资料,生动展示驱动桥的设计原理和实例。
4.实验设备:准备实验所需的设备,为学生提供实践操作的机会。
五、教学评估本课程的评估方式将包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。
具体安排如下:1.平时表现:通过课堂参与、提问、小组讨论等方式评估学生的学习态度和积极性。
1 绪论1.1 课题背景及目的随着汽车工业的发展和汽车技术的提高,驱动桥的设计和制造工艺都在日益完善。
驱动桥和其他汽车总成一样,除了广泛采用新技术外,在结构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产组织专业化目标前进。
应采用能以几种典型的零部件,以不同方案组合的设计方法和生产方式达到驱动桥产品的系列化或变形的目的,或力求做到将某一类型的驱动桥以更多或增减不多的零件,用到不同的性能、不同吨位、不同用途并由单桥驱动到多桥驱动的许多变形汽车上。
本设计要求根据CS1028皮卡车在一定的程度上既有轿车的舒适性又有货车的载货性能,使车辆既可载人又可载货,行驶范围广的特点,要求驱动桥在保证日常使用基本要求的同时极力强调其对恶劣路况的适应力。
驱动桥是汽车最重要的系统之一,是为汽车传输和分配动力所设计的。
通过本课题设计,使我们对所学过的基础理论和专业知识进行一次全面的,系统的回顾和总结,提高我们独立思考能力和团结协作的工作作风。
1.2 研究现状和发展趋势随着汽车向采用大功率发动机和轻量化方向发展以及路面条件的改善,近年来主减速比有减小的趋势,以满足高速行驶的要求。
[1]为减小驱动轮的外廓尺寸,目前主减速器中基本不用直齿圆锥齿轮。
实践和理论分析证明,螺旋锥齿轮不发生根切的最小齿数比直齿齿轮的最小齿数少。
显然采用螺旋锥齿轮在同样传动比下,主减速器的结构就比较紧凑。
此外,它还具有运转平稳、噪声较小等优点。
因而在汽车上曾获得广泛的应用。
近年来,准双曲面齿轮在广泛应用到轿车的基础上,愈来愈多的在中型、重型货车上得到采用。
[3]在现代汽车发展中,对主减速器的要求除了扭矩传输能力、机械效率和重量指标外,它的噪声性能已成为关键性的指标。
噪声源主要来自主、被动齿轮。
噪声的强弱基本上取决于齿轮的加工方法。
区别于常规的加工方法,采用磨齿工艺,采用适当的磨削方法可以消除在热处理中产生的变形。
因此,与常规加工方法相比,磨齿工艺可获得很高的精度和很好的重复性。
汽车驱动桥的设计汽车驱动桥是将发动机的动力传递到车轮上的重要部件,它承载着扭矩的传递、转向力和悬挂的载荷,直接影响到汽车的动力性能、行驶稳定性和操控性能。
本文将从结构设计、功能和类型分类、工作原理和配套系统等方面进行阐述。
一、结构设计汽车驱动桥主要由差速器、后桥壳、半轴、主减速齿轮和齿轮箱等部件组成。
差速器通常位于驱动轴两半轴之间,起到分配扭矩和使驱动轮各自具有不同转速的作用。
后桥壳是驱动桥的承载结构,负责支撑和固定驱动桥的各个部件。
二、功能和类型分类汽车驱动桥的主要功能是将发动机的动力转化为车轮的动力,并且通过差速器的作用,使两个驱动轮以不同的转速旋转。
根据驱动轮的数量不同,可以将汽车驱动桥分为前驱动桥、后驱动桥和四驱动桥。
其中,前驱动桥一般布置在驾驶员座位后面,主要用于小型轿车和城市SUV;后驱动桥布置在车辆的后部,主要用于大型SUV和商用车;四驱动桥则将动力传递到四个车轮上,提供更强的通过性和驾驶稳定性。
三、工作原理汽车驱动桥的工作原理主要包括力的传递、扭矩的分配和转速的差异化。
当发动机输出扭矩传递到差速器时,差速器将扭矩通过齿轮传递到后桥壳,由主减速齿轮将扭矩分配到左右两个半轴上。
同时,差速器还可以使驱动轮各自具有不同的转速,以适应车辆转弯和路面状态的变化。
四、配套系统汽车驱动桥还有一些配套系统,用于提升驾驶性能。
其中,差速器锁定功能可以让两个驱动轮以相同的转速旋转,提供更强的通过性能;牵引力控制系统可以通过降低驱动轮的滑动,提供更好的牵引力,提高车辆的爬坡能力;加速差速器可以通过改变齿轮的传动比,提供更快的加速性能。
总之,汽车驱动桥作为汽车动力传递的核心部件,其设计要满足高强度、高刚度和轻量化的要求。
同时,根据不同的车型和用途,还要考虑到其功能需求和工作环境,以提供更好的驾驶性能和操控性能。
YC1090货车驱动桥的设计目录中文摘要英文摘要1 前言2 总体方案的布置3 驱动桥零部件的设计3.1 主减速器设计3.2 差速器设计3.3 半轴的设计3.4 驱动桥壳设计4 CRUISE软件的分析5 优化设计6 结论参考文献附件清单致谢盐城工学院本科生毕业设计说明书20071 前言本设计课题是改进CA7204型汽车驱动桥的设计。
故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式、设计计算及性能分析作一一介绍。
汽车驱动桥位于传动系的末端,其基本功用是增大由传动轴或直接从变速器传来的转矩,将转矩合理的分配给左、右驱动车轮具有汽车行驶运动学所要求的差速功能。
驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式、设计计算方法与性能分析。
汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。
汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。
另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。
例如,驱动桥包含主减速器、差速器、半轴、桥壳和各种齿轮。
由上述可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。
因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。
他有以下两大难题,一是将发动机输出扭矩通过变速箱将动力传递到差速器上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。
二是差速器向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。
目录第一章绪论1.1纯电动汽车概述1.1.1 电动汽车的分类1.2驱动桥的概述1.2.1驱动桥的功能1.2.2驱动桥的分类1.2.3驱动桥的组成1.2.4驱动桥的设计1.3电动车出现的背景、意义及国内外纯电动车驱动桥发展现状第二章传动系统工作原理2.1 轿车采用的传动方案2.2 主减速器的确定2.2.1 电动轿车动力性能要求2.2.2 电机参数和减速器传动比的选择2.2.3 匹配结果2.3 主减速器的结构形式2.3.1 主减速器结构方案分析2.3.2 圆柱齿轮传动的主要参数2.3.3 锥齿轮传动的主要参数2.4 差速器的确定2.4.1 差速器的工能原理2.4.2 差速器的选择2.4.3 差速器主要参数的计算2.5 相关轴及轴承设计2.5.1减速器输入轴2.5.2齿轮中间传动轴2.5.3相关轴承的选择2.5.4键的选择和校核2.5.5轴承的强度校核第三章毕业设计总结与感想第1章绪论1.1纯电动汽车概述1.1.1电动汽车的分类电动汽车在广义上可分为3 类,即纯电动汽车(BEV) 、混合动力电动汽车(HEV) 和燃料电池电动汽车(FCEV)。
纯电动汽车是完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池)提供动力的汽车。
目前,这三种汽车都处于不同的研究阶段。
由于一次石化能源的日趋缺乏,纯电动汽车被认为是汽车工业的未来。
但是车用电池的许多关键技术还在突破,因此,纯电动汽车多用于低速短距离的运输。
混合动力车的开发是从燃油汽车到未来纯电动汽车的一种过渡阶段,它既能够满足用户的需求,有具有低油耗、低排放的特点,在目前的技术水平下是最切合市场的,但是混合动力车有两个动力源,在造价和如何匹配控制上还需要继续努力。
燃料电池电动汽车才有燃料电池作为能源。
燃料电池就是利用氢气和氧气(或空气)在催化剂的作用下直接经电化学反应产生电能的装置,具有无污染,只有水作为排放物的优点。
但现阶段,燃料电池的许多关键技术还处于研发试验阶段。
前驱汽车驱动桥课程设计一、教学目标本课程旨在让学生了解前驱汽车驱动桥的基本原理、结构及其在汽车中的应用;掌握驱动桥的设计和计算方法,以及故障诊断和维修技巧;培养学生的实际操作能力和创新意识,使他们在汽车维修、制造等领域具有竞争力。
具体目标如下:1.知识目标:(1)了解前驱汽车驱动桥的分类、工作原理和结构特点;(2)掌握驱动桥的设计和计算方法;(3)熟悉驱动桥故障诊断和维修技巧;(4)了解驱动桥在汽车运行中的作用和重要性。
2.技能目标:(1)能够分析驱动桥的结构和工作原理;(2)具备驱动桥设计和计算能力;(3)掌握驱动桥故障诊断和维修方法;(4)能够对驱动桥进行维护和保养。
3.情感态度价值观目标:(1)培养学生对汽车行业的兴趣和热情;(2)增强学生的创新意识和团队协作精神;(3)培养学生认真负责、精益求精的职业素养;(4)提高学生对驱动桥安全性和可靠性的认识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.前驱汽车驱动桥的基本原理和结构;2.驱动桥的分类和工作原理;3.驱动桥的设计和计算方法;4.驱动桥故障诊断和维修技巧;5.驱动桥在汽车运行中的作用和重要性。
教学进度安排如下:(1)第1-2课时:介绍前驱汽车驱动桥的基本原理和结构;(2)第3-4课时:讲解驱动桥的分类和工作原理;(3)第5-6课时:教授驱动桥的设计和计算方法;(4)第7-8课时:传授驱动桥故障诊断和维修技巧;(5)第9-10课时:讨论驱动桥在汽车运行中的作用和重要性。
三、教学方法为了提高教学效果,本课程将采用以下教学方法:1.讲授法:讲解驱动桥的基本原理、结构和故障诊断方法;2.讨论法:引导学生探讨驱动桥的设计和计算技巧;3.案例分析法:分析实际案例,让学生掌握驱动桥维修技巧;4.实验法:安排实验室实践,让学生亲自动手操作,增强实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:《前驱汽车驱动桥技术与应用》;2.参考书:国内外相关论文和书籍;3.多媒体资料:PPT、视频、图片等;4.实验设备:驱动桥实验台、检测仪器等。
轻型汽车驱动桥设计驱动桥位于传动系末端,其基本功用是增矩、降速,承受作用于路面和车架或车身之间的作用力。
它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要。
当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须搭配一个高效、可靠的驱动桥,所以采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。
驱动桥设计应主要保证汽车在给定的条件下具有最佳的动力性和燃油经济性。
本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型,最后进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。
驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。
1、主要内容(1)根据给定的设计参数,参照传统设计方法和现有车型,确定汽车总体设计参数,具体包括主要结构尺寸参数、质量参数和性能参数,并选择发动机和轮胎的结构形式;(2) 汽车驱动桥方案的确定:根据总体参数选择主减速器、差速器、半轴和桥壳的选型;(3)设计主减速器、差速器和半轴的主要结构尺寸,并对其进行强度校核。
(4)根据设计结果绘制两张零号图纸。
2、设计参数汽车最高时速 115km/h装载质量 2.5t最小转弯半径12.5m最大爬坡度 0.3同步附着系数 0.42.2 汽车形式的确定2.2.1 汽车轴数和驱动形式的选择汽车可以有二轴、三轴、四轴甚至更多的轴数。
影响轴数的因素主要有汽车的总质量、道路法规对于轴载的限制和轮胎的负荷能力以及汽车的结构等。
包括乘用车以及汽车总质量小于19t的公路运输车辆和轴荷不受道路、桥梁限制的不在公路上行驶的车辆,如矿用自卸车等,均采用结构简单、制造成本低廉的两轴方案。
总质量在19~26t的公路运输车采用三轴形式,总质量更大的汽车宜采用四轴和四轴以上的形式。
汽车设计课程设计说明书
题目:BJ130驱动桥部分设计验算与校核
姓名:
学号:
专业名称:车辆工程
指导教师:
目录
一、课程设计任务书 (1)
二、总体结构设计 (2)
三、主减速器部分设计 (2)
1、主减速器齿轮计算载荷的确定 (2)
2、锥齿轮主要参数选择 (4)
3、主减速器强度计算 (5)
四、差速器部分设计 (6)
1、差速器主参数选择 (6)
2、差速器齿轮强度计算 (7)
五、半轴部分设计 (8)
1、半轴计算转矩Tφ及杆部直径 (8)
2、受最大牵引力时强度计算 (9)
3、制动时强度计算 (9)
4、半轴花键计算 (9)
六、驱动桥壳设计 (10)
1、桥壳的静弯曲应力计算 (10)
2、在不平路面冲击载荷作用下的桥壳强度计算 (11)
3、汽车以最大牵引力行驶时的桥壳强度计算 (11)
4、汽车紧急制动时的桥壳强度计算 (12)
5、汽车受最大侧向力时的桥壳强度计算 (12)
七、参考书目 (14)
八、课程设计感想 (15)
一、课程设计任务书
1、题目
《BJ130驱动桥部分设计验算与校核》
2、设计内容及要求
(1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。
(2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。
(3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。
(4)驱动桥强度计算:①桥壳的静弯曲应力
②不平路载下的桥壳强度
③最大牵引力时的桥壳强度
④紧急制动时的桥壳强度
⑤最大侧向力时的桥壳强度
3、主要技术参数
轴距L=2800mm
轴荷分配:满载时前后轴载1340/2735(kg)
发动机最大功率:80ps n:3800-4000n/min
发动机最大转矩17.5kg﹒m n:2200-2500n/min
传动比:i1=7.00; i0=5.833
轮毂总成和制动器总成的总重:g k=274kg
τs=72MPa,[τs]=73 MPa,τs<[τs],故满足设计要求。
2)半轴花键的挤压应力校核
代入数据计算得:
σc=116 MPa,[σc]=200MPa,σc<[σc],故满足设计要求。
六、驱动桥壳设计
1、桥壳的静弯曲应力计算
桥壳犹如一空心横梁,两端经轮毂轴
承支承于车轮上,在钢板弹簧座处桥壳承
受汽车的簧上载荷,而沿左右轮胎的中心
线,地面给轮胎以反力G2/2(双胎时则沿
双胎之中心),桥壳则承受此力与车轮重
力g w之差值,即(G2/2-g w),计算简图如
右图所示。
桥壳按静载荷计算时,在其两钢板弹簧座之间的弯矩M为
式中:G2——汽车满载静止于水平路面时驱动桥给地面的载荷,G2=27350N
g w——车轮(包括轮毂、制动器等)的重力,g w =2740N
B——驱动车轮轮距,查资料得B=1.470m
s——驱动桥壳上两钢板弹簧座中心间的距离,查资料得s=0.940m
计算得:M=2421Nm
由弯矩图得危险截面在钢板弹簧座附近。
静弯曲应力σwj为
式中:M——两钢板弹簧座之间的弯矩,M=2421Nm
Wv——危险断面处(钢板弹簧座附近)桥壳的垂向弯曲截面系数。
采用圆管断面,则W v=1/32πD3(1-d4/D4),d取38mm,D取70mm,则W v=30734mm3
计算得:σwj=78.8MPa,[σwj]=500MPa,σwj<[σwj],满足设计要求。
2、在不平路面冲击载荷作用下的桥壳强度计算
当汽车在不平路面上高速行驶时,桥壳除承受静载荷外,还承受附加的冲击载荷。
在这两种载荷总的作用下,桥壳所产生的弯曲应力为
式中:k d——动载荷系数,对货车取2.5
计算得:σwj=197 MPa,[σwj]=500MPa,σwj<[σwj],满足设计要求。
3、汽车以最大牵引力行驶时的桥壳强度计算
(1)驱动桥壳在左右钢板弹簧座之间的垂向弯矩Mv。