地应力测试数据甄别综合分析方法研究
- 格式:pdf
- 大小:5.08 MB
- 文档页数:13
地应力测定方法
嘿,你知道吗,地应力测定方法那可真是太重要啦!就好像我们要了解一个人的性格一样,得有合适的办法。
咱先说说水压致裂法吧。
这就好比给大地来个“温柔的压力测试”。
通过向钻孔内注入高压水,让岩石产生裂缝,从而能得到地应力的信息。
这多神奇呀!是不是有点像医生用特殊的手段来诊断病人的病情呢?
还有应力解除法呢。
这就像是给大地“松松绑”,然后观察它的反应。
把岩石周围的约束去掉一部分,测量它变形的情况,进而推断出地应力。
这可不是一般人能想到的办法呀!
声发射法也很有意思哦。
岩石在受力的时候会发出一些微小的声音,就像人在紧张时可能会不自觉地发出一些小动静一样。
通过监测这些声音,就能了解地应力的情况啦。
那地应力测定到底有啥用呢?这可太关键啦!它能帮助我们在工程建设中做出更合理的设计呀。
要是不了解地应力,就好比闭着眼睛走路,多危险呐!比如建隧道、修大坝,都得根据地应力来好好规划,不然可能会出现各种问题呢。
而且,这对地质研究也是非常重要的。
它能让我们更好地理解地球内部的结构和运动规律,就像给地球做了一次全面的体检一样。
总之,地应力测定方法是我们探索地球的重要工具,我们可不能小瞧它们呀!它们就像一把把钥匙,能打开地球内部奥秘的大门。
我们要不断地研究和发展这些方法,让我们对地球的了解越来越深入,越来越准确!这样我们才能更好地和地球相处,更好地利用地球的资源,同时也更好地保护我们的地球家园呀!。
地应力的测量方法
嘿,朋友们!今天咱来聊聊地应力的测量方法,这可真是个有趣又重要的事儿呢!
你想想看,地应力就像是大地的“脾气”,咱得搞清楚它是怎么个情况,才能更好地和大地打交道呀!那怎么测量这大地的“脾气”呢?
有一种方法叫水压致裂法,就好像给大地来个“温柔的挑战”。
通过向钻孔里注水,然后观察岩石的反应,就像试探一个人对不同事情的反应一样,是不是挺有意思?这种方法能比较直接地得到一些关键信息呢。
还有一种叫应力解除法,这就像是给大地“松松绑”。
先把岩石周围的束缚慢慢解除,然后看它会有什么变化,从而了解它原来承受着多大的应力。
就好像你一直背着很重的包,突然把包放下,那一下子的轻松感,就是我们要去捕捉的。
声发射法也不错哦!就像是听大地“说话”。
岩石在受力的时候会发出一些微小的声音,我们就通过这些声音来推断地应力的情况。
这就好比你能从一个人的语气中听出他的心情一样。
那这些方法难不难呢?其实也没那么可怕啦!只要咱认真去学,去实践,肯定能掌握的。
就像学骑自行车一样,一开始可能会摇摇晃晃,但多练几次不就会了嘛!
测量地应力可不能马虎,这关系到很多工程的安全呢!要是没搞清楚
地应力,那盖房子、修隧道啥的,说不定就会出问题哦,那可不得了!所以啊,我们得重视起来,把这些方法学好、用好。
大家想想,要是我们能准确地知道地应力的大小和方向,那不是能让我们的工程建设更顺利、更安全吗?那多有成就感呀!所以说,地应力的测量方法可真是太重要啦,我们可得好好研究研究呢!总之,地应力的测量方法是我们了解大地的重要途径,让我们一起努力,把这个神秘的领域搞清楚吧!
原创不易,请尊重原创,谢谢!。
第5期2020年2月No.5February ,2020梁晨1,梁昊2,江昊1(1.湖北工业大学土木建筑与环境学院,湖北武汉430068;2.湖北新火炬科技有限公司,湖北襄阳441004)江苏科技信息Jiangsu Science &Technology Information地应力测量技术方法分析摘要:文章介绍了国内外地应力测量史上的里程碑,将迄今为止世界上最具代表性的几种地应力测量方法进行类比和总结并归纳出其优势及劣势;列举国内外的地应力测量成果,针对现阶段国内地应力测量工作提出些许建议。
关键词:地应力测量;里程碑;初始岩体应力中图分类号:TU43文献标志码:A引言地应力可解释为在长期的地层自然形成的年代里,由于地球经过无数次的地壳运动及其他原因而赋存于地壳物质内的初始岩体应力。
我国的基础建设需求日益增加,无论是在深山中开挖隧道等建设还是在城市中兴建地铁等工程,地应力对于工程来说都是无法避免的重要影响参数。
在工程建设中,尤其是大型地下工程,对于地上和地下开挖的岩体稳定性以及工程安全性来说,地应力的影响可谓是决定性因素。
因此,如何测定地应力就成为学术界及工程人员的当务之急。
文章回首世界地应力测量历史,并分析几种典型的地应力测量技术及方法,以期为国内地应力测量方法尽微薄之力。
1世界地应力测量技术及方法的里程碑尽管人类历史可追溯至几百万年前,但相比于人类历史,地应力测量史就如同浩瀚星空中一缕微光。
第一次提出地应力观点的是瑞士某学者于1878年通过观察位于阿尔卑斯山的大型越岭隧道的施工过程,经过剖析引申出地应力这一概念。
而世界上第一次进行地应力实测的则是位美国学者于1932年在胡佛水坝坝底的泄水隧道成功利用岩体表面应力解除法测量了隧道壁的初始岩体应力[1]。
首次地应力实测的成功,虽然推动了地应力测量的发展,但此后近20年的时间,地应力测量技术及方法却依然停滞在测量表面应力。
终于在20世纪50年代,瑞典人N Hast [2]将应力压磁测量器及应力解除法相结合并在瑞典的斯堪的纳维亚半岛进行了大规模的地应力测量,通过他其后公布的测量结果,得出了地表地层中的垂直应力是远小于水平应力的。
地应力测量方法1.水压至裂法水压致裂法地应力测试是通过在钻孔中封隔一小段钻孔,然后向封隔段注入高压流体,从而确定原位地应力的一种方法。
水压致裂法的2种方法试验设备相同,都有封隔器、印模器,使用高压泵泵入高压液体使围岩产生新裂隙或使原生裂隙重张。
常规水压致裂法(HF法)HF法是从射井方法移植而来,假定钻孔轴向为1个主应力方向,岩石均质、各向同性、连续、线弹性,采用抗拉破坏准则,在垂直于最小主应力方向出现对称裂缝,其仅能测得垂直于钻孔横截面上的二维应力。
在构造作用弱和地形平坦区,垂直孔所测结果可代表2个水平主应力,垂直应力约等于上覆岩体自重,裂缝方位为最大水平主应力方位。
HF法测试周期短,不需要岩石力学参数参与计算,适合工程初勘阶段,不需试验洞,可进行大深度测量,是目前惟一一种可直接进行深部地应力测定的方法。
通过对HF法的改进,德国大陆科学深钻计划(KTB)在主孔 6 000 m和9 000 m处已成功获得了地应力资料。
HF法是一种平面应力测量方法,为获得三维应力,YMizutaI和M KuriyagawaE提出3孔交汇地应力测量,我国长江科学院和地壳所也进行了大量的测试。
但研究表明,当钻孔轴向偏离主应力方向,其结果就有疑问,要精确获得三维地应力较困难。
为此,文献[7]基于最小主应力破坏准则,对3孔交汇HF法测试理论进行了完善,其有助于提高测量结果的计算精度,但还有待足够的测量数据来验证。
原生裂隙水压致裂法(HTPF法)HTPF法是HF法的发展,其要求在含有原生节理和裂隙的钻孔段进行裂隙重张试验以确定原位应力。
HTPF法假定裂隙面是平的,且面上应力一致。
对于深孔三维地应力直接测量,HTPF 法可进行大尺度的地壳地应力测试,很有发展前途。
HTPF法同HF法相比,假设少,不需考虑岩石破坏准则和孔隙水压力,在单孔中便可获得三维地应力。
但用HTPF法测试费时,且裂隙产状和位置的确定误差都可降低计算精度。
2.套钻孔应力解除法套钻孔应力解除法根据解除方式和传感器的安装部位分为探孔应力解除法、孔底应变解除法和孔壁切割解除法。
地应力基本概念及测量方法应力等因素导致岩体具有初始地应力(或简称地应力)是最具有特色的性质之一。
就岩体工程而言,如不考虑岩体地应力这一要素,就难以进行合理的分析和得出符合实际的结论。
岩体应力天然应力是指未经人为扰动的,主要是在重力场和构造应力场的综合作用下,有时也在岩体的物理、化学变化及岩浆侵入等的作用下所形成的应力状态,称为岩体天然应力或岩体初始应力,有时也称为地应力。
天然应力构成:岩体自重自重应力构造运动构造应力流体作用静水压力梯度,渗流应力其他(低温、地球化学作用)地壳岩体的天然应力状态与人类的工程活动关系极大,它不仅是决定区域稳定性的重要因素,而且往往对各类建筑物的设计和施工造成直接的影响。
比如,地下空间的开挖必然使围岩应力场和变形场重新分布并引起围岩损伤,严重时导致失稳、垮塌和破坏。
这都是由于在具有初始地应力场的岩体中进行开挖所致,因为这种开挖荷载通常是地下工程问题中的重要荷载。
由此可见,如何测定和评估岩体的地应力,如何合理模拟工程区域的初始地应力场以及正确和合理地计算工程问题中的开挖荷载,是岩石力学与工程问题中不可回避的重要问题。
已有的研究和工程实践表明,浅部地壳应力分布主要有如下的一些基本规律:地应力是一个具有相对稳定性的非稳定应力场,它是时间和空间的函数。
实测垂直应力基本等于上覆岩层的重量。
水平应力普遍大于垂直应力。
平均水平应力与垂直应力的比值随深度增加而减小,但在不同地区,变化的速度很不相同。
最大水平主应力和最小水平主应力也随深度呈线性增长关系。
最大水平主应力和最小水平主应力之值一般相差较大,显示出很强的方向性。
地应力的上述分布规律还会受到地形、地表剥蚀、风化、岩体结构特征、岩体力学性质、温度、地下水等因素的影响,特别是地形和断层的扰动影响最大。
高应力区实践表明,在高应力区,地表、地下工程施工期间所进行的岩体开挖工作,往往能在岩体内引起一系列与卸荷回弹和应力释放相联系的变形和破坏现象,其结果是不仅会恶化地基或边坡岩体的工程地质条件,而且作用的本身有时也会对建筑物造成直接的危害。
地应力测量方法综述张重远1,2,吴满路1,2,陈群策1,2,廖椿庭2,丰成君2(1.国土资源部新构造运动与地质灾害重点实验室,北京100081;2.中国地质科学院地质力学研究所,北京100081)摘要:通过回顾地应力测量的起源及发展历程,对地应力测量方法进行了归类分析,明确了各种方法的基本原理、优缺点及应用范围;同时,对地应力测量的最新发展趋势以及目前我国在地应力测量方面面临的问题与挑战进行了剖析.研究成果对于采用较好的地应力测量方法以提高地应力测量精度无疑具有重要的指导意义.关键词:地应力测量;绝对应力;相对应力中图分类号:P553文献标识码:A文章编号:1673-9787(2012)03-0305-06Review of in-situ stress measurement methodsZHANG Chong-yuan1,2,WU Man-lu1,2,CHEN Qun-ce1,2,LIAO Chun-ting2,FENG Cheng-jun2(1.Key Laboratory of Neotectonic Movement and Geohazard,Ministry of Land and Resources,Beijing,100081,China;2.Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing,100081,China)Abstract:After reviewing the origin and development process of in-situ stress measurement,major present-day methods to measure in-situ stress are classified and their fundamental principles,advantages and disadvanta-ges,and applications are introduced.Meanwhile,new development trends about in-situ stress measurement as well as the problems and challenges that emerge in in-situ stress measurement in China now are analyzed in detail.The study has a guiding significance for using different methods of in-situ stress measurement and thereby improving its measuring accuracy.Key words:methods of in-situ stress measurement;absolute stress measurement;relative stress measurement0引言地应力是指客观赋存于地壳岩体内且未受工程扰动的一种自然力,亦称原岩应力.它是导致地壳岩体产生变形、断裂、褶皱乃至地震的根本作用力.李四光教授认为,岩层中发生的种种变形或破裂,是应力活动的结果[1].随着我国采矿、隧道、水利水电、地热能开发、核废料处置等工程的持续增加,岩爆、巷道变形、高边坡失稳等一系列问题愈加突出.再加上我国又是当今世界上构造活动最为强烈的国家之一,陆内地震、山体滑坡等地质灾害频频发生.因此,开展地应力测量和监测,探知地壳应力状态,不仅可以服务各类岩体的工程建设,而且还能为地球动力学研究、断裂活动性研究和地质灾害预警研究提供重要的科学依据.目前,随着地应力测量在工程建设、地质灾害预警以及断裂活动性研究等领域的广泛应用,地应力测量方法日益增多.本文在回顾地应力测量起源及发展历程的基础上,对地应力测量方法进行了系统的归纳分析,以期为地应力测量方法的第31卷第3期2012年6月河南理工大学学报(自然科学版)JOURNAL OF HENAN POLYTECHNIC UNIVERSITY(NATURAL SCIENCE)Vol.31No.3Jun.2012收稿日期:2012-02-23基金项目:国家科技专项(SinoProbe-06-01).作者简介:张重远(1987—),男,河南周口人,主要从事地应力测量与区域应力场稳定性研究.E-mail:zhchongyuan@126.com合理应用提供借鉴.1地应力测量的起源与发展1932年,美国人R S Lieurace率先在胡佛大坝坝底泄水隧洞采用岩体表面应力解除法测量洞壁的围岩应力状态,开辟了地应力测量的先河.20世纪50年代初,瑞典人N Hast采用压磁套芯应力解除法在斯堪的纳维亚半岛进行了大规模的地应力测量试验,首次测得近地表地层中水平应力大大超过垂直应力,证明了A Heim的静水压力假说和A H Gennik的垂直应力大于水平应力的理论不具普遍性[2];同时,他还认为这种现象与斯堪的纳维亚半岛的缓慢地壳构造运动有关.另外,他还将地应力测量引入了地质构造分析与地壳应力场研究之中.20世纪60年代以后,地应力测量理论和方法呈现多样化发展趋势,除了套芯应力解除法和水压致裂法等主流方法外,还涌现了诸如声发射法、应变恢复法、钻孔崩落法、岩芯饼化法、地质构造分析法及应力场反演法等一系列间接测量地应力的方法.20世纪80年代以后,地应力测量受到世界各国的广泛关注,特别是一些发达国家相继开展了深部应力(应变)监测计划.如美国的板块边界计划(PBO)在美国西部圣安德森断层边界计划安装200套钻孔应变仪,以研究美国西部板块边缘地区的变形;日本在京都地区与伊豆半岛等地安装了近40套深井地壳活动综合监测装置,用于地震活动性研究及地震预警监测[3].我国地应力测量试验和研究开始于20世纪50年代后期,是由著名地质学家李四光和陈宗基两位教授分别指导的地质力学研究所和三峡岩基专题研究组率先组织实施的.1966年邢台地震之后,在李四光教授的指导下,在河北省隆尧县建立了全国第一个、也是世界上第一个地应力监测台站.该台站发现了地应力与地震活动有密切的联系.在过去的几十年间,我国原地应力测试技术得到了迅速发展,相继成功研制了压磁应力解除法、空芯包体应力解除法、水压致裂法、声发射法地应力测试系统仪器设备.汶川地震后,我国在南北地震带及首都圈安装了最新研制的圧磁应力监测仪器,显示了良好的地震前兆及响应信息.为了提高地球深部资源勘查和灾害预警水平,我国近期启动了深部探测技术与实验研究,这为建立我国地应力测量及监测网络、提高地震预警能力提供了坚实的物质基础和技术保障[4].2地应力测量的主要方法迄今为止,可用于地应力测量的方法虽然很多,但尚未形成统一的分类标准.根据测量数据特点的不同,地应力测量大体分为绝对应力测量和相对应力测量.前者主要是确定地壳应力背景值,即主应力的大小和方向;后者则是观测应力随时间变化的动态变化规律,通常也称为地应力监测.根据测量基本原理的不同,绝对应力测量方法又可分为直接测量法和间接测量法.所谓直接测量法就是利用测量仪器直接测量和记录各种应力量,并由这些应力量和原岩应力的相互关系直接换算得到原岩应力值.间接测量法则是借助某些传感元件或媒介,测量和记录与岩体相关物理量的变化(如密度、泊松比、弹性波速等变化),然后通过相应的公式换算间接得到原岩应力值[5].目前,较为常用的绝对应力测量方法主要有水压致裂法、声发射法、钻孔崩落法、套芯应力解除法、应变恢复法等.其中,前3种方法属于直接测量方法,后2种方法属于间接测量方法.相对应力测量方法包括压磁法、压容法、体应变法、分量应变法及差应变法等.其中,最为常用的方法是钻孔应变测量,它包括钻孔分量应变法和钻孔体积应变法.2.1套芯应力解除法套芯应力解除法既是2003年国际岩石力学测试专业委员会(ISRM)新推荐的一种地应力测量方法[6],也是当前国内外最为常用的一种地应力测量方法.它是以平面应力状态为理论基础,假定岩体是连续、均匀、各向同性、线弹性的[7].具体测量方法见图1.603河南理工大学学报(自然科学版)2012年第31卷目前,主要采用的套芯应力解除法有空芯包体应力解除法和压磁应力解除法.空芯包体应力解除法采用空芯包体应变计进行测量,压磁应力解除法采用以铁磁体磁致伸缩原理为基础设计的传感器进行应力测量[7].压磁应力解除法地应力测量技术最早起源于瑞典,经过地质力学所的长期改进和创新,该方法已在国内许多重大工程应用中取得了良好的效果[7-11].相比较而言,空芯包体应力解除法操作简单,经济实用,精确度较高,且可测量三维应力状态,但是其测量深度较浅(仅数10m ),且多用于隧道、矿山、地下硐室安全设计等方面.压磁应力解除法是一种平面测量方法,在3个相互正交的钻孔中可测得三维应力值,其测量探头稳定性好、灵敏度高,测量深度大(可达100 200m [10-11]),多用于对变形控制要求较高的隧道、硐室及核废料处置等工程中.2.2水压致裂法水压致裂法地应力测量是通过在钻孔中封隔一小段钻孔,向封隔段注入高压流体(通常为水),并通过孔壁岩体的胀裂来确定地应力的一种方法(图2).由于该方法可以在无需岩石力学参数的情况下直接测量应力值,特别是可以直接确定最小主应力值,再加上其具有操作简单、测量深度较大等优点,目前已被广泛应用.2003年,国际岩石力学测试专业委员会推荐了经典水压致裂法(HF )和原生裂隙水压致裂法(HTPF )[12].HF 法地应力测量假设岩体为理想、非渗透性的且有一个主应力为垂直方向,大小等于上覆岩层重量.严格意义上讲,HF 法是一种平面测量方法,若要获取全应力张量,需采用三孔交汇测量.HF 法选择岩性完整的测试段,进行3 5个压裂循环试验并生成压力-时间曲线.最小水平主应力大小可从曲线中分析得到,其中关闭压力的准确判读是关键,ISRM 推荐至少用2种方法保证其可靠性[12].孔壁的破裂方向即为最大水平主应力方向,一般用带有定位系统的印模器确定,但也可用地球物理成像技术记录裂隙方向[12-14].当岩体中存在较多原生裂隙时,可以选用HTPF 法[12].HTPF 法是HF 法的发展,能够估算全应力张量,且不涉及孔隙压力、钻孔方向和材料属性等参数,若裂隙间距大于50m ,需假设应力梯度,这会增加测试次数[12-16].作为目前能完整测量深部地应力的最有效方法,水压致裂法广泛应用于水电、石油、地热及科研钻探中.2.3应变恢复法应变恢复法的原理是岩芯从周围岩体分离后即发生体积恢复(一部分是立即发生的弹性恢复,一部分是随时间缓慢发生的滞弹性恢复),且各方向的应变恢复量与之前所受压力正相关[16].应变恢复法可分为滞弹性应变恢复法(ASR )和微分应变曲线分析法(DSCA ).目前,该技术在日本发展的较为成熟,并在科研及工程中取得了较好的应用效果.ASR 法通过对岩芯在径向和轴向测量应变恢复,可获得主应变方向,进而得到主应力方向,但对主应力值的估计较为困难,需要针对不同岩性建立准确的本构模型.DSCA 法认为,解除应力后,定位岩芯将随着膨胀而出现微裂隙,裂隙分布和原岩应力方向有关,裂隙密度与原岩应力大小成正比[17].通过对试件正交面上应变片施加静水压力、记录各应变片的应变值并描绘应变-压力曲线,可以分析得到3个主应力方向及比值.若已知其中一个主应力大小(通常假设垂直应力为上覆层岩体重量),即可确定另外两个主应力大小[18-19].ASR 法岩芯定向费用较高,且影响测量结果的因素很多[16].DSCA 法操作复杂,仅为二维测量.但在一些大深度钻井条件下,当水压致裂法和应力解除法无法有效实施时,或者当需要其他方法的补充性数据来确保测量结果可信度时,应变恢复法具有较高的应用价值.2.4钻孔崩落法钻孔崩落指大深度的钻孔孔壁自然坍塌、掉703第3期张重远,等:地应力测量方法综述块现象[20].同一地区井孔深部孔壁多发生塌陷,且具有相似的优势坍塌方位.钻孔孔壁挤压应力最大集中区通过剪切破碎而形成崩落,崩落的方向与最小水平主应力平行.有人认为,可利用崩落形状和岩石强度参数来确定水平主应力的大小,以及根据孔壁崩落的深度和宽度来估算应力值[21].崩落方位可以用井下电视等辅助工具描述.钻孔崩落法的优点是速度较快,而且能在其他手段效率较低的深孔乃至超深孔获取有效信息.但也有很多不足,比如需要有崩落段的存在,岩体的各向异性会扰乱崩落方位、损害已获信息的有效性、尚无令人满意的理论与方法确定应力值的大小等[16].钻孔崩落法广泛应用于石油工业及科研深钻中,如德国KTB深钻、日本海洋钻探计划(ODP)、中国台湾TCDP深钻和大陆科学钻探(CCSD)等[22-27].2.5声发射法声发射(AE)是材料内部储存的应变能快速释放时所产生的弹性波现象.德国人J Kaiser研究发现,多晶金属的应力从其历史最高水平释放后,再重新加载时,若应力未达到先前的最大应力值,则很少有声发射产生;当应力达到和超过历史最高水平后,则大量产生声发射,这一现象叫做Kaiser效应[28].把从很少产生声发射到大量产生声发射的转折点称之为Kaiser点,该点对应的应力即为材料先前受到的最大应力.据此,在实验室对岩石试件进行6个以上不同方向的单轴压缩试验,可获得6个以上不同方向的压应力,并进一步根据弹性理论确定岩石取芯点的全应力张量[28].岩芯的定位多采用古地磁法.由于声发射与弹性波传播有关,且高强度的脆性岩石通常具有较明显的Kaiser效应,而多孔隙低强度及塑性岩体的Kaiser效应往往不明显,所以一般不建议用AE法测定比较软弱疏松及塑性岩体中的应力.不过,M Seto通过试验认为,即使脆弱的岩芯,若采用多次加载也可以较好地分辨出Kaiser点[29],这为利用AE法测定软弱疏松岩体提供了可能.目前,AE法在矿山和油田等工程中应用较多.2.6相对地应力测量方法长期以来,相对地应力测量的主流方法是钻孔应变观测,包括钻孔分量应变监测法和钻孔体积应变监测法.当前的监测台站多使用这类方法,限于篇幅,仅简要介绍这两种方法.钻孔分量应变观测法是观测钻孔直径的相对变化量,原理上沿不同方位布设3个压磁式、振弦、电容或半导体应变片就可以测出钻孔所在的平面应变状态.我国主要使用四分量式应变仪(其4个顺次标记元件相隔45ʎ夹角),其优点是可以利用奇数与偶数元件位移量之和的相关性自行检验观测的正确性,且当其中1个元件不能正常工作时,其余3个元件仍然可以完成测量[30].钻孔体积应变监测法是测量岩石的体积应变,测量探头为液压式或液位式传感器.该法对岩石的完整性要求相对宽松,也容易获取长期稳定的资料,而且能在土层或松软岩层中测量[31].地壳的构造运动、地球的固体潮汐作用、气压变化、地下水位变化、温度的变化以及人类的活动等都会造成地壳中的应力(应变)变化,而钻孔应力应变监测关心的又是构造运动引起的地壳中的应力(应变)变化,因此,需要对影响观测值变化的各种因素同时进行辅助监测[30].目前,钻孔应变监测主要用于地震预警,但也可以用于矿山安全监测.3地应力测量存在的问题与展望3.1存在的问题随着我国工程建设不断向深部发展,地应力测量及监测正面临着严峻的考验.与发达国家相比,尚存在许多问题与不足.首先,在宏观层面上存在的问题与挑战有:第一,测量和监测深度不足[3].目前,国际上最大地应力测量深度已达5100m[32].在德国的KTB深钻及美国的SAFOD计划中,应力测量深度一般达到2000 3000m;日本也建立了数10座深度为1000 3800m的深井观测台站[3,30].我国的绝大部分应力测量深度仅数百米,超过1000m的深井观测极为稀少,这严重制约了测量数据在空间上的代表性.第二,缺乏合理系统的地应力监测网络[3].我国虽然积累了大量的地应力测量数据,但数据分布不均且质量参差不齐,地应力监测台站少、布局不合理,大部分监测台站数据网络传输、数据分析处理能力也亟待加强,这些问题制约了地学领域的创新性发现.第三,统一的地应力测量规范和标准亟待解决[3].ISRM早在1987年即发布了“确定岩石应力的建议方法”.2003年,结合地应力测量方法的最新进展,又发布了新的建议规范.然而,在这些权威的地应力测量方法技术规范起草和编写过程中,没有我国相关领域科学803河南理工大学学报(自然科学版)2012年第31卷家的参与.其次,在技术与操作层面上存在的问题与挑战有:第一,测量深度引起的仪器设备性能问题.深部岩体的苛刻环境要求钻探设备和监测仪器具备足够的耐高压、耐高温、抗干扰、防水能力,而仪器在这种环境下,长期工作的稳定性以及与孔壁的耦合性不容忽视.第二,测量仪器和方法的精度与可重复性问题.测量的精度是确保数据可靠的关键,对此,除了改进已有仪器,更需要新技术、新材料的研发.测量过程和结果的可重复性既是测量工作科学、严谨的体现,又是测量仪器与方法广泛应用的保障,具有重要意义.第三,测量仪器及测量平台的现代化程度问题.提高测量与数据采集的质量与效率、推进测量成果网络传输与共享、建立测量方法标定平台,既需要增强地应力测量体系的现代化水平,又需要地应力测量系统向自动化、集成化、智能化方向发展.3.2展望近年来,人们逐渐认识到,由于地壳结构的高度复杂性和非均质性,加之地形等因素的影响,基于浅部及孤立测点所获得的地应力测量数据的代表性十分有限.因此,只有提高地应力测量深度,加大监测密度,才可能比较准确地认识和把握某一构造单元地质构造活动的动力学成因和内在机制.有鉴于此,在绝对应力测量方面,深部乃至超深部应力测量已成为必然趋势.同时,考虑到目前尚没有哪一种地应力测量方法能够适应和胜任所有目的和环境的测试,采用多种方法联合观测,实现不同观测方法之间的优势互补已成为提高测量结果可信度的必然举措.此外,在相对应力测量方面,高密度深井综合监测已成为未来的发展方向.这不仅是深部地质研究的客观需要,也是消除气压、温度、地下水以及地面噪音等自然和人为因素干扰的现实需要.有鉴于此,钻孔分量应力和应变监测方法无疑将成为重点发展方向.目前,地应力相对测量正朝着多元化方向迈进,钻孔地应力(应变)监测以及其他物理参数检测技术将一起作为地球物理观测的重要手段在未来深部地壳研究中发挥重要的作用.参考文献:[1]李四光.地质力学方法[M].北京:科学出版社,1976.[2]HAST N.The state of stress in the upper part of the earth's crust[J].Tectonophysics,1969,8(3):169-211.[3]陈群策,李宏,廖椿庭,等.地应力测量与监测技术实验研究-SinoProbe-06项目介绍[J].地球学报,2011,32(S1):113-124.[4]董树文,李廷栋,SinoProbe团队.深部探测技术与实验研究(SinoProbe)[J].地球学报,2011,32(S1):3-23.[5]蔡美峰.地应力测量原理与技术[M].北京:科学出版社,2000.[6]SJ BERG J,CHRISTIANSSON R,HUDSON J A.IS-RM Suggested Methods for rock stress estimation-Part2:overcoring methods[J].J Rock Mech&Min Sci,2003,40(7/8):999-1010.[7]王连捷,潘立宙,廖椿庭,等.地应力测量及其在工程中的应用[M].北京:地质出版社,1991.[8]吴满路,马寅生,张春山,等.兰州至玛曲地区地应力测量与现今构造应力场特征研究[J].地球物理学报,2008,51(5):1468-1474.[9]吴满路,廖椿庭,张春山,等.红透山铜矿地应力测量及其分布规律研究[J].岩石力学与工程学报,2004,23(23):3943-3947.[10]吴满路,张春山,廖椿庭,等.青藏高原腹地现今地应力测量与应力状态研究[J].地球物理学报,2005,48(2):327-332.[11]LIAO CHUNTING,ZHANG CHUANSHAN,WU MANLU,et al,Stress change near the Kunlun faultbefore and after Ms8.1Kunlun earthquake[J].Geo-physical Research Letters,2003,30(20):2027.[12]HAIMSON B C,CORNET F H.ISRM Suggested Methods for rock stress estimation-Part3:hydraulicfracturing(HF)and/or hydraulic testing of pre-exist-ing fractures(HTPF)[J].Rock Mech J&Min Sci,2003,40(7/8):991-998.[13]丰成君,陈群策,吴满路,等.四川省大凉山腹地当前地应力状态分析[J].河南理工大学学报:自然科学版,2010,29(4):468-474.[14]王成虎,郭启良,陈群策,等.新一代超声波钻孔电视及其在工程勘察中的应用[J].地质与勘察,2007,43(1):98-101.[15]刘亚群,李海波,景峰,等.考虑应力梯度的原生水压致裂法地应力测量原理及工程应用[J].岩石力学与工程学报,2007,26(6):1145-1150.[16]LIUNGGREN C,CHANG YANTING,JANSON T,et al.An overview of rock stress measurement methods[J].J Rock Mech&Min Sci,2003,40(7/8):975-989.[17]OIKAWA Y,MATSUNAGA I,YAMAGUCHI T.Dif-ferential strain curve analysis to estimate the stressstate of the Hijiori hot dry rock field,Japan[J].Rock J903第3期张重远,等:地应力测量方法综述Mech Min Sci&Geomech Abstr,1993,30(7):1023-1026.[18]KANG S S,NAKAMURA N,OBARA Y,et al.Rock stress interpretations from Mt.Torigata(Japan)basedon calcite strain gauge and differential strain curve a-nalysis[J].Engineering Geology,2000,58(3):35-52.[19]SAKAGUCHI K,IINO W,MATSUKI K.Damage in a rock core caused by induced tensile stress and its rela-tion to differential strain curve analysis[J].J RockMech&Min Sci,2002,39(3):367-380.[20]翟青山,毛吉震,张钧,等.根据钻孔崩落资料确定剑川地区应力场方向[J].地震地质,1989,11(2):46-53.[21]HAIMSON B C,Lee C F.Estimating in situ stress conditions from borehole breakouts and coredisking-ex-periment results in granite[M]//Proceedings of theWorkshop on Rock Stress Measurement at GreatDepth.Tokyo,Japan:Eighth ISRM Congress,1995:147-153.[22]BRUDY M,ZOBACK M D,FUCHS K,et al.Estima-tion of the complete stress tensor to8km depth in theKTB scientific drill holes:Implications for crustalstrength[J].Journal of Geophysical Research,1997,102(B8):18453-18475.[23]HUBER K,FUCHS K,PALMER J,et al.Analysis of borehole televiewer measurement in the Vorotilov drill-hole,Russia-first results[J].Tectonophysics,1997,275(1):261-272.[24]MASANORI IENAGA,LISA C MCNEILL HITOSHI MIKADA,et al.Borehole image analysis of NankaiAccretionary Wedge,ODP Leg196:Structural andstress studies[J].Tectonophysics,2006,426(1/2):207-220.[25]COWGILL S M,MEREDITH P G,MURRELL S A F.Crustal stresses in the North Sea from Breakouts andother borehole data[J].J Rock Mech Min Sci&Geo-mech Abstr,1993,30(7):1111-1114.[26]WEIREN LIN,EN-CHAO YEH,JIH-HAO HUNG,et al.Localized rotation of principal stress around faultsand fractures determined from borehole breakouts inhole B of the Taiwan Chelunpu-fault Drilling Project(TCDP)[J].Tectonophysics,2010,482(1/4):82-91.[27]CUI JUN-WEN,WANG LIAN-JIE,LI PENGWU,et al.Wellbore breakouts of the main borehole of ChineseContinental Scientific Drilling(CCSD)and determina-tion of the present tectonic stress state[J].Tectono-physics,2009,475(2):220-225.[28]李宏,张伯崇.北京房山花岗岩原地应力状态AE 法估计[J].岩石力学与工程学报,2004,23(8):1349-1352.[29]SALMON V,DERENNE S,LARGEAU C,et al.In situ stress determination by acoustic emission tech-nique[J].J Rock Mech&MinSci,1997,34(3):638.[30]李海亮,李宏.钻孔应变观测现状与展望[J].地质学报,2010,84(6):895-900.[31]苏恺之,李桂荣,张涛,等.小型化体积式钻孔应变仪[J].内陆地震,1997,11(4):316-322.[32]HAIMSON B C.Hydrofracturing stress measuring method and recent field results[J].J Rock Mech MinSci&Geomech Abstr,1978,15(4):167-178.(责任编辑杨玉东)013河南理工大学学报(自然科学版)2012年第31卷。
地震资料品质综合评价方法地震资料是地震研究和灾害防治工作的重要基础,对于科学研究和实际应用有着重要的指导意义。
因此,对地震资料的品质进行综合评价十分重要。
本文将从数据采集、数据完整性、数据准确性、数据可信性等方面,介绍地震资料品质综合评价的方法。
一、数据采集地震资料的采集是保证其品质的首要步骤。
对于地震资料采集过程中需要注意以下几个方面:1.采集方法:地震资料的采集需要选择适当的方法,如地震台网观测、地震仪器监测、地震摄像等。
采用先进的观测设备和技术手段,可以提高地震资料的质量。
2.采集设备的校准:确保采集设备的准确度和稳定性,对采集设备进行定期校准和维护,以避免因设备问题导致的数据失真或错误。
3.采样频率和时长:合理选择采样频率和采样时长,以满足对地震过程的准确描述和分析。
二、数据完整性地震资料的完整性是评价其品质的重要指标。
数据完整性包括以下几个方面:1.覆盖范围:提供的地震资料应覆盖地震发生地区及其周边范围,包括震源参数、地震波形数据、地震烈度等。
2.数据时序:地震资料中的数据应有清晰的时间序列,以便进行时间序列分析和预测研究。
3.数据格式:地震资料的格式应为通用的数据格式,方便使用者进行数据处理和分析。
三、数据准确性地震资料的准确性是评价其品质的重要方面。
数据准确性包括以下几个方面:1.数据标定:地震波形数据应进行标定,确保波形振幅和频率参数的准确性。
2.数据校正:针对不同的采集设备和观测条件,进行数据的校正和修正,以提高数据的准确性。
3.数据处理:对地震波形数据进行必要的滤波、降噪和去趋势处理,以提取有用信息并提高数据的准确性。
四、数据可信性地震资料的可信性是评价其品质的重要因素。
数据可信性包括以下几个方面:。
地应力的测量原理目前地应力测量方法有很多种,根据测量原理可分为三大类:第一类是以测定岩体中的应变、变形为依据的力学法,如应力恢复法、应力解除法及水压致裂法等;第二类是以测量岩体中声发射、声波传播规律、电阻率或其他物理量的变化为依据的地球物理方法;第三类是根据地质构造和井下岩体破坏状况提供的信息确定应力方向。
其中,应力解除法与水压致裂法得到比较广泛的应用,其他几种只能作为辅助方法。
1.应力解除法测试原理和技术1.1应力解除法测试原理具有初始应力的岩体,用人为的方法卸去其应力,在岩体恢复变形的过程中测试其应变,然后用弹性力学理论计算出地应力的大小,得出其方向、倾角。
目前国内外地应力测量普遍采用空心包体应变计测量技术。
KX一81型空心包体应变计由A、B、C 3组共12枚应变片嵌埋在1个壁厚约3 mm的空心环氧树脂圆筒中间,圆筒外表面与钻孔壁用专用环氧树脂胶黏结在一起,其是在澳大利亚CSIRO空心包体应变计的基础上研制出来的,是套钻孔应力解除法的一种,只需1个孔就能测量出某点的三维原岩应力,具有使用方便、安装操作简单、成本低、效率高等优点。
1.2完全温度补偿技术KX一81型空心包体应变计与其他许多应变测量仪器一样,均采用应变计作为敏感元件,并根据惠斯顿电桥的原理13J,将应变的变化转换成电压变化经放大后记录下来。
电阻应变计对温度变化是很敏感的,温度发生变化时应变计的电阻值将发生变化,从而产生虚假的附加应变值。
因此在现场测试中必须采取温度补偿措施。
惠斯顿电桥原理:平衡时,检流计所在支路电流为零,则有,(1)流过R1和R3的电流相同(记作I1),流过R2和R4的电流相同(记作I2)。
(2)B,D两点电位相等,即UB=UD。
因而有 I1R1=I2R2;个阻值已知,便可求得第四个电阻。
测量时,选择适当的电阻作为R1和R2,用一个可变电阻作为R3,令被测电阻充当R4,调节R3使电桥平衡,而且可利用高灵敏度的检流计来测零,故用电桥测电阻比用欧姆表精确。
地应力测值评价方法研究韩晓玉;李永松;李峰【摘要】为了对地应力测值进行评价,探讨了地应力测值评价方法,提出采用测值平均测量误差对洲值进行评价,主要用数学模型回归分析法和模型加载试验法对地应力测值进行评价,给出了两者的优缺点和适用范围.其中对数学模型回归分析法进行了应用分析,对物理模型加载试验法介绍了一般试验过程和试验准备.【期刊名称】《人民长江》【年(卷),期】2011(042)024【总页数】3页(P7-9)【关键词】地应力;测值评价;应力测量;应力观测;数学模型回归分析法;物理模型加载试验法【作者】韩晓玉;李永松;李峰【作者单位】长江科学院水利部岩土力学与工程重点实验室,湖北武汉430010;长江科学院水利部岩土力学与工程重点实验室,湖北武汉430010;湖北省地震局,湖北武汉430071【正文语种】中文【中图分类】TV223在工程建设活动中,地应力测试是必不可少的环节,它对于建筑物的安全设计至关重要,因地应力测试方法众多,不少方法有着前提性假设,对地质条件有一定要求,而单个工程的地应力测试方案,从测试方法选用、孔位布置、测试数量到具体测点部位均具有随意性。
因此,地应力测值不可避免地具有离散性,甚至可能不具有代表性。
因此,进行地应力测值评价是必要的。
1 测值评价方法地应力测值评价可分为对单个测值的评价和不同方法间的测值评价。
单个方法的测值评价是该技术(方法)的基础研究内容,关系到该方法存在的必要性。
不同方法间的测值评价可以消除单个方法带来的系统误差,并促进整个行业测试技术的发展与进步。
单个工程的地应力测值评价可为工程建设服务。
长期以来,国内外对地应力测值的评价研究较少,更少进行测试方法间的评价。
单方法的测值评价一般仅从原理上进行适应性公式修正,或对使用测试的技术进行误差和精度分析,或采取数值模型方法进行校验等[1-3]。
专门进行的多方法间测值评价试验仅在文献[4]中提到过,且结论未知。
根本而言,地应力测值评价是地应力测值对真实值的反映,误差小者为优。
地应力及其确定方法综述【摘要】通过对比通过地应力测量方法、计算方法的分析和对比,为以后利用常规测井资料和成像测井资料计算地应力的多种方法奠定基础,进而从不同的角度对地应力进行了研究,不仅有助于提高地应力的计算准确率,而且可以多角度对地应力的形成过程进行因素分析。
【关键词】地应力;测量;水力压裂;凯瑟效应实验1.地应力地应力主要由垂力应力、构造应力、孔隙压力等组合而成。
在油田应力场研究中,孔隙压力对地应力的影响是非常重要的,实际上,由于地层岩石力学性质的非线性特征,地应力的各种成因分量间不是独立的,人们只是从其成因和研究分析问题的方便才对地应力进行分类的。
构造应力与上覆岩层压力构成了地应力,它作用于整个地质体上。
对于某一特定的地质体来说,将作用于其单位表面上的法向地应力定义为主应力。
在主应力方向上剪切应力为零,这样就可以把复杂的地应力归结为三个相互垂直的主应力,即三轴向应力(图1)。
通常其中一个基本上是垂直的,叫做垂向应力(Sv);另外两个主应力基本上是水平的,称为最大、最小水平应力(SH、Sh)。
垂向应力由重力应力(上覆岩层压力)所构成,水平应力则主要由构造应力所构成。
在三个主应力中,垂向应力是比较容易确定的,其大小可由密度测井曲线确定,其方向是垂直的。
对于水平应力的方向,现在有许多方法,在油田中广泛采用井壁崩落法确定水平应力的方向,取得了良好的效果,测量水平应力大小的方法有水力压裂法、凯瑟效应实验、差应变法等。
2.地应力测量方法2.1水力压裂法用水力压裂法确定最小水平应力是目前进行深部绝对应力测量最精确的方法,在国内外都有着广泛的应用。
1989年3月30日测井公司在川西南界石场界19井进行了地应力测量试验,整个工艺是成功的,井口密封装置可以在68MPa高压下正常工作,仪器系统工作正常,记录到了类似于标准地应力曲线形状的压力曲线,但由于水泥环窜漏及施工时开压太快,未能反映出地层破裂压力,这口井的试验为今后进行地应力测试提供了宝贵的经验。
地应力与地应力测量方法简介3.1 地应力与地应力测量方法简介地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。
在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。
主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。
地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。
另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。
而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。
地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。
地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。
地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。
随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。
查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。
地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。
准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。
采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起严重的事故,造成人员伤亡和财产的重大损失。
地应力(in-situ stress),又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。
在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。
地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用。
地应力的测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提,所以选择合理有效的地应力测量方法意义重大。
1 国内外地应力测量的研究概况人们最初对地应力概念的认识以及地应力测量技术的发展都源于早期的矿山工程建设,最早的原位地应力测量起始于20世纪30年代。
1932年,美国人劳伦斯(Lieurace)在胡佛坝(HooverDam)下面的一个隧道中采用岩体表面应力解除法首次成功地进行了原岩应力的测量。
进入20世纪60年代中期之后,随着岩石力学、数值分析、工程测试技术等学科的诞生和发展,地应力测量理论和测试技术也得到了创新和发展,这时出现了三维地应力测量技术,即通过一个单孔的测量就可以求得岩体中某一点的三维地应力状态,使钻孔应力测量技术进入了快速发展阶段,其中以澳大利亚联邦科学和工业研究组织(CSIRO)研制的CSIRO型空心包体应变计应用最为广泛。
60年代末,美国人费尔赫斯特和海姆森提出了水压致裂法,成为和应力解除法并驾齐驱的两大地应力测量方法;水压致裂法的突出优点是能够测量地壳深部的地应力。
1977年美国人H a i m s o n 在深5.1km处进行了水力压裂地应力测量,并对此作了大量理论和实验研究。
我国的地应力研究是在李四光教授的倡导下开展起来的。
20世纪40年代,他就把地应力作为地质力学的一部分进行了研究。
我国的地应力测量技术和设备的研制工作起步较晚,起始于20世纪50年代末期,而地应力实测工作从20世纪60年代初开始,到目前为止已经取得了大量的测量数据。
进入20世纪80年代以后,空心包体应变计进入我国,随后地质力学研究所、长沙矿冶研究所和长江科学院等都研制了自己的空心包体应变计,例如:K X -81,K X -2003,C KX -97,C K X-01型空心包体等在现场得到了广泛的应用。
地应力测试的方法我折腾了好久地应力测试这事儿,总算找到点门道。
说实话,地应力测试一开始我也是瞎摸索。
我先试过水压致裂法。
这方法就像是给地壳里的岩石做个特殊的水压冲击试验。
当时啊,我们在选定的测试钻孔里使劲泵水,增加水压,一直到岩石裂开。
可这里面学问大着呢。
一开始我没掌握好泵水的速度和压力变化的监测频率,结果得到的数据那叫一个乱啊,根本没法准确反映地应力状态,这可真是个失败的教训。
后来我搞清楚了,这个泵水速度得均匀稳定,就跟我们平时给花瓶浇水,水流得稳定一点才能把水量控制好一样。
监测压力变化得特别频繁,眼睛得死死盯着仪器读数,就像看自己网购的快递进度一样紧盯着数据变化。
还有应力解除法。
这个方法有点像给被禁锢的石头松绑。
我们要在岩石里钻孔,然后在孔底或者孔壁上安装应力计之类的设备,再接着把周围的岩石一层一层地剥掉,解除它原来受到的应力,然后看应力计的变化读数。
我在钻孔的时候就遇到问题了,钻的角度稍微偏一点都不行。
有一次我没太注意这个,钻歪了点儿,结果应力解除就不完全,测试出来的数据偏差特别大。
经过那次失败,我才知道钻孔角度就得像瞄准射击一样精准才行。
再就是声发射法。
这个其实是利用岩石受到应力作用时产生的声发射信号来判断地应力情况。
我用这个方法的时候实验环境可得好好控制。
周围不能有太多其他嘈杂的声音,就像你要听很细小的声音比如针掉地上那种,必须周围得安静一样。
如果环境噪声太大,那些岩石声发射信号就会被盖住,就无法准确测出来应力了。
这些都是我尝试地应力测试实实在在的经历,希望对你们要是做类似的测试有点帮助,如果有更好的方法或者我的说法有不对的地方,也欢迎一起讨论啊。