质点力学小结
- 格式:ppt
- 大小:262.50 KB
- 文档页数:10
一个质量为m 的质点沿着一条由cos sin r a ti b tj ωω=+定义的空间曲线运动,其中a ,b 及ω皆为常数,求此质点所受的对原点的力矩.解:d d sin cos r t a ti b tj ωωωω==-+v22d d (cos sin )a t a ti b tj r ωωωω==-+=-v2F ma m r ω==-,通过原点0τ= 20M r F m r r ω=⨯=-⨯=长0.40m l =、质量 1.00kg M =的匀质木棒,可绕水平轴O 在竖直平面内转动,开始时棒自然竖直悬垂,现有质量8g m =的子弹以200m/s =v 的速率从A 点射入棒中,A 点与O 点的距离为34l ,如图所示。
求:⑴ 棒开始运动时的角速度;⑵ 棒的最大偏转角。
解:⑴ 由角动量守恒定律:2233434l Ml l m m ωω⎛⎫⋅=+ ⎪⎝⎭v ,得:()()38.9rad/s 39161627m m M m l M m lω===++v 4v⑵ 由机械能守恒定律:222133[()](1cos )(1cos )23424Ml l l l m Mg mg ωθθ+=-+-得: 222239854cos 110.07923(23)(1627)M m l m M m g M m M m glωθ+=-=-=-+++v ,94.5θ=︒0241 一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg 的物体,如图所示.已知定滑轮的转动惯量为22J MR =,其初角速度ω0=10.0 rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到ω=0时,物体上升的高度;(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.0562 质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =22mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.0155 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为22MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.0157 一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).ABT 'ma TF m g 0提示:各物体受力如上图,T F r J α=,T mg F ma -=,a r α= 又由22S at = 得22a S t =由此四式得:222222()(2)(1)22m g a r m g S t r gt J mr a S t S--===- 0156 如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为2A A A r m J =和22B B B r m J =)0780 两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个组合轮.小圆盘的半径为r ,质量为m ;大圆盘的半径r '=2r ,质量 m '=2m .组合轮可绕通过其中心且垂直于盘面的光滑水平固定轴O 转动,对O 轴的转动惯量J =9mr 2 / 2.两圆盘边缘上分别绕有轻质细绳,细绳下端各悬挂质量为m 的物体A 和B ,如图所示.这一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变.已知r = 10 cm .求:(1) 组合轮的角加速度β ;(2) 当物体A 上升h =40 cm 时,组合轮的角速度ω . 0780解:⑴ 各物体受力如图。
理论力学教程第三版(周衍柏著)课后答案下载理论力学教程第三版内容简介绪论第一章质点力学1.1 运动的描述方法1.2 速度、加速度的分量表示式1.3 平动参考系1.4 质点运动定律1.5 质点运动微分方程1.6 非惯性系动力学(一)1.7 功与能1.8 质点动力学的基本定理与基本守恒定律1.9 有心力小结补充例题思考题习题第二章质点组力学2.1 质点组2.2 动量定理与动量守恒定律2.3 动量矩定理与动量矩守恒定律 2.4 动能定理与机械能守恒定律2.5 两体问题2.6 质心坐标系与实验室坐标系2.7 变质量物体的运动2.8 位力定理小结补充例题思考题习题第三章刚体力学3.1 刚体运动的分析3.2 角速度矢量3.3 欧拉角3.4 刚体运动方程与平衡方程3.5 转动惯量3.6 刚体的平动与绕固定轴的.转动3.7 刚体的平面平行运动3.8 刚体绕固定点的转动__3.9 重刚体绕固定点转动的解 __3.10 拉莫尔进动小结补充例题思考题习题第四章转动参考系4.1 平面转动参考系4.2 空间转动参考系4.3 非惯性系动力学(二)__4.5 傅科摆小结补充例题思考题习题第五章分析力学5.1 约束与广义坐标5.2 虚功原理5.3 拉格朗日方程5.4 小振动5.5 哈密顿正则方程5.6 泊松括号与泊松定理5.7 哈密顿原理5.8 正则变换__5.9 哈密顿-雅可比理论__5.10 相积分与角变数__5.11 刘维尔定理小结补充例题思考题习题附录主要参考书目理论力学教程第三版目录本书是在第二版的基础上修订而成的,适用于高等学校物理类专业的理论力学课程。
本书与第二版相比内容保持不变,仅将科学名词、物理量符号等按照国家标准和规范作了更新。
本书内容包括质点力学、质点组力学、刚体力学、转动参考系及分析力学等,每章附有小结、补充例题、思考题及习题。
高一上物理期末考试知识点复习提纲1.质点(A )(1)没有形状、大小, 而具有质量的点。
(2)质点是一个理想化的物理模型, 实际并不存在。
(3)一个物体能否看成质点, 并不取决于这个物体的大小, 而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素, 要具体问题具体分析。
2.参考系(A )(1)物体相对于其他物体的位置变化, 叫做机械运动, 简称运动。
(2)在描述一个物体运动时, 选来作为标准的(即假定为不动的)另外的物体, 叫做参考系。
对参考系应明确以下几点:①对同一运动物体, 选取不同的物体作参考系时, 对物体的观察结果往往不同的。
②在研究实际问题时, 选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化, 能够使解题显得简捷。
③因为今后我们主要讨论地面上的物体的运动, 所以通常取地面作为参照系3.路程和位移(A )(1)位移是表示质点位置变化的物理量。
路程是质点运动轨迹的长度。
(2)位移是矢量, 可以用以初位置指向末位置的一条有向线段来表示。
因此, 位移的大小等于物体的初位置到末位置的直线距离。
路程是标量, 它是质点运动轨迹的长度。
因此其大小与运动路径有关。
(3)一般情况下, 运动物体的路程与位移大小是不同的。
只有当质点做单一方向的直线运动时, 路程与位移的大小才相等。
图1-1中质点轨迹ACB 的长度是路程, AB 是位移S 。
(4)在研究机械运动时, 位移才是能用来描述位置变化的物理量。
路程不能用来表达物体的确切位置。
比如说某人从O 点起走了50m 路, 我们就说不出终了位置在何处。
4.速度、平均速度和瞬时速度(A )(1)表示物体运动快慢的物理量, 它等于位移s 跟发生这段位移所用时间t 的比值。
即v=s/t 。
速度是矢量, 既有大小也有方向, 其方向就是物体运动的方向。
在国际单位制中, 速度的单位是(m/s )米/秒。
(2)平均速度是描述作变速运动物体运动快慢的物理量。