基于新陈代谢的动态灰色模型及其应用
- 格式:pdf
- 大小:147.98 KB
- 文档页数:3
实验四 GM 模型(1,1)及新陈代谢模型的应用实验目的:熟练应用GM 模型(1,1)及新陈代谢模型进行人口预测。
实验内容:GM(1,1)模型的原理及其应用一、原理GM (1,1)主要特点是能够用较短的基础数据序列,通过系统过去和现在采集的数据,将无规律的数据通过累加找出规律,然后对系统未来的发展趋势做出预测。
在当前土地资料不完整的情况下,运用GM (1,1)模型,进行预测研究无疑十分适宜。
其基本思路是将无规律的原始数据,通过一定方法的处理,变成比较有规律的时间序列数据,再建立模型进行预测。
二、建立GM (1,1)模型的步骤如下:⑴按关系式()()()()∑==ki i x k x101求原始数列()0x 的1--AGO 序列()1x 。
即:1、建立原始序列,并记作:X (0)={X (0)(1),X (0)(2),……X (0)(n)} 2、对原始序列作一次累加生成,得到X (1)={X (1)(1),X (1)(2),……X (1)(n)} 其中:X (1)(t)=X (0)(1)+ X (0)(2)+ ……+ X (0)(t)⑵求数据矩阵()()()()()()()()()()()()()()()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+-+-+-=1121::1322112121111111n x n x x x x x B 建立数据列()()()()()()()Tn n x x x Y 000,...,3,2=⑶用最小二算法求参数列∧a()n T TY B BB b a a 1-∧=⎪⎪⎭⎫ ⎝⎛=其时间函数为:()()()()ab e a b x k x ak +⎪⎭⎫ ⎝⎛-=+-∧1101⑷求导还原为:()()()()ak e a b x a k x-∧⎪⎭⎫ ⎝⎛--=+1100⑸计算()()t x 0与()()t x 0ˆ之差及相对误差: 记作:()()()()()()()()()()()%100,ˆ000⨯=-=t x t e t q t x t x t e o o最后还需检验模型的精度,如不满足精度要求还需对模型进行修正,才能进行预测。
管理预测与决策的课程设计报告灰色系统理论的研究专业:计算机信息管理姓名:XXX班级:xxx学号:XX指导老师:XXX日期2012年11月01 日摘要:科学地预测尚未发生的事物是预测的根本目的和任务。
无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。
在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。
本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。
通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。
另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。
关键词:灰色预测模型;灰关联度;灰色系统理论目录1、引言11.1、研究背景 (1)1.1.1、国内研究现状 11.1.2、国外研究现状 11.2、研究意义 (2)2、灰色系统及灰色预测的概念22.1、灰色系统理论发展概况22.1.1、灰色系统理论的提出22.1.2、灰色系统理论的研究对象 22.1.3、灰色系统理论的应用范围 22.1.4、三种不确定性系统研究方法的比较分析 32.2、灰色系统的特点.42.3、常见灰色系统模型 52.4、灰色预测 (5)3、简单的灰色预测——GM(1,1)预测63.1、GM(1,1)预测模型的基本原理64、小结 (9)参考文献: (10)灰色系统理论的研究GM(1,1)预测与关联度的拓展1、引言模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。
黑箱模型:信息缺乏,暗,混沌。
白箱模型:信息完全,明朗,纯净。
灰箱模型:信息不完全,若明若暗,多种成分。
灰色系统理论及其应用第一章灰色系统的概念与基本原理1.1灰色系统理论的产生和发展动态1982年,北荷兰出版公司出版的《系统与控制通讯》杂志刊载了我国学者邓聚龙教授的第一篇灰色系统理论论文”灰色系统的控制问题”,同年,《华中工学院学报》发表邓聚龙教授的第一篇中文论文《灰色控制系统》,这两篇论文的发表标志着灰色系统这一学科诞生。
1985灰色系统研究会成立,灰色系统相关研究发展迅速。
1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。
目前,国际、国内300多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。
国际著名检索已检索我国学者的灰色系统论著3000多次。
灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。
1.2几种不确定方法的比较(系统科学---系统理论)概率统计,模糊数学和灰色系统理论是三种最常用的不确定系统研究方法。
其研究对象都具有某种不确定性,是它们共同的特点。
也正是研究对象在不确定性上的区别,才派生了这三种各具特色的不确定学科。
模糊数学着重研究“认识不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。
比如“年轻人”内涵明确,但要你划定一个确定的范围,在这个范围内是年轻人,范围外不是年轻人,则很难办到了。
概率统计研究的是“随机不确定”现象,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性大小。
要求大样本,并服从某种典型分布。
灰色系统理论着重研究概率统计,模糊数学难以解决的“小样本,贫信息”不确定性问题,着重研究“外延明确,内涵不明确”的对象。
如到2050年,中国要将总人口控制在15亿到16亿之间,这“15亿到16亿之间“是一个灰概念,其外延很清楚,但要知道具体数值,则不清楚。
三种不确定性系统研究方法的比较分析项目灰色系统概率统计模糊数学研究对象贫信息不确定随机不确定认知不确定基础集合灰色朦胧集康托集模糊集方法依据信息覆盖映射映射途径手段灰序列算子频率统计截集数据要求任意分布典型分隶属度可布知侧重点内涵内涵外延认知表达目标现实规律历史统计规律特色小样本大样本凭经验1.3灰色系统理论的基本概念定义1.3.1信息完全明确的系统称为白色系统。
第一章灰色系统的概念与基本原理1.1 灰色系统理论的产生于发展动态1.1.1 灰色系统理论产生的科学背景1、在系统研究中,由于内外扰动的存在和认识水平的局限,人们得到的信息往往带有某种不确定性。
随着科学技术的发展和人类社会的进步,人们对各类系统不确定性的认识逐步深化,对不确定性系统的研究也日益深入。
邓聚龙于80年代创立的灰色系统理论。
2、中国学者邓聚龙在1982年创立的灰色系统理论,是一种研究少数据、贫信息不确定性问题的新方法。
3、灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统为研究对象,主要通过对“部分”已知信息的生成、开发,提取有价值的信息,实现对系统运行行为、演化规律的正确描述和有效监控。
1.1.2 灰色系统理论的产生与发展动态1、灰色系统理论的产生——1982年,北荷兰出版公司的《系统与控制通讯》(Systems & Control Letters)杂志刊载了我国学者邓聚龙的第一篇灰色系统系统论文“灰色系统的控制问题”(The control problem of grey systems);同年,《华中工学院学报》刊载了邓聚龙的第一篇中文灰色系统论文“灰色控制系统”。
这两篇开创性论文的公开发表,标志着灰色系统理论的问世。
1.1.3 不确定性系统的特征与科学的简单性原则1、信息不完全、不准确是不确定性系统的基本特征。
2、系统演化的动态特性、人类认识能力的局限性和经济、技术条件的制约,导致不确定性系统的普遍存在。
3、信息不完全是不确定性系统的基本特征之一。
信息不完全是绝对的,信息完全则是相对的。
4、概率统计中的“大样本”,实际上表达了人们对不完全的容忍程度。
通常情况下,样本量超过30即可视为“大样本”。
5、不确定性系统的另外一个基本特征是数据不准确。
从不准确产生的本质来划分,又可分为概念型、层次型和预测型三类:(1)概念型。
概念型不准确源于人们对某种事物、观念或意愿的表达,如人们通常所说的“大”、“小”、“多”、“少”、“高”、“低”、“胖”、“瘦”、“好”、“差”以及“年轻”、“漂亮”、“一堆”、“一片”、“一群”等,都是没有明确标准的不准确概念,难以用准确的数据表达。
灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。
一、灰色系统及灰色预测的概念1.1灰色系统灰色系统产生于控制理论的研究中。
若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。
若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。
灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。
特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。
1.2灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。
生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。
用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。
灰色模型白化方程一、引言灰色模型理论是一种非线性灰色系统建模分析工具,可以对非线性系统进行建模和预测。
而灰色模型白化方程是在灰色模型理论的基础上,针对模型的白化进行了研究。
本文将详细介绍灰色模型白化方程的基本原理、方法和应用。
二、灰色模型概述灰色模型是一种基于少量、不完整数据进行分析预测的方法。
相比于传统的统计模型,它具有数据要求低、计算简单、适用范围广的特点。
灰色模型的基本思想是通过建立灰色微分方程来描述和预测系统的行为。
灰色模型包括GM(1,1)模型、GM(0,N)模型等。
三、灰色模型白化方程的基本原理灰色模型白化方程是针对灰色模型中存在的高次方程的问题进行研究的。
在传统的灰色模型中,常常只考虑一阶微分方程,而实际问题中往往需要考虑更高次的方程。
这时,就需要对原始的高次方程进行白化处理,使其转化为一阶方程,从而简化模型的建立和求解。
四、灰色模型白化方程的方法4.1 高阶累加生成白化方程通过对高阶累加灰色模型进行白化处理,将高阶方程转化为一阶方程,从而简化原始模型的求解过程。
具体方法是对累加发展系数进行递推运算,直至得到一阶方程为止。
4.2 指数生成白化方程指数生成白化方程是另一种常用的白化方法。
它通过引入指数项,将高阶方程转化为一阶方程。
具体方法是将原始模型进行指数运算,使高阶方程转化为新的一阶方程。
4.3 灰色关联度生成白化方程灰色关联度是灰色模型中常用的一种分析方法。
通过计算数据序列之间的相似度,可以确定白化方程的形式和参数。
具体方法是计算数据序列的关联系数,并将其转化为白化方程。
4.4 灰色累积生成白化方程灰色累积生成白化方程是对累加生成白化方程的改进和扩展。
它引入累积项,考虑了灰色模型中动态变化的特性。
具体方法是在累加生成白化方程的基础上,加入累积项进行修正。
五、灰色模型白化方程的应用灰色模型白化方程在实际问题中有着广泛的应用。
主要包括以下几个方面: 1. 经济预测:通过灰色模型白化方程可以对经济发展进行预测和分析,提供决策支持。
灰色系统理论及其应用随着社会的不断发展,信息技术的快速发展,以及人们对社会治理方式的不断追求,灰色系统理论出现在我们的视野中。
灰色系统理论是一种用来处理不确定性事物的方法,也是一种用来建立数学模型的理论,它在信息处理、决策和控制等领域被广泛应用,为社会的发展和进步做出了巨大贡献。
一、灰色系统理论的基本概念灰色系统理论源于中国科学家陈纳德教授在上世纪80年代提出的概念,灰色系统理论是分析那些知识不充分,信息不完全,不确定性很大的系统时所采用的一种数学方法和理论。
灰色系统理论主要包括灰色系统模型、灰色控制、灰度关联分析等。
其中,灰色系统模型是灰色系统理论的核心,是灰色系统研究的基础。
灰色系统理论的基本概念包括:1、灰色:所谓灰色指的是在信息不完全、不确定的情况下,既有明确的肯定性信息,又有模糊的否定性信息。
2、灰色系统:指的是一个系统中存在着一定的灰色信息,不确定性较大,而且难以准确描述。
3、灰色预测:灰色预测是指在将来某一时刻,根据已知历史发展情况,采用灰色系统理论对未来状态进行预测。
4、灰量化:指将不确定性问题量化、标准化的过程。
二、灰色系统理论的应用灰色系统理论在信息处理、决策和控制等领域得到了广泛的应用。
具体来说,它主要包括以下几个方面:1、灰色预测:灰色预测是灰色系统应用的主要领域之一。
它根据已知的数据,通过灰色预测模型对未来进行预测,从而帮助人们制定合理的决策。
2、灰度关联分析:灰度关联分析是对一个或多个变量之间的相关性进行分析的方法。
它可以对时间序列、空间序列等各种序列进行关联分析,从而帮助我们了解变量之间的关系。
3、灰色控制:灰色控制是利用灰色系统理论对控制过程进行建模、分析和控制的方法。
它可以解决控制系统中常见的灰色关键变量辨识、灰色建模、灰色预测和灰色控制等问题。
4、灰色决策:灰色决策是灰色系统理论应用的又一个重要领域。
它可以帮助人们在不完全信息的情况下,进行有效的决策。
三、灰色系统理论的优势相比于传统方法,灰色系统理论具有以下几个优势:1、适用性广:灰色系统理论可以处理那些不完全信息、不确定性较大的问题,广泛应用于物理、生物、环境、社会、经济等多个领域。
灰色系统理论及其应用第一章灰色系统的概念与基本原理1.1灰色系统理论的产生和发展动态1982年,北荷兰出版公司出版的《系统与控制通讯》杂志刊载了我国学者邓聚龙教授的第一篇灰色系统理论论文”灰色系统的控制问题”,同年,《华中工学院学报》发表邓聚龙教授的第一篇中文论文《灰色控制系统》,这两篇论文的发表标志着灰色系统这一学科诞生。
1985灰色系统研究会成立,灰色系统相关研究发展迅速。
1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。
目前,国际、国内300多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。
国际著名检索已检索我国学者的灰色系统论著3000多次。
灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。
1.2几种不确定方法的比较(系统科学---系统理论)概率统计,模糊数学和灰色系统理论是三种最常用的不确定系统研究方法。
其研究对象都具有某种不确定性,是它们共同的特点。
也正是研究对象在不确定性上的区别,才派生了这三种各具特色的不确定学科。
模糊数学着重研究“认识不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。
比如“年轻人”内涵明确,但要你划定一个确定的范围,在这个范围内是年轻人,范围外不是年轻人,则很难办到了。
概率统计研究的是“随机不确定”现象,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性大小。
要求大样本,并服从某种典型分布。
灰色系统理论着重研究概率统计,模糊数学难以解决的“小样本,贫信息”不确定性问题,着重研究“外延明确,内涵不明确”的对象。
如到2050年,中国要将总人口控制在15亿到16亿之间,这“15亿到16亿之间“是一个灰概念,其外延很清楚,但要知道具体数值,则不清楚。
三种不确定性系统研究方法的比较分析1.3灰色系统理论的基本概念定义1.3.1信息完全明确的系统称为白色系统。
灰色关联分析模型及其应用的研究灰色关联分析模型是一种应用于研究和分析的数学方法,它可以用于解决各种实际问题。
本文将探讨灰色关联分析模型的基本原理和应用领域,并通过实例说明其在实际问题中的有效性。
一、灰色关联分析模型的基本原理灰色关联分析模型是由中国科学家陈纳德于1982年提出的。
它是一种基于信息不完全和不确定性条件下进行系统评价和决策的方法。
其基本原理是通过建立数学模型,将系统中各个因素之间的联系进行量化,并通过计算各个因素之间的关联系数,评估它们对系统变化的贡献程度。
灰色关联度是衡量两个变量之间相关程度的指标,它可以用来描述两个变量之间是否具有线性相关、非线性相关或无相关等情况。
在计算过程中,首先需要将原始数据序列进行归一化处理,然后根据序列数据计算出各个因素之间的差值序列,并确定参考值序列。
接下来,根据差值序列和参考值序列计算出各个因素之间的关联系数,最后通过对关联系数进行综合分析,得出各个因素对系统变化的贡献程度。
二、灰色关联分析模型的应用领域灰色关联分析模型可以应用于各个领域,包括经济、环境、工程、管理等。
下面将以几个具体的应用领域为例进行说明。
1. 经济领域:在经济研究中,灰色关联分析模型可以用于预测和评估经济指标之间的相关性。
例如,在宏观经济研究中,可以通过对GDP、消费指数、投资指数等因素进行灰色关联分析,评估它们对经济增长的贡献程度,并预测未来的发展趋势。
2. 环境领域:在环境保护和资源管理中,灰色关联分析模型可以用于评估不同因素之间的相关性,并制定相应的措施。
例如,在水资源管理中,可以通过对降雨量、水位变化等因素进行灰色关联分析,评估它们对水资源供需平衡的影响,并制定相应的调控措施。
3. 工程领域:在工程设计和优化中,灰色关联分析模型可以用于评估不同设计方案的优劣程度。
例如,在产品设计中,可以通过对不同设计参数的灰色关联分析,评估它们对产品性能的影响,并选择最优方案。
4. 管理领域:在管理决策中,灰色关联分析模型可以用于评估不同决策方案的风险和效益。
灰色GM(1,N)模型在经济中的预测与应用1 绪论1.1 研究的背景灰色系统理论是我国著名学者邓聚龙教授于1982年创立的(1), 灰色系统理论这一新兴理论刚一诞生,就受到国内外学术界和广大实际工作者的极大关注,不少著名学者和专家给予充分肯定和支持,许多中青年学者纷纷加入灰色系统理论研究行列,以极大的热情开展理论探索及在不同领域中的应用研究工作。
目前,英、美、德、日、台湾、香港、联合国世界卫生组织(WHO)等国家、地区及国际组织有许多知名学者从事灰色系统的研究和应用;海内外许高校开设了灰色系统课程;国际、国内多种学术期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。
在灰色系统理论发展的同时,灰色系统理论的实际应用日趋广泛,应用领域不断拓展,先后在生命科学、环保、电力,经济、能源、交通、教育、金融等众多科学领域[2-7],成功地解决了生产、生活和科学研究中的大量实际问题。
灰色系统理论经过20年的发展,其蓬勃生机和广阔发展前景正日益广泛地为国际、国内各界所认识、所重视。
而灰色GM多维变量又是现代灰色系统理论的核心组成部分,它已成功地应用于经济生活、气象预报、人口预测、电力系统负荷预测等领域,并取得了可喜的成就。
灰色模型理论应用于经济预测也已成为国内外专家学者研究的热点,近年来一些专家对灰色预测模型进行了改进,相继出现了无偏GM(1,n)模型、动态多维GM(1,n)模型的应用。
对于本课题中的建模和预测,虽然有许多成功的实例,但也有不少偏差较大的实例。
用于短期预测时有较好的精度,但用于中长期预测时预测结果就存在较大的误差。
近年来不少学者提出对GM模型的改进与适用范围的研究,从不同的角度通过对背景值的改进来提高GM模型建模精度,通过优化灰导数白化值的方法改进了GM模型的建模精度。
本文将进一步研究了GM(1,N)模型及其精度,并作出预测和推广应用。
1.2研究的目的在灰色系统理论发展及其实际应用日趋广泛、应用领域不断拓展同时,灰色GM(1,N)模型在经济社会领域中尤为特出,如在农业、工业中研究经济效益受各因素的影响预测继而减少经济损失等,有助于国家、国民收入的整体提高。