初二数学期末试卷
- 格式:doc
- 大小:188.50 KB
- 文档页数:9
初二数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.设m =20,n=(-3)2,p =,q =()-1,则m 、n 、p 、q 由小到大排列为A .p <m <q <nB .n <q <m <pC .m <p <q <nD .n <p <m <q 2.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm3.有如下命题: ①负数没有立方根;②一个实数的立方根不是正数就是负数; ③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0. 其中错误的是( )A .①②③B .①②④C .②③④D .①③④ 4.用反证法证明:a ,b 至少有一个为0,应该假设( ) A .a ,b 没有一个为0B .a ,b 只有一个为0C .a ,b 至多一个为0D .a ,b 两个都为05.据统计,2011年十·一期间,我市某风景区接待中外游客的人数为89740人次,将这个数字保留三个有效数字,用科学记数法可表示为 【 】A .8.97×103B .8.97×104C .9.00×103D .8.97×1056.如图,△ABC 中,AC=25cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长是35cm ,则BC 边的长为( )A .5cmB .10cmC .15cmD .17.5cm7.(2014•威海)已知点P (3﹣m ,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( ) A .B .C .D .8.某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据.要使该超市销售皮鞋收入最大,该超市应多购( )的皮鞋A .160元B .140元C .120元D .100 9.对于下列各组条件,不能判定的一组是( )A .,,B .,,C .,,D .,,10.下列描述不属于定义的是( )A .两组对边分别平行的四边形叫做平行四边形;B .正三角形是特殊的等腰三角形;C .在同一平面内三条线段首尾顺次连接得到的图形叫做三角形;D .含有未知数的等式叫做方程 二、判断题11.解方程: (1)(2)x 2-5 =4x12.(本题8分)如下图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D (1) 若AB =5 cm ,BC =3 cm ,求CD 的长(2) 若BD =2,AD =4,求CD 的长13.在制作某种零件时,甲做250个零件与乙做200个零件所用的时间相同,已知甲每小时比乙多做10个零件,则甲、乙每小时各做多少个零件? 14.(本题满分10分)某班为了奖励在学校体育运动会中表现突出的同学,班主任派生活委员小明到文具店为获奖的同学买奖品,小明发现,如果买1本笔记本和3支钢笔,则需要19元;如果买2本笔记本和5支钢笔,则需要33元.(1)求购买每本笔记本和每支钢笔各多少元?(2)班主任给小明的班费只有110元,要奖励24名同学每人一件奖品,则小明至少要购买多少本笔记本?15.水平的地面上有两根电线杆,测量两根电线杆之间的距离,只需测这两根电线杆入地点之间的距离即可。
一、选择题(每题4分,共40分)1. 下列各数中,属于无理数的是()A. √4B. 0.1010010001…(循环小数)C. 3D. -2.52. 下列各图中,有最小值的是()A.B.C.D.3. 已知a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 24. 下列函数中,为一次函数的是()A. y = 2x^2 + 3B. y = 3x - 4C. y = 4/xD. y = √x5. 下列各式中,正确的是()A. a^2 = aB. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a + b)(a - b) = a^2 - b^26. 下列各数中,能被3整除的是()A. 12345B. 2268C. 3456D. 56787. 下列各数中,属于等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 3, 6, 9, 12, 15D. 4, 7, 10, 13, 168. 已知等边三角形ABC的边长为a,则其面积S为()A. √3/4 a^2B. 1/2 a^2C. √3/2 a^2D. 1/4 a^29. 下列各图中,正确表示y = x^2的是()A.B.C.D.10. 已知二次函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(h,k),则下列说法正确的是()A. a > 0,b > 0,c > 0B. a > 0,b < 0,c > 0C. a < 0,b > 0,c < 0D. a < 0,b < 0,c > 0二、填空题(每题5分,共50分)11. 计算:(-2)^3 × (-1)^4 ÷ (-2)^212. 若一个等差数列的前三项分别为3,5,7,则该数列的公差为______。
2024北京海淀初二(上)期末数 学2024.01学校_____________ 班级______________ 姓名______________第1-8题均有四个选项,符合题意的选项只有一个.1.榫卯拼接木艺是中国建筑的智慧结晶,仅靠木头之间的相互作用力就可以让建筑或家具牢固、美观.下列榫卯拼接截面示意图中,是轴对称图形的是A .B .C .D .2.杭州亚运会主火炬以零碳甲醇作为燃料,在亚运史上首次实现废碳再生、循环内零碳排放.甲醇的密度很小,1 cm 3甲醇的质量约为0.000 79 kg ,将0.000 79用科学记数法表示应为 A .47910−⨯ B .47.910−⨯C .57910−⨯D .30.7910−⨯3.下列运算正确的是A. 235a a a ⋅=B. 235()a a =C. 33(2)2a a −=−D. 933a a a ÷=4.如图,点E ,C ,F ,B 在一条直线上,AB ∥ED ,∠A =∠D ,添加下列条件不能..判定△ABC ≌△DEF 的是 A. AC ∥DF B. AB =DE C. EC =BF D. AC =DF5.若正多边形的一个外角是72°,则该正多边形的边数为 A. 4 B. 5 C. 6 D. 76.如图是折叠凳及其侧面示意图. 若AC =BC=18 cm ,则折叠凳的宽AB 可能为 A .70 cm B .55 cm C .40 cm D .25 cm7.下列各式从左到右变形正确的是A. y y x x−=−− B. 1133x x +=+ C. 22142xxx +=−− D. 221xy x y = 8.如图,在△ABC 中,∠BAC =90°,P 是△ABC 内一点,点D ,E ,F 分别是点P 关于直线AC ,AB ,BC 的对称点,给出下面三个结论:① AE =AD ; ② ∠DPE =90°;③ ∠ADC +∠BFC +∠BEA =270°. 上述结论中,所有正确结论的序号是 A.①② B.①③ C.②③ D. ①②③ 二、填空题(本题共16分,每小题2分) 9.若代数式31x −有意义,则实数x 的取值范围是___________. 10.分解因式:32____________________a ab −=.11.在平面直角坐标系xOy 中,已知点A (-1,-1)关于x 轴的对称点'A 的坐标为____________.12.计算:322(69)3a a a −÷=_____________.13.已知等腰三角形的一个内角为40°,则它的顶角度数为_____________°. 14.如图,在△ABC 中,DE 是BC 边的垂直平分线. 若AB =8,AC =13,则△ABD 的周长为____________.15.把一张长方形纸片沿对角线折叠,使折叠后的图形如图所示.若 ∠BAC =35°,则∠CBD =_____________°.16.请阅读关于“乐数”的知识卡片,并回答问题: 乐 数我们将同时满足下列条件的分数称为“乐数”. a . 分子和分母均为正整数; b . 分子小于分母;c . 分子、分母均为两位数,且分子的个位数字与分母的十位数字相同;d .去掉分子的个位数字与分母的十位数字后,得到的分数与原来的分数相等. 例如:1664去掉相同的数字6之后,得到的分数14恰好与原来的分数相等,则1664是一个“乐数”.(1)判断:1339___________(填“是”或“不是”)“乐数”; (2)写出一个分子的个位数字与分母的十位数字同为9的“乐数”_____________.三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分)17.计算:12+21(3)(2024)2π−⎛⎫−+ ⎪⎝−−−⎭.18.(1)已知2220x x +−=,求代数式2(2)(3)−++x x x 的值.(2)计算: 21121121x x x x x ⎛⎫+÷ ⎪−+−+⎝⎭. 19.小明用自制工具测量花瓶内底的宽.他将两根木条AC ,BD 的中点连在一起(即AO =CO ,BO =DO ),如图所示放入花瓶内底. 此时,只需测量点 与点 之间的距离,即为该花瓶内底的宽,请证明你的结论.20.如图,在△ABC 中,∠C =90°,∠A =30°.在线段AC 上求作一点D ,使得CD =12AD .小明发现作∠ABC 的平分线交AC 于点D ,点D 即为所求. (1)使用直尺和圆规,依小明的思路作出点D (保留作图痕迹); (2)完成下面的证明.证明:∵∠A =30°,∠C =90°, ∴∠ABC =_________°.∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =30°. ∴∠ABD =∠A .∴AD=_________.在Rt △BCD 中,∠CBD =30°,∴CD =12BD (____________________________________________)(填推理依据).∴CD =12AD .21. 如图所示的4×4网格是正方形网格,顶点是网格线交点的三角形称为格点三角形. 如图 1,△ABC 为格点三角形. (1)∠ABC =__________°;(2)在图2和图3中分别画出一个以点1C ,2C 为顶点,与△ABC 全等,且位置互不相同的格点三角形.22.列方程解应用题无人配送以其高效、安全、低成本等优势,正在成为物流运输行业的新趋势.某物流园区使用1辆无人配送车平均每天配送的包裹数量是1名快递员平均每天配送包裹数量的5倍.要配送6 000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天,求1名快递员平均每天可配送包裹多少件? 23.如图,四边形ABCD 中,AB =AC ,∠D =90°,BE ⊥AC 于点F ,交CD 于点E ,连接EA ,EA 平分∠DEF .(1)求证:AF=AD;(2)若BF=7, DE=3,求CE的长.24.小明设计了一个净水装置,将杂质含量为n的水用m单位量的净水材料过滤一次后,水中的杂质含量为1nm+. 利用此净水装置,小明进行了进一步的探究:现有杂质含量为1的水.(1)用2单位量的净水材料将水过滤一次后,水中杂质含量为_______;(2)小明共准备了6a单位量的净水材料,设计了如下的三种方案:方案A是将6a单位量的净水材料一次性使用,对水进行过滤;方案B和方案C均为将6a单位量的净水材料分成两份,对水先后进行两次过滤. 三种方案的具体操作及相关数据如下表所示:①②通过计算回答:在这三种方案中,哪种方案的最终过滤效果最好?(3)当净水材料总量为6a单位量不变时,为了使两次过滤后水中的杂质含量最少,小明应将第一次净水材料用量定为________________(用含a的式子表示).25.如图,在△ABC中,∠ACB=90°,AB=BC,作直线AP,使得45°<∠P AC<90°.过点B作BD⊥AP于D,在DA的延长线上取点E,使DE=BD. 连接BE,CE.(1)依题意补全图形;(2)若∠ABD=α,求∠CBE(用含α的式子表示);(3)用等式表示线段AE,CE,DE之间的数量关系,并证明.26.在平面直角坐标系xOy中,直线l过原点且经过第三、第一象限,l与x轴所夹锐角为n°. 对于点P和x 轴上的两点M,N,给出如下定义:记点P关于直线l的对称点为Q,若点Q的纵坐标为正数,且△MNQ 为等边三角形,则称点P为M,N的n°点.(1)如图1,若点M(2,0),N(4,0),点P为M,N的45°点,连接OP,OQ.①∠POQ=________________°;②求点P的纵坐标;(2)已知点M(m,0),N(m+t,0).①当t=2时,点P为M,N的60°点,且点P的横坐标为-2,则m=____________________;②当m=-2时,点P为M,N的30°点,且点P的横坐标为2,则t=___________________.参考答案一、选择题 (共24分,每小题3分)二、填空题(共16分,每小题2分) 9. 1x ≠; 10. ()()a a b a b +−; 11. (1,1)−; 12. 23a −; 13. 40或100; 14. 21; 15. 20; 16.(1)不是;(2)1995(答案不唯一). 三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分) 17.(本题满分5分)解:原式=9122−++ ………………………………………………………………4分=12 . …………………………………………………………………………5分18.(1)(本题满分5分)解:原式=22269x x x x −+++ ………………………………………………………2分 =2249x x ++. ………………………………………………………………3分∵2220x x +−=,∴222x x +=. ………………………………………………………………4分 ∴2244x x +=.∴原式=4913+=. 5分(2)(本题满分5分)解:原式=211(1)(1)(1)(1)(1)2x x x x x x xx ⎡⎤+−−+⋅⎢⎥−+−+⎣⎦ ……………………………………3分 =22(1)(1)(1)2x x x x x−⋅−+ …………………………………………………4分 =11x x −+. ………………………………………………………………5分19.(本题满分5分)解:C , D ; …………………………………………………………………………1分 理由如下:连接CD .在△COD 和△AOB 中,AD,,,OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩∴△COD ≌△AOB (SAS ). …………………………………………………4分 ∴CD AB =.∴点C 与点D 的距离为该花瓶内底的宽. …………………………………5分20.(本题满分5分)解:(1)…………………………………………………2分∴点D 即为所求.(2)60; ……………………………………………………………………………3分BD ; …………………………………………………………………………4分在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.…………………………………………………………………5分21.(本题满分5分)解:(1)90; …………………………………………………………………………2分 (2)答案不唯一.…………………………………………5分22.(本题满分5分)解:设1名快递员平均每天配送包裹x 件. ……………………………………………1分依题意,得60006000254x x+=. ………………………………………………………3分 解得 150x =. …………………………………………………………4分 经检验,150x =是原分式方程的解且符合题意.答:1名快递员平均每天可配送包裹150件.…………………………………………5分23.(本题满分5分)(1)证明:∵∠D =90°, ∴AD ⊥ED .∵BE ⊥AC 于点F , EA 平分∠DEF , ∴AF =AD . …………………2分(2)解:∵BE ⊥AC 于点F ,B∴∠AFB =90°.在Rt △AFB 和Rt △ADC 中,,,AB AC AF AD =⎧⎨=⎩∴△AFB ≌△ADC (HL ). ………………………………………………3分 ∴BF =CD .∵BF =7,∴CD =7. ………………………………………………………………4分 ∵DE =3,∴CE =CD −DE =7−3=4. …………………………………………………5分24.(本题满分6分)(1)13; …………………………………………………………………………………1分(2)①114a +,()()11412a a ++; ……………………………………………………3分 ② 解:116a −+()()1151a a ++=()()()2516151a a a a +++. ∵0a >,∴250a >,()()()16151a a a +++0>.∴()()()2516151a a a a +++0>. ∴116a +>()()1151a a ++. 同理,可得()()1151a a ++>()()11412a a ++. ∴()()11412a a ++<()()1151a a ++<116a+. ∴方案C 的最终过滤效果最好. ………………………………………………5分 (3)3a. …………………………………………………………………………………6分 25.(本题满分7分) (1)依题意补全图形…………………………………………………………1分(2)解:∵BD ⊥AP 于D ,∴∠BDE =90°. ∵BD =DE ,∴∠DBE =∠DEB =45°. ∵∠ABD =α,∴∠ABE =∠DBE −∠ABD =45°−α. ∵∠ABC =90°,∴∠CBE =∠ABC −∠ABE =45°+α.…………………………………………………3分 (3)AE+CE=2DE . ……………………………………………………………………4分 证明:如图,在AD 延长线上取点F ,使DF=AD ,连接BF . ∵BD ⊥AP ,AD=DF , ∴BA=BF . ∴∠FBD =∠ABD =α. ∵∠DBE =45°, ∴∠EBF =∠DBE+∠DBF =45°+α. ∴∠EBF =∠CBE . ∵AB=BC , ∴BF=BC . ∵BE=BE ,∴△BEF ≌△BEC (SAS ). ∴FE =CE.∵AE =DE −AD , CE =FE =DE+DF , AD =DF ,∴AE+CE =2DE. ………………………………………………………………………7分 26.(本题满分7分)(1)①∠POQ =30°; ………………………………………………………………………1分 ②解:过点P 作P A ⊥y 轴于A ,过点Q 作QB ⊥x 轴于B , ∴∠P AO =∠QBO =90°.∵点P 为线段MN 的45°点,∴PO =QO ,∠AOC =∠BOC =45°,∠POC =∠QOC . ∴∠AOP =∠BOQ . 在△OP A 和△OQB 中,PAO QBO AOP BOQ OP OQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△OP A ≌△OQB (AAS ). ∴AO =BO .E DCBAPBAC .E FDB A P∵△MNQ是等边三角形,点M(2,0),点N(4,0),∴OM=MN=2.∵QB⊥MN,∴112BM MN==.∴AO=BO=3.∴P点纵坐标为3. ………………………………………………………………………4分(2)①m=6;………………………………………………………………………5分②t=3或t=-6.………………………………………………………………………7分。
人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。
初二上册数学期末考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.333...D. √42. 如果一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 30°C. 90°D. 120°3. 以下哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x4. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 105. 一个数的平方根是它本身的数有几个?A. 0个C. 2个D. 3个6. 已知一个圆的半径为3,那么这个圆的面积是多少?A. 9πB. 18πC. 27πD. 36π7. 一个数的绝对值是它本身,这个数是正数还是负数?A. 正数B. 负数C. 非负数D. 非正数8. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 109. 以下哪个选项是不等式?A. 2x + 3 = 7B. 2x + 3 > 7C. 2x + 3 < 7D. 2x + 3 ≤ 710. 一个数的立方根是它本身,这个数是以下哪个?A. 0B. 1D. 8二、填空题(每题2分,共20分)11. 一个角的余角是45°,那么这个角的度数是________。
12. 一个数的平方是25,那么这个数是________或________。
13. 一个直角三角形的两个锐角的度数之和是________。
14. 一个数的绝对值是5,那么这个数是________或________。
15. 一个数的立方是-8,那么这个数是________。
16. 一个数的倒数是1/3,那么这个数是________。
17. 一个等腰三角形的底角是40°,那么顶角的度数是________。
18. 一个圆的周长是2πr,那么这个圆的半径是________。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √3B. πC. -3/4D. 2.5答案:C2. 下列各数中,无理数是()A. 1/2B. √4C. √9D. √-1答案:D3. 若a、b为实数,且a + b = 0,则下列等式中正确的是()A. a = bB. a = -bC. ab = 0D. a² = b²答案:B4. 已知函数f(x) = 2x - 1,则f(3)的值为()A. 5B. 4C. 3答案:A5. 在直角坐标系中,点A(2, 3)关于y轴的对称点坐标是()A. (-2, 3)B. (2, -3)C. (-2, -3)D. (2, 3)答案:A二、填空题(每题4分,共20分)6. 已知x² - 5x + 6 = 0,则x的值为______。
答案:2,37. 若|a| = 5,则a的值为______。
答案:±58. 下列函数中,奇函数是______。
答案:f(x) = x³9. 若∠ABC = 90°,AB = 3,BC = 4,则AC的长度为______。
答案:510. 已知等差数列{an}中,a₁ = 3,公差d = 2,则aₙ =______。
答案:3 + 2(n - 1)三、解答题(共60分)11. (12分)解下列方程:(1) 2x² - 5x + 2 = 0(2) 3(x - 1)² - 4 = 0(1) x₁ = 1,x₂ = 2(2) x₁ = 1/3,x₂ = 112. (12分)已知函数f(x) = 2x² - 3x + 1,求:(1) 函数的对称轴(2) 函数的顶点坐标答案:(1) 对称轴为x = 3/4(2) 顶点坐标为(3/4, -1/8)13. (12分)在直角坐标系中,已知点A(2, 3),B(4, 5),C(6, 7),求:(1) 线段AB的长度(2) 线段AC的斜率答案:(1) 线段AB的长度为√2(2) 线段AC的斜率为114. (12分)已知等差数列{an}中,a₁ = 3,公差d = 2,求:(1) 第10项的值(2) 前n项和Sₙ的表达式答案:(1) 第10项的值为21(2) Sₙ = n(3 + 21(n - 1))/215. (12分)已知函数f(x) = |x - 2| + 1,求:(1) 函数的图像(2) 函数的最小值答案:(1) 函数的图像为V形,顶点坐标为(2, 1)(2) 函数的最小值为1。
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √3B. πC. -√4D. 2/32. 已知a=2,b=-3,那么a-b的值是()A. -5B. 5C. 1D. -13. 如果a+b=0,那么a和b互为()A. 相等B. 相反数C. 同号D. 异号4. 在下列各式中,正确的是()A. (a+b)²=a²+2ab+b²B. (a-b)²=a²-2ab+b²C. (a+b)²=a²-2ab+b²D. (a-b)²=a²+2ab-b²5. 下列各式中,绝对值最小的是()A. |2|B. |-2|C. |0|D. |2/3|6. 已知函数f(x)=2x+1,那么f(-1)的值是()A. 1B. -1C. 3D. -37. 下列各式中,根号内的代数式有意义的是()A. √(x-1)B. √(x²+1)C. √(-x)D. √(x+2)8. 已知a、b、c是三角形的三边,那么下列不等式中成立的是()A. a+b+c<0B. a+b>cC. a+c>bD. b+c<a9. 在下列各函数中,一次函数是()A. y=2x²+1B. y=x+3C. y=3/xD. y=√x10. 已知函数f(x)=x²-4x+4,那么f(2)的值是()A. 0B. 2C. 4D. 6二、填空题(每题5分,共25分)11. 如果a=5,那么a²的值是__________。
12. 如果x-3=0,那么x的值是__________。
13. 已知a=2,b=-3,那么a²+b²的值是__________。
14. 在下列各数中,无理数是__________。
15. 已知函数f(x)=3x-2,那么f(1)的值是__________。
泸县一中初2022级初二上期期末考试数学试题考试时间:120分钟 试题满分:120分第1卷 选择题(36分)一、单选题(本大题共12个小题,每题3分,共36分) 1.下图形中,是轴对称图形的是A .B .C .D . 2.要组成一个三角形,三条线段的长度可以是A .1,2,3B .3,4,5C .4,6,11D .1.5,2.5,4.53.某种颗粒物的直径约为0.0000018米,用科学记数法表示该颗粒物的直径为A .0.18×10﹣5米B .1.8×10﹣5米C .1.8×10﹣6米D .18×10﹣5米4.如图,AE BC ⊥于点,于点,于点,则中边上的高是哪条垂线段A .B .C .D .5.下列计算正确的是A .B .C .D .6.如图,在中,角平分线,相交于点H .若,则的度数是 A . B . C . D .7.如图,已知.下列条件中,不能作为判定的条件是A .B .C .D .8.泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B 是观察点,船A 在B 的正前方,过B 作AB 的垂线,在垂线上截取任意长BD ,C 是BD 的中点,观察者从点D 沿垂直于BD 的DE 方向走,直到点E 、船A 和点C 在一条直线E BF AC ⊥F CD AB ⊥D ABC BC AE CD BF AF 523a a a ⋅=()235a a =22456a a a +=633a a a ÷=ABC BD CE 70A ∠=︒BHC ∠60︒90︒110︒125︒AD BC =ABC BAD ≌BAC ABD ∠=∠ABC BAD ∠=∠90C D ∠=∠=︒AC BD =4题图 6题图 7题图 8题图A .12B .15C .12或15D .以上答案都不对10.下列等式中,从左到右的变形是因式分解的是A .B .C .D . 11.如图,在中,,,垂直平分线交于点.交于点,则的周长为A .B .C .D .,若ACD ,则ABD第2卷 非选择题(84分) 二、填空题(本大题共3个小题,每小题3分,共12分)253(5)3x x x x −+=−+2(2)(5)310x x x x −+=+−22(23)4129x x x +=++2244(2)−+=−x x x ABC 10AC =8BC =AB AB M AC D BDC 12141618215题图12题图 11题图三、解答题(本大题共4个小题,每小题4分,共16分)四、解答题(本大题共3个小题,每小题6分,共18分)21.先化简,再求值:,其中.22.如图,已知AD是△ABC的角平分线,CE是△ABC的AB边上的高,∠BAC=60°,∠BCE =40°.求∠BAD和∠ADB的度数.23.已知,(1)画出向下平移个单位的三角形;(2)画出关于轴对称的三角形;(3)求的面积.五、解答题(本大题共3个小题,每小题7分,共21分)2(3)(1)(1)2(3)a a a a−−−+++3a=ABCABC4111A B C△ABC y222A B C△ABC22题图.如图,在中,..解分式方程:六、解答题(本大题共2个小题,27题8分,28题9分,共17分)27.某商厦利用8000元的资金购进一批运动服,面市后供不应求.于是,商厦再次利用17600元购进同样的运动服,第二批购进的数量是第一批购进数量的2倍,且每套运动服的进价比第一批多4元,商厦销售运动服时每套的预售价都是58元.(1)求第一批运动服的进价为每套多少元?(2)按预售价销售一段时间后,根据市场的实际情况,商厦决定将剩余部分运动服打五折销售,要使销售这两批运动服的总利润不少于6300元,商厦打折销售的该运动服至多为多少套?28.在等边△ABC 外侧作直线AM ,点C 关于AM 的对称点为D ,连接BD 交AM 于点E ,连接CE ,CD ,AD .(1)依题意补全图1,并求∠BEC 的度数;(2)如图2,当∠MAC =30°时,判断线段BE 与DE 之间的数量关系,并加以证明; (3)若0°<∠MAC <120°,当线段DE =2BE 时,直接写出∠MAC 的度数.ABC 12x +泸县一中初2022级初二上期期末考试数学试题参考答案即为所求.(2)解:根据对称的性质,作图如下,即为所求.(3)解:如图所示,利用将补成一个正方形∴∴,即的面积是111A B C △222A B C △ABC ABC CDA CDEF S S S =−−△△正方形112212122ABC S =⨯−⨯⨯−⨯△ABC和中,∴.解:去分母得:(x-2)+2x=4,x=2BDF AAS ADC BDF ≌()1122x x +=+−设商厦打折销售的该运动服为m套,依题意得:58(200+400﹣m)+58×0.5m﹣8000﹣17600≥6300,解得:m≤100.答:商厦打折销售的该运动服至多为100套.28.解:(1)补全图形如图1所示,根据轴对称得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y.在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,证明:∵△ABC是等边三角形,∴AB=BC=AC,由对称知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等边三角形,∴CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明∠CBD=90°,画图时,没画在一条直线上)延长EB至F使BE=BF,∴EF=2BE,由轴对称得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,连接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等边三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.。
《初二上学期期末试卷》(期末试卷)2(苏科版初二上)doc 初中数学八年级数学试题题号一二三四五总分1-1011-20 21-25 26 27 28 29 30 31 得分第一部分〔选择题,共 30 分〕本卷须知:答卷前将密封线内的项目填写清晰一、选择题:〔本大题共10小题,每题3分,共30分.在每题给出的4个选项中,只有1项是符合题目要求的,请正确答案的序号填写在下面的括号内〕.1.以下函数中,一次函数是A.x2y B.y=5x 2 C.y=1+5x D.y=x 2+x(x-1)2.假设x<-3,那么A .-2x>6B .2x>-6C .-2x<6D .2x<63.在坐标平面内有一点P(a ,b),且a 与b 的乘积为零,那么P 的位置一定在 A.原点 B.x 轴上 C.y 轴上 D.坐标轴上4.四边形ABCD 的对角线相交于O ,且OA=OB=OC=OD ,那么那个四边形 A.仅是轴对称图形 B.仅是中心对称图形C.即是轴对称图形又是中心对称图形 D.即不是轴对称图形,又不是中心对称图形 5.8的平方根是 A.22B.-22C.±22D.不存在6.在学校对学生进行的体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0,0.1,0.1,那么在这10天中该学生的体温波动数据中不正确的选项......是.A.平均数为0.12 B.众数为0.1 C.中位数为0.1 D.平均数为0.027.五根小木棒,其长度分不为7、15、20、24、25,现想把它们摆成两个直角三角形,以下图中题号 1 2 3 4 5 6 7 8 9 10答案2024正确的选项是8a =,那么以下结论正确的选项是A.4.5 5.0a << B.5.0 5.5a <<C.5.5 6.0a << D.6.0 6.5a <<9.如图,点阵中以相邻4个点为顶点的小正方形的面积为1, 那么△ABC 的面积为 A .3 B .3.5 C .4 D .4.510.一列火车从盐城站动身,加速行驶一段时刻后开始匀速行驶,过了一段时刻,火车到达下一个车站.乘客上、下车后,火车又加速,一段时刻后再次开始匀速行驶.下面哪幅图能够近似地刻画出火车在这段时刻内的速度变化情形.第二部分〔非选择题,共 120 分〕本卷须知:第二部分试题答案用钢笔或圆珠笔直截了当写在试卷上。
初二数学期末试卷一. 填空题(共10个小题,每小题2分,共20分) 1. 分解因式:242x x -=____________。
2. 分解因式:4222---=x y xy ____________。
3. 当x =____________时,分式x x -+32无意义。
4. 如图1,等边三角形ABC 中,AD ⊥BC ,垂足为D ,如果AC cm =10,那么BD =____________cm 。
图15. 把两根钢条AB 、CD 的中点连在一起,可以做成一个测量内槽宽的工具(卡钳),如图2,若测得BD cm =4,则槽宽AC 为____________cm 。
图26. 如图3,把△ABC 绕点C 顺时针旋转31°,得到△A’B’C’,A’B’交AC 于点D ,则∠A’CD =____________°。
图37. 轮船在静水中每小时走a 千米,水流速度是b 千米/时,则轮船在逆流中航行S 千米所需要的时间可表示为____________(小时)。
8. 矩形的面积A 和长b 、宽c 存在着数量关系A bc =,当面积A A ()≠0为定值时,b 和c 有____________关系。
9. 如图4,校园内有两棵树相距12m ,一棵树高13m ,另一棵树高8m ,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞____________m 。
图410. 等腰三角形一边上的高等于另一边的一半,那么顶角的度数为____________。
二. 选择题(共10个小题,每小题3分,共30分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的。
11. 把x x 256+-分解因式得( ) A. ()()x x -+16 B. ()()x x -+23 C. ()()x x +-16D. ()x x +-5612. 下列各式与x yx y -+相等的是( )A. ()()x y x y -+++55B. 22x y x y -+C. ()x y x y x y --≠222()D. x y x y 2222-+13. 如果y my 224-+是完全平方式,那么m 的值一定是( ) A. 1 B. 2 C. ±1 D. ±214. 图5中,AD 是△ABC 的高的是( )图515. 如果分式()()x x x -+-322的值为零,那么x 的值为( )A. x =3B. x =-2C. x =3或x =-2D. x 的值不能确定 16. 下列分式变形正确的是( )A. -+=-+a b c a bc B. a b c ab c --=-C. -+--=+-a ba ba ba b D.---+=+-a ba ba ba b17. 已知三角形中有两条边的长度分别为2和7,第三边的长度是奇数,那么这个三角形的周长是()A. 18B. 16C. 14D. 718. 图6中,不是轴对称图形的是()图619. 如图7,等腰三角形ABC中,腰AB的垂直平分线MN交另一腰BC于点G,AB=10,△AGC周长等于17,则底边AC的长为()图7A. 12B. 10C. 7D. 520. 如图8,在△ABC中,BD、CE分别是AC、AB边上的中线,分别延长BD、CE到F、G,使DF=BD,EG=CE,则下列结论:①GA=AF,②GA∥BC,③AF∥BC,④G、A、F在一条直线上,⑤A是线段GF的中点,其中正确的有()图8A. 5个B. 4个C. 3个D. 2个三. (共3个小题,21小题3分,22、23小题每小题4分,共11分)21. 分解因式:()() x y x y+-+-241解:22. 先化简,再求值:412921612222xxx xx xxx--++++-÷+-,其中x=-2。
解:23. 化简:()() ()()3422222 x y x yx y x y-++-⎡⎣⎢⎢⎤⎦⎥⎥---解:四. (共2个小题,每小题4分,共8分)24. 已知:如图9,△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,点C 恰好落在AB的中点D处,求∠A的度数。
图925. 如图10,在两条河流l l12、交汇处的三角平原上有两个村庄A、B,准备在三角平原上修建一农贸市场D,要求农贸市场D到两条河的距离和到两村庄A、B的距离分别相等。
请用尺规作图在图10中确定农贸市场D的位置。
(不写作法,保留作图痕迹)图10五. (共3个小题,每小题5分,共15分)26. 解方程:xx x-++-=2216412解:27. 解关于x的方程:axbabxaba b -=-≠()22解:28. 列方程解应用题:某汽车市场运进480辆汽车准备销售,由于开展了促销活动,每天销售的汽车数量是原计划的1.5倍,结果提前8天完成了销售任务,问原计划每天销售多少辆汽车?解:六. (共4个小题,29小题6分,30小题3分,31小题4分,32小题3分,共16分。
30小题中选作题另加2分)29. 已知:如图11,△ABC中,D、E分别为AB、BC上的点,BD=BE,∠BDC=∠BEA,AE 与CD 相交于点O 。
(1)在不添加辅助线的情况下,请写出由已知条件可得出的结论(例如,可得出△BDC ≌△BEA ,∠DOA =∠EOC ,∠DOE =∠AOC 等,你写出的结论中,不含所举之例,只要求写出六个):①_______________________________; ②_______________________________; ③_______________________________; ④_______________________________; ⑤_______________________________; ⑥_______________________________。
图11(2)求证:O 点在线段AC 的垂直平分线上。
证明:30. 学习因式分解的公式后,有同学发现:()()()()()()()()()x x x x x x x x x x x x242824111111111111-=-+-=-++-=-+++……根据你发现的规律,直接写出: x321-=________________________; x 2561-=________________________;(以下为选作,满分2分) xn21-=________________________(n 为正整数)。
31. 已知:a 、b 、c 为△ABC 的三边对应的长度,且满足a c b c a b 222244-=-。
试判断△ABC 的形状,并说明理由。
解:32. 如图12,△ABC 中,AB =AC ,∠A =36°,仿照下图(1),请再设计三种不同的分法,将△ABC 分割成3个三角形,使每个三角形都是等腰三角形。
(图(2)、(3)、(4)供画图用,工具不限,不要求写画法,不要求证明,但要标出分割后每个等腰三角形中两个角的度数,可参看图(1))。
A B C (1) 36° 36°36°36° 108° 72° A B C (2) A B C (3) AB C (4)图12【试题答案】一. 填空题(共10个小题,每小题2分,共20分)1.() 22 x x-2. ()() 22--++x y x y3. -24. 55. 46. 317.s a b -8. 反比9. 1310. 30°或120°或150°(答对2个给1分,答对3个给2分)二. 选择题(共10个小题,每小题3分,共30分)11. A 12. C 13. D 14. D 15. A16. D 17. B 18. C 19. C 20. A三. (共3个小题,21小题3分,22、23小题每小题4分,共11分)21. 解:原式()()=+-++x y x y244………………2分()=+-x y22………………3分22. 解:原式()()()()()()=-+-+++--+ 4333132212xx xxx xxx·=++++4313xxx………………2分=++xx53………………3分当x=-2时,原式=-+-+=25233………………4分23. 解:原式()()=-+⎡⎣⎢⎤⎦⎥--34442x y x y………………2分()()=⎛⎝⎫⎭⎪-+--34288x y x y………………3分()()=+-16988x yx y………………4分四. (共2个小题,每小题4分,共8分)24. 解:连DE由折叠可得:△EDB≌△ECB∴∠EDB=∠ECB=90°,∠DBE=∠CBE………………1分∵D为AB中点∴DE为线段AB的垂直平分线………………2分∴AE =BE∴∠A =∠DBE ………………3分∴===︒-︒=︒∠∠∠A DBE CBE 18090330………………4分即∠A 为30° 25. 图略(说明:点D 为河L L 12、夹角的平分线与线段AB 垂直平分线的交点。
角平分线与线段垂直平分线作图正确,各得2分。
)五. (共3个小题,每小题5分,共15分)26. 解:原方程可化为()()x x x x -+-+-=2216221………………1分去分母,得:()()()x x x --=+-216222………………2分 解得:x =-2………………3分经检验:x =-2是增根。
………………4分 ∴原方程无解………………5分27. 解:去分母,得:a b b x ab a x 2222-=-………………1分 ∴-=-a x b x ab a b 2222()()∴-=-a b x ab b a 22………………3分()a b a b x ab b a a b 2222220≠∴-≠∴=-- 即x ab a b =-+………………5分 经检验:x ab a b =-+是原方程的解。
∴原方程的解为x ab a b =-+ 28. 解:设原计划每天销售x 辆汽车………………1分依题意,可得:480480158x x -=.………………2分解得:x =20………………3分经检验,x =20是原方程的解。
………………4分 答:原计划每天销售20辆汽车。
………………5分六. (共4个小题,29小题6分,30小题3分,31小题4分,32小题3分,共16分,30小题中选作题另加2分)29. (1)解:∠BCD =∠BAE ,∠ACD =∠CAD ,CE =AD ,CB =AB ,OC =OA ,OE =OD ,△COE ≌△AOD ,△AEC ≌△CDA ,点O 在∠ABC 的平分线上,……等。