c语言delay的用法
- 格式:docx
- 大小:18.92 KB
- 文档页数:5
C语言中的延时与计时技巧
一、延时技巧
1.延时的定义:控制程序中当前语句的后一语句,延缓一段时间再执行。
2.C常用的两个延时函数:
(1) delay函数。
书写格式:delay(数值)。
其中,括号中的整型数值取值范围0 ~ 32767之间。
注意:这个数值与计算机主机的频率有关,因此在不同的计算机上,同样的延时数值,会得到不同的延时效果。
(2) sleep (数值)。
(睡眠函数)
书写格式:sleep (数值)。
其中数值是以秒为单位,用在动态显示中最少一秒变化一次,那会有明显的停顿感觉。
二、计时技巧
1.计时的定义:计算程序中某段程序的运行时间。
2.计时程序使用条件:
(1)使用头部文件:
#include <time.h>
(2)使用当前时间的时钟函数:
clock()
(3)使用时间一秒常数:
CLK_TCK
例如:
A.在“蛇吃蛋”的程序中,要引入计时程序,则:在进入while(1)循环前,先要取得计时开始时的那一时刻,使用变量t0表示。
即:
t0 = clock();
B.在while(1)循环的最后处,再取当前时刻,使用变量t1表示。
即:
t1=clock();
C.t1 和t0 之差即为所经历的时间,即;
t = (t1-t0 );
D.转换成秒:
sec=t/CLK_TCK;。
c 语言中 delay 的用法C 语言作为一门新型高级编程语言 ,在计算机软件编程中具有较为广泛的应用和实现。
下面小编就跟你们详细介绍下 c 语言中 delay 的用法,希望对你们有用。
c 语言中 delay 的用法如下:假设一个延时函数如下:void delay(){uint i;for(i=0;i<20000;i++);}我们怎么来算呢,先将 20000 转成 16 进制,得到 4E20,然后将高字节 4E 乘以 6 得到 468D,再将 468+2=470,然后将 470D*20HEX (即 32D)=15040;所心这个延时函数总共要执行 15040 个周期,假设所用的晶振为 12MHZ,则该段函数总延时:15.04ms。
有了这个公式我们如果想要设定指定的延时长度就可以用它的己知公式确定。
即:总时间=[(6*i 值的高 8 位)+2]*i 的低 8 位。
例如:设要延时 125ms。
我们将低字节先赋值200D*(即:C8),然后再算高低节的定值,由式中可知 125ms=200*((i 值的高字节*6)+2),又可推算出(高低节*6)+2 的总延迟时间应等于625us,将625/6=104.1666,取整数得到 104,将 104 转成 16 进制得到 68H,再将高字节和低字节组合起来即得到了定值,即:68C8HEX,代入函数即如下:void delay(){uint i;for(i=0;i<0x68C8;i++);}如果写直进行就要将 68C8 转成 10 进制,即:26824,代入后得到:void delay(){uint i;for(i=0;i<0x26824;i++);在 c 语言中嵌入一段汇编的延时程序呀,你自己看看书,很简单的用在单片机里的可以 C 和汇编混合使用,因为用汇编编写延时要准确些,所以你不妨写一个汇编程序,然后再调用它好了,要用C来编精确的延时确实是比较难的哦.呵呵谁说 C 语言不能精确延时,用 51 单片机的定时/计数器一或者用定时/计数器 2 的工作方式 2,自动再装入 8 位计数器,就可以精确延时,别说 1MS 了就是 100um 也能精确做到。
delay的用法
一、delay的作用
delay的作用是给函数指定一个暂停的时间,用来让代码顺序执行。
delay函数能够帮助开发者控制函数的行为,从而使开发者能够为代码实
现更可控的动作。
delay函数正是用来给开发者精确调节函数执行时间的
关键,它可以让代码在指定的时间间隔后再执行。
二、delay的实现
1、让函数在指定的时间之后再执行:比如,用来延时执行一个指定
的任务,或者让一个函数在指定时间后才开始正式执行,而不是立即执行。
2、让函数在指定的时间间隔内执行:例如,一个函数在每隔5秒执
行一次,可以使用setTimeout,在指定的5秒时间间隔内不断执行该函数。
3、用来提高程序性能:delay函数可以帮助用户控制函数的执行时间,以避免不必要的性能消耗。
1、delay工作原理:delay函数在一段指定的时间后执行一个指定的
任务。
delay函数类似于setTimeout,setTimeout指定时间为零,delay
指定时间为非零,setTimeout会在第一个参数指定的毫秒数之后调用指
定的函数,而delay会在指定的时间后调用指定的函数。
2、delay的使用:delay函数可以让开发者更精确。
C语言程序延时Keil C51的编程语言常用的有2种:一种是汇编语言;另一种是C 语言。
用汇编语言写单片机程序时,精确时间延时是相对容易解决的。
比如,用的是晶振频率为12 MHz的AT 89C51,打算延时20 μs,51单片机的指令周期是晶振频率的1/12,即一个机器周期为1 μs;“MOV R0,#X”需要2个机器周期,DJNZ也需要2个机器周期,单循环延时时间t=2X+3(X为装入寄存器R0的时间常数)[2]。
这样,存入R0里的数初始化为8即可,其精度可以达到1 μs。
用这种方法,可以非常方便地实现512 μs以下时间的延时。
如果需要更长时间,可以使用两层或更多层的嵌套,当然其精度误差会随着嵌套层的增加而成倍增加。
C程序中可使用不同类型的变量来进行延时设计。
经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。
有人说如果while里面不能放其它语句,否则也不行,用do-while就可以,具体怎样我没有去试.所有这些都没有给出具体的实例程序来.还看到一些延时的例子多多少少总有点延时差.为此我用for循环写了几个延时的子程序贴上来,希望能对初学者有所帮助.(晶振12MHz,一个机器周期1us.)一. 500ms延时子程序程序:void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us循环外: 5us 子程序调用2us +子程序返回2us + R7赋值1us = 5us延时总时间=三层循环+循环外= 499995+5 = 500000us=500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}三. 10ms延时子程序程序:void delay10ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--); }四. 1s延时子程序程序:void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--); }。
通用C语言延时在嵌入式C编程中,免不了要用到软件延时。
这一般通过循环语句实现。
通过控制循环语句的循环次数,便可获得多种不同的延时时间。
为了便于使用和提高程序代码的复用率,一般又将循环语句封装成一个带参数的函数,称为延时函数。
如:void wait(unsigned int n){unsigned int i;for(i=0;i<n;i++);}延时函数的参数(形参,如上例中的变量 n ),即为控制循环语句循环次数的变量。
这样,在需要软件延时的时候,只需要调用延时函数,并将实际参数(实参,即n的实际值)代入形参,便可获得与该实际参数对应的延时时间。
这便是经典的软件延时的实现方法,非常简单。
但细心的读者会发现:延时函数的参数(比如上面的 n ),表征的是循环语句的“循环次数”,而不是“实际的延时时间”。
一般来说,假令循环语句每循环一次的时间为 b(注意,单位是“步”,即一个时钟周期,下同),函数调用、传值和返回所需的固有时间为 a ,那么,给定参数 n 时,调用一次延时函数实际实现的延时时间应为 t = a + b*n , ——而不是 n !这就意味着,当需要的延时时间为 t 时,应当传入的实参为 n = (t-a)/b,而不是 t 。
这样,为了获得比较准确的延时,每次调用函数之前,都要手工计算实际参数,很不方便;其次,当需要改变晶振频率的时候,程序中所有的延时参数都要重新计算,这显然不利于程序的移植。
为了解决这两个问题,提高程序的可移植性,可以利用宏定义的方式,对延时函数进行参数预修正。
例如,对上面给出的wait延时函数,可以使用下面的宏定义:#define delay(n) wait( ( (n) - a ) / b )这样,调用 delay(t) 就意味着调用 wait( (t-a)/b ) ,从而得到时间为t的延时,实现了参数与延时时间的同步,使用起来更加方便。
为了进一步提高可移植性,使软件延时能够适应不同的晶振频率,应当顺着上面的思路选择寻找更优方案。
c语言精确delay函数C语言中的精确延时函数是指能够以指定的时间精确延迟程序执行的函数。
在实际开发中,我们经常会遇到需要程序暂停一段时间的情况,这时就需要使用延时函数来实现。
在C语言中,常用的延时函数有两种,一种是使用循环来实现延时,另一种是使用系统提供的延时函数。
下面将详细介绍这两种方法的实现原理及其使用场景。
1. 循环延时法循环延时法是通过循环来实现延时的方法,其原理是让程序在一个循环中空转一段时间,从而达到延时的效果。
具体实现代码如下:```cvoid delay(unsigned int ms){unsigned int i, j;for(i = 0; i < ms; i++)for(j = 0; j < 10000; j++);}```上述代码中,delay函数接收一个参数ms,表示要延时的毫秒数。
函数内部使用两个嵌套的循环,外层循环控制延时的次数,内层循环则是一个空转的过程,通过调整内层循环的次数来控制延时的时间。
循环延时法的优点是简单易懂,适用于较简单的延时场景。
但是由于循环的执行时间受到处理器的影响,不同的处理器执行相同的循环时间可能会有差异,因此不能保证延时的精确性。
2. 系统延时函数系统延时函数是通过调用系统提供的函数来实现延时的方法,其原理是让程序暂停一段时间,从而达到延时的效果。
具体实现代码如下:```c#include <unistd.h>void delay(unsigned int ms){usleep(ms * 1000);}```上述代码中,delay函数接收一个参数ms,表示要延时的毫秒数。
函数内部使用usleep函数来实现延时,usleep函数的参数是微秒,所以需要将毫秒转换为微秒。
系统延时函数的优点是精确可靠,适用于对延时精度要求较高的场景。
由于系统延时函数是由操作系统提供的,可以保证延时的精确性,不受处理器的影响。
C语言中的精确延时函数有循环延时法和系统延时函数两种方法,根据实际需求选择合适的方法来实现延时。
延时函数延时函数1、void delay(void) //两个void意思分别为⽆需返回值,没有参数传递{unsigned int i; //定义⽆符号整数,最⼤取值范围65535for(i=0;i<20000;i++) //做20000次空循环; //什么也不做,等待⼀个机器周期}2、void delay(void){unsigned char i,j;for(i=0;i<250;i++)for(j=0;j<250;j++);}3、void int_delay(void) //延时⼀段较长的时间{unsigned int m; //定义⽆符号整形变量,双字节数据,值域为0~65535for(m=0;m<36000;m++); //空操作}4、void char_delay(void) //延时⼀段较短的时间{unsigned char i,j; //定义⽆符号字符型变量,单字节数据,值域0~255for(i=0;i<200;i++)for(j=0;j<180;j++); //空操作}//*for(a=2;a>0;a--) // 2微秒,执⾏2次(a+2)是4微秒;for(b=142;b>0;b--) // 2微秒,执⾏142次,for(a=2;a>0;a--)是4微秒,即2*(142*4);for(c=1;c>0;c--) // 2微秒, 执⾏1次,即2*(142*4)=1136微秒;b=125,1000/8=125,再减去其它调⽤时间,应该b取值不⼤于125。
追问:这些时间是怎么得出来的?追答:51单⽚机执⾏⼀条指令⼀般是1---3微秒(12MHz),执⾏⼀条减⼀-判断-跳转指令,就是2微秒,这是c语⾔翻译为机器语⾔后的指令,cjne或djnz(汇编语⾔),编译器⽤什么指令和⽅法,需要你⾃⼰试验,我说的只是⼀种。
*//。
c语言delay的用法
在单片机应用中,经常会遇到需要短时间延时的情况,一般都是几十到几百μs,并且需要很高的精度(比如用单片机驱动DS18B20时,误差容许的范围在十几μs以内,不然很容易出错);而某些情况下延时时间较长,用计时器往往有点小题大做。
另外在特殊情况下,计时器甚至已经全部用于其他方面的定时处理,此时就只能使用软件定时了。
下面小编就和大家分享下c语言delay的用法
1 C语言程序延时
Keil C51的编程语言常用的有2种:一种是汇编语言;另一种是C 语言。
用汇编语言写单片机程序时,精确时间延时是相对容易解决的。
比如,用的是晶振频率为12 MHz的AT89C51,打算延时20 μs,51单片机的指令周期是晶振频率的1/12,即一个机器周期为1 μs;“MOV R0,#X”需要2个机器周期,DJNZ也需要2个机器周期,单循环延时时间t=2X+3(X为装入寄存器R0的时间常数)[2]。
这样,存入R0里的数初始化为8即可,其精度可以达到1 μs。
用这种方法,可以非常方便地实现512 μs以下时间的延时。
如果需要更长时间,可以使用两层或更多层的嵌套,当然其精度误差会随着嵌套层的增加而成倍增加。
虽然汇编语言的机器代码生成效率很高,但可读性却并不强,复杂一点的程序就更难读懂;而C语言在大多数情况下,其机器代码生成效率和汇编语言相当,但可读性和可移植性却远远超过汇编语言,且C 语言还可以嵌入汇编程序来解决高时效性的代码编写问题。
就开发周期而言,中大型软件的编写使用C 语言的开发周期通常要比汇编语言短很多,因此研究C语言程序的精确延时性能具有重要的意义。
C程序中可使用不同类型的变量来进行延时设计。
经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。
2 单层循环延时精度分析
下面是进行μs级延时的while程序代码。
延时函数:
void delay1(unsigned char i) {
while(i );}
主函数:
void main() {
while(1) {
delay1(i);
}
}
使用Keil C51的反汇编功能,延时函数的汇编代码如下:
C:0x00E6AE07MOVR6,0x07
C:0x00E81FDECR7
C:0x00E9EEMOVA,R6
C:0x00EA70FAJNZC:00E6
C:0x00EC22RET
图1 断点设置位置图
通过对i赋值为10,在主程序中图1所示的位置设置断点。
经过测试,第1次执行到断点处的时间为457 μs,再次执行到该处的时间为531 μs,第3次执行到断点处的时间为605 μs,10次while循环的时间为74 μs,整个测试结果如图2所示。
图2 使用i--方式测试仿真结果图
通过对汇编代码分析,时间延迟t=7X+4(其中X为i的取值)。
测试表明,for循环方式虽然生成的代码与用while语句不大一样,但是这两种方法的效率几乎相同。
C语言中的自减方式有两种,前面都使用的是i--的方式,能不能使用--i方式来获得不同的效果呢?将前面的主函数保持不变,delay1函数修改为下面的方式:
void delay1(unsigned char i) {
while(--i);}
同样进行反汇编,得到如下结果:
C:0x00E3DFFEDJNZR7,
C:00E3C:0x00E522RET
比较发现,--i的汇编代码效率明显高于i--方式。
由于只有1条语句DJNZ,执行只需要2个时钟周期, 1个时钟周期按1 μs计算,其延时精度为2 μs;另外,RET需要2个时钟周期,能够达到汇编语言代码的效率。
按前面的测试条件进行测试,第1次执行到断点处的时间为437 μs,再次执行到该处的时间为465 μs,第3次执行到断点处的时间为493 μs,10次while循环的时间为28 μs,整个测试结果如图3所示。
图3 使用--i方式测试仿真结果图
调整i的取值,i取8时延时时间为24 μs,i取9时延时时间为26 μs。
通过分析得出,10次循环为28 μs是由于外层循环造成的,其精度可以达到2 μs。
在设计时应该考虑参数传递和RET语句执行所需要的时间周期。
实验分析发现,for语句使用--i方式,同样能够达到与汇编代码相同的精度。
i取不同值时延时仿真结果如图4所示。
图4 i取不同值时延时仿真结果图
3 多重嵌套下的C程序延时
在某些情况下,延时较长,仅使用单层循环方式是不能完成的。
此时,只能使用多层循环方式,那么多重循环条件下,C程序的精度如何呢?下面是一个使用for语句实现1 s延时的函数。
延时函数
void delay1s(void) {
for(k=100;k>0;k--) //定时1 s
for(i=20;i>0;i--)
for(j=248;j>0;j--);
}
主函数调用延时函数代码段:
while(1) {
delay1s();
scond+=1;
}
为了直接衡量这段代码的效果,利用Keil C找出这段代码产生的汇编代码:
C:0x00B37002JNZ
C:00B7C:0x00B5150CDEC0x0C
C:0x00B7E50DMOVA,0x0D
C:0x00B9450CORLA,0x0C
C:0x00BB70DEJNZC:009B
C:0x00BDE50BMOVA,0x0B
C:0x00BF150BDEC0x0B
C:0x00C17002JNZC:00C5
C:0x00C3150ADEC0x0A
C:0x00C5E50BMOVA,0x0B
C:0x00C7450AORLA,0x0A
C:0x00C970CAJNZC:0095
C:0x00CB22RET
分析汇编代码,其他汇编代码使用的不是DJNZ跳转方式,而是DEC和JNZ语句来实现循环判断。
1条JNZ指令要花费2个时钟周期,3条指令就需要6个机器周期,MOV指令和DEC指令各需要1小时钟周期,1个时钟周期按1 μs算,其精度最多达到8 μs,最后加上一条LCALL和一条RET语句,所以整个延时精度较差[4]。
利用Keil C的测试工具,在一处设置一个断点。
第1次执行到中断处的时间为0.000 513 s,第2次执行到中断处的时间为1.000 922 s,时间延迟为1.000 409 s,测试结果如图5所示。
对于上面的3种循环嵌套,循环次数为100×20×248=496 000,每次循环的时间约为2 μs。
图5 三重嵌套循环1 s实现时间测试结果
为获取与汇编语言延时的差距,同样进行1 s的延时,程序代码段如下:
LCALL DELY1S
INC Second
DELY1S:MOV R5,#100
D2:MOV R6,#20
D1:MOV R7,#248
DJNZ R7,$
DJNZ R6,D1
DJNZ R5,D2
RET
通过Keil C51测试,其实际延迟时间为0.997 943 s。
虽然C语言实现延时方式的汇编代码复杂度增加,但是与汇编语言实现的方式性能差距并不大。
4 总结
汇编语言在实时性方面具有较大的优越性,虽然使用Keil C51可以在C语言程序中嵌入汇编代码,但是复杂度明显提高。
实验证明,只要合理地运用C语言,在延时编程方面就可以达到与汇编语言相近的精度。
为了获得精确的时间延迟,可通过Keil C工具的仿真功能,调整延迟量,从而得到较理想的结果。