四边形培优试题—含相似
- 格式:doc
- 大小:65.38 KB
- 文档页数:2
四边形专项训练题(培优)一.选择题(共10小题)1.四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.2.如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC3.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A.等边三角形B.正方形C.正五边形D.正六边形4.如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C作CF∥DE,交AB的延长线于点F,则BF的长为()A.5B.4C.3D.25.如图1,在菱形ABCD中,∠C=120°,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F 的坐标为(2,3),则图象最低点E的坐标为()A.(,2)B.(,)C.(,)D.(,2)6.如图,在△ABC中,AB=AC,△DBC和△ABC关于直线BC对称,连接AD,与BC相交于点O,过点C作CE⊥CD,垂足为C,与AD相交于点E,若AD=8,BC=6,则的值为()A.B.C.D.7.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF 的边长为()A.2mm B.2mm C.2mm D.4mm8.如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E9.依据所标数据,下列一定为平行四边形的是()A.B.C.D.10.如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形二.填空题(共10小题)11.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.12.正十二边形的一个内角的度数为.13.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接P A,以P A,PC为邻边作平行四边形P AQC,连接PQ,则PQ长度的最小值为.14.如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠F AN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).15.如图,菱形ABCD的边长为2,∠ABC=60°,对角线AC与BD交于点O,E为OB 中点,F为AD中点,连接EF,则EF的长为.16.如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4,则四边形CEDF的周长是.17.七边形一共有条对角线.18.小张同学家要装修,准备购买两种边长相同的正多边形瓷砖用于铺满地面.现已选定正三角形瓷砖,则选的另一种正多边形瓷砖的边数可以是.(填一种即可)19.如图,在四边形ABCD中,连接AC,∠ACB=∠CAD.请你添加一个条件,使AB=CD.(填一种情况即可)20.如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED 是菱形,这个条件可以是.(写出一个即可)三.解答题(共8小题)21.同学们在探索“多边形的内角和”时,利用了“三角形的内角和”.请你在不直接运用结论“n边形的内角和为(n﹣2)•180°”计算的条件下,利用“一个三角形的内角和等于180°”,结合图形说明:五边形ABCDE的内角和为540°.22.如图,在▱ABCD中,点E、F分别是边AB、CD的中点.求证:AF=CE.23.小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC ⊥BD ,OB =OD .求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC ⊥BD ,OB =OD ,∴AC 垂直平分BD .∴AB =AD ,CB =CD ,∴四边形ABCD 是菱形.小洁: 这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.24.如图,已知五边形ABCDE 是正五边形,连接AC 、AD .证明:∠ACD =∠ADC .25.如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点(不与点A ,C 重合),连接DE 并延长交射线AB 于点F ,连接BE .(1)求证:△DCE ≌△BCE ;(2)求证:∠AFD =∠EBC .26.如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.27.如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E,F,且BE=DF,∠ABD=∠BDC.求证:四边形ABCD是平行四边形.28.如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形.(2)当AD=5,tan∠EDC=时,求FG的长.。
人教版 八年级数学 18.1 平行四边形 培优训练一、选择题(本大题共8道小题)1. 以三角形的三个顶点作平行四边形,最多可以作( ) A .2个 B .3个 C .4个 D .5个2. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°3. 如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( ) A . 3 cm B . 4 cm C . 5 cm D . 8 cm4. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD .△ABO 的面积是△EFO 的面积的2倍5. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .156. (2019▪广西池河)如图,在△ABC中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF7.已知四边形的四条边长分别是a b c d ,,,,其中a b ,为对边,并且满足222222a b c d ab cd +++=+则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形8.(2020·临沂)如图,P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S ,PBC ∆的面积为2S ,则( )A.122SS S +>B.122SS S +<C.212SS S += D.21S S +的大小与P 点位置有关二、填空题(本大题共8道小题)9. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形.10.(2020·牡丹江)如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD 是平行四边形(填一个即可).11. 已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于O 点,AOB ∆的周长比BOC ∆的周长多8cm ,则AB的长度为cm .OD CBA12. 如图所示,在▱ABCD中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________.13. (2020·凉山州)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交AD 于点E .若OA =1,△AOE 的周长等于5,则平行四边形ABCD 的周长等于 .O EDCB A14. 如图,在ABCD 中,E.F 是对角线AC 上两点,AE=EF=CD ,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为__________.15. 如图,在▱ABCD中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD ′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.ABC16. 如图,一个平行四边形被分成面积为1S 、2S 、3S 、4S 四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时.① 14S S 与23S S 的大小关系为.② 已知点C 与点A 、B 不重合时,图中共有 个平行四边形,S 4S 3S 2S 1(3)DCBA三、解答题(本大题共4道小题) 17. (2020·重庆B 卷)如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD 于点E ,F . (1)若∠BCF =60°,求∠ABC 的度数; (2)求证:BE =DF .18. 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .DPCBA19. (2020·泰安)(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC ﹦∠EAD﹦90°.(1)如图(1),点B 是DE 的中点,判断四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF ﹦CD . 求证:①EB ﹦DC ,②∠EBG ﹦∠BFC .GFABCDEABCDE20. 如图,AC 是平行四边形ABCD 较长的一条对角线,点O 是ABCD 内部一点,OE AB ⊥于点E ,OF AD ⊥于点F ,OG AC ⊥于点G ,求证:AE AB AF AD AG AC ⋅+⋅=⋅.人教版 八年级数学 18.1 平行四边形 培优训练-答案一、选择题(本大题共8道小题) 1. 【答案】B2. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.3. 【答案】B【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.4. 【答案】B【解析】∵E,F,G,H分别是AO,BO,CO,DO的中点,在ABCD中,A B=2,AD=4,∴EH=12AD=2,HG=1122CD=AB=1,∴EH≠HG,故选项A 错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=1122AD BC FG==,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF∥AB,∴△OEF∽△OAB,∴214AEFOABS EFS AB⎛⎫==⎪⎝⎭,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选B.5. 【答案】C6. 【答案】B【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE=12 AC.A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选B.7. 【答案】B8. 【答案】C【解析】可以利用割补法对平行四边形进行分割,然后使分割后的图形与PAD ∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.二、填空题(本大题共8道小题) 9. 【答案】AD ∥BC (答案不唯一) 【解析】根据平行四边形的判定,在已有AB ∥DC 的条件下,可再加另一组对边平行即可证得它是平行四边形,即加“AD ∥BC”.10. 【答案】AD=BC【解析】当添加条件AD=BC 时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD 是平行四边形.11. 【答案】19【解析】如图,AOB ∆的周长为AB AO BO ++,BOC ∆的周长为BC BO CO ++ 由平行四边形的对角线互相平分可得()()8AB AO BO BC BO CO AB BC ++-++=-= ∴6082194AB +⨯==.12. 【答案】50°【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA=∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.13. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE =12AD ,OE =12CD .∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +CD =8.∴平行四边形ABCD 的周长=16.故答案为16.14. 【答案】21° 【解析】设∠ADE=x ,∵AE=EF ,∠ADF=90°,∴∠DAE=∠ADE=x ,DE=12AF=AE=EF ,∵AE=EF=CD ,∴DE=CD , ∴∠DCE=∠DEC=2x ,∵四边形ABCD 是平行四边形,∴AD ∥BC , ∴∠DAE=∠BCA=x ,∴∠DCE=∠BCD ﹣∠BCA=63°﹣x ,∴2x=63°﹣x ,解得x=21°,即∠ADE=21°; 故答案为:21°.15. 【答案】36°【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.16. 【答案】①1423S S S S =;②9三、解答题(本大题共4道小题)17. 【答案】(1)解: ∵CF 平分∠BCD ,∴∠BCD =2∠BCF .∵∠BCF =60°,∴∠BCD =2×60°=120°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°. ∴∠ABC =180°-120°=60°.(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∠BAD =∠DCB .∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD =12∠DCB =∠DCF .在△ABE 和△CDF 中,∵∠ABE =∠CDF ,AB =CD ,∠BAE =∠DCF , ∴△ABE ≌△CDF . ∴BE =DF .18. 【答案】如图所示,将PAB ∆平移至QDC ∆的位置,易证DQ AP =,CQ BP =,则四边形DPCQ 恰好是一个以AP 、BP 、CP 、DP 为边的四边形,并且它的对角线恰好等于平行四边形ABCD 的两条邻边.QDPCBA19. 【答案】(1)证明:四边形BEAC 是平行四边形. 理由如下:∵△EAD 为等腰三角形且∠EAD ﹦90°, ∴∠E ﹦45°.∵B 是DE 的中点, ∴AB ⊥DE . ∴∠BAE ﹦45°.∵△ABC 为等腰三角形且∠BAC ﹦90°, ∴∠CBA ﹦45°. ∴∠BAE ﹦∠CBA . ∴BC ∥EA . 又∵AB ⊥DE ,∴∠EBA ﹦∠BAC ﹦90°. ∴BE ∥AC .∴四边形BEAC 是平行四边形.(2)证明:①∵△AED 和△ABC 为等腰三角形, ∴AE ﹦AD ,AB ﹦AC . ∵∠EAD ﹦∠BAC ﹦90°,∴∠EAD +∠DAB ﹦∠BAC +∠DAB .即∠EAB ﹦∠DAC . ∴△AEB ≌△ADC . ∴EB ﹦DC .②延长FG 至点H ,使GH ﹦FG . ∵G 是EC 中点,∴EG ﹦CG .又∠EGH ﹦∠FGC , ∴△EHG ≌△CFG ,∴∠BFC ﹦∠H ,CF ﹦EH . 又∵CF ﹦CD , ∴BE ﹦CF . ∴BE ﹦EH .∴∠EBG ﹦∠H . ∴∠EBG ﹦∠BFC .AB CDEEDCBA FGH20. 【答案】如图所示,,分别过点B 、C 、D 作直线AO 的垂线,EG CP DL ∥∥、Q 、N 为垂足;分别过B 、D 作AC 的垂线,L 、K 为垂足. 显然,A 、E 、O 、G 、F 五点共圆,AO 是直径.由DN AO ⊥,CQ AO ⊥,BM AO ⊥,DC AB ∥且DC AB =可知NQ AM =. 已知AF AD AN AO ⋅=⋅,AE AB AM AO ⋅=⋅, 则AF AD AE AB ⋅+⋅ AN AO AM AO =⋅+⋅ ()AO AN AM =+ ()AO AN NQ =+ AO AQ =⋅ AG AC =⋅故AE AB AF AD AG AC ⋅+⋅=⋅.点评:ab cd ef +=类型的问题一般要转化为ab mn =型的问题(当然,如果能够使用勾股定理、余弦定理等,大家也可以踊跃尝试),把握了这一点,就能及时调整思路,确保解题不会误入歧途.图(1)图(2)。
浙教版2022-2023学年八下数学第四章平行四边形培优测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.4B.8C.10D.12【答案】B【解析】设这个多边形的边数是n,则有(n﹣2)×180°=360°×3,解得n=8.故答案为:B.2.在同一平面内,设a、b、c是三条互相平行的直线,已知a与b间的距离为5cm,b与c间的距离为2cm,则a与c间的距离为()cm.A.3B.7C.3或7D.2或3【答案】C【解析】①当直线c在直线a、b外时,∵a与b间的距离为5cm,b与c间的距离为2cm,∴a与c间的距离为5+2=7(cm);②直线c在直线a、b之间时,∵a与b间的距离为5cm,b与c间的距离为2cm,∴a与c间的距离为5−2=3(cm);综上,a与c间的距离为3cm或7cm,故答案为:C.3.将一张正方形纸片,按如图①,②的步骤,沿虚线对折两次,然后沿图③中的虚线剪去一个角得到图④,将图④展开铺平后的图形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.不是轴对称图形,也不是中心对称图形D.是中心对称图形,也是轴对称图形【答案】D【解析】将图④展开铺平后的图形如图所示:该图形是中心对称图形,也是轴对称图形.故答案为:D.4.如图,在四边形ABCD中,AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AD∥BC,OA=OC B.OB=OD,∠ABD=∠CDBC.AD∥BC,AB=CD D.AB∥CD,∠ABC=∠ADC【答案】C【解析】A项,∵AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,又∵∠AOD=∠BOC,AO=CO,∴∠AOD∠∠COB,∴AD=BC,∴结合AD∥BC有四边形ABCD是平行四边形;B.∵∠ABD=∠CDB,∴AB∥CD又∵∠AOB=∠DOC,BO=DO,∴∠AOB∠∠COD,∴AB=CD,∴结合AB∥CD有四边形ABCD是平行四边形;C.等腰梯形ABCD满足AD∥BC,AB=CD,但四边形ABCD不是平行四边形,故C项不能判定四边形ABCD是平行四边形;D.∵AB∥CD,∴∠ABD=∠CDB,又∵∠ABC=∠ADC,∴∠CBD=∠ABC-∠ABD=∠ADC-∠CDB=∠ADB,∴AD∥BC,∴结合AB∥CD有四边形ABCD是平行四边形;故答案为:C.5.用反证法证明:a,b,c至少有一个为0,应该假设()A.a,b,c没有一个为0B.a,b,c只有一个为0C.a,b,c至多一个为0D.a,b,c三个都为0【答案】A【解析】根据反证法证明:a,b,c至少有一个为0,应该假设a,b,c没有一个为0;故答案为:A.6.如图,四边形ABCD中.AC∠BC,AD//BC,BD为∠ABC的平分线,BC=6,AC=8.E、F分别是BD、AC的中点,则EF的长为()A.2B.3C.4D.5【答案】A【解析】∵AC∠BC,∴∠ACB=90°,∵BC=6,AC=8.∴AB =√62+82=10, ∵AD ∥BC ,∴∠ADB=∠DBC ,∵BD 为∠ABC 的平分线, ∴∠ABD=∠CBD , ∴∠ABD=∠ADB , ∴AB=AD=10,连接BF 并延长交AD 于G ,∵AD ∥BC ,∴∠GAC=∠BCA , ∵F 是AC 的中点, ∴AF=CF ,在∠AFG 和∠CFB 中,{∠AFG =∠CFB∠GAC =∠BCA AF =CF,∴∠AFG∠∠CFB (AAS ), ∴BF=FG ,AG=BC=6, ∴DG=10-6=4, ∵E 是BD 的中点, ∴EF= 12DG=2.故答案为:A .7.如图,在▱ABCD 中,BE∠CD ,BF∠AD ,∠EBF=45°,CE=3,DF=1,则AF=( )A .3√2−1B .3√2+1C .3√2−2D .3√2+2【答案】A【解析】由题意,如图:在▱ABCD 中,有AD =BC ,AD//BC ,∠A =∠C , ∵BE ⊥CD ,BF ⊥AD ,∠EBF =45∘, ∴∠BFD =∠BED =90∘,∴∠D =360∘−45∘−90∘−90∘=135∘,∴∠A =∠C =45∘,∴∠ABF 和∠BCE 是等腰直角三角形, ∴BE=CE=3,AF=BF ,∴BC =√BE 2+CE 2=√32+32=3√2, ∴AD =3√2,∴AF=BF=AD −DF =3√2−1, 故答案为:A .8.如图,在平行四边形ABCD 中,AB =5,BC =8,∠ABC 和∠BCD 的角平分线分别交AD 于点E 和F ,若BE =6,则CF =( )A .6B .8C .10D .13 【答案】B【解析】如图,设BE 与FC 的交点为H ,过点A 作AM∠FC ,交BE 与点O ,∵四边形ABCD 是平行四边形, ∴AD∠BC ,AB∠CD , ∴∠ABC+∠DCB=180°,∵BE 平分∠ABC ,CF 平分∠BCD , ∴∠ABE =∠EBC ,∠BCF =∠DCF , ∴∠CBE+∠BCF =90°, ∴∠BHC =90°, ∵AM∠CF ,∴∠AOE =∠BHC =90°, ∵AD∠BC ,∴∠AEB =∠EBC =∠ABE , ∴AB =AE =5, 又∵∠AOE =90°, ∴BO =OE =3,∴AO =√AE 2−EO 2=√52−32=4, 在∠ABO 和∠MBO 中,{∠ABO =∠CBO BO =BO∠AOB =∠MOB =90°, ∴∠ABO∠∠MBO (ASA ), ∴AO =OM =4, ∴AM =8,∵AD∠BC ,AM∠CF ,∴四边形AMCF 是平行四边形, ∴CF =AM =8. 故答案为:B.9.如图,平行四边形ABCD 中,对角线AC 、BD 相交于O ,BD=2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点,下列结论:①四边形BEFG 是平行四边形;②BE∠AC ;③EG=FG ;④EA 平分∠GEF 。
一、相似真题与模拟题分类汇编(难题易错题)1.(1)问题发现如图1,四边形ABCD为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE,PF分别交BC,DC于点M,N,当PM⊥BC,PN⊥CD时, =________(用含a,b的代数式表示).(2)拓展探究在(1)中,固定点P,使△PEF绕点P旋转,如图2,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决如图3,四边形ABCD为正方形,AB=BC=a,点P在对角线AC上,M,N分别在BC,CD 上,PM⊥PN,当AP=nPC时,(n是正实数),直接写出四边形PMCN的面积是________(用含n,a的代数式表示)【答案】(1)(2)解:如图3,过P作PG⊥BC于G,作PH⊥CD于H,则∠PGM=∠PHN=90°,∠GPH=90°∵Rt△PEF中,∠FPE=90°∴∠GPM=∠HPN∴△PGM∽△PHN∴由PG∥AB,PH∥AD可得, ,∵AB=a,BC=b∴,即 ,∴,故答案为(3)【解析】【解答解:(1)∵四边形ABCD是矩形,∴AB⊥BC,∵PM⊥BC,∴△PMC∽△ABC∴∵四边形ABCD是矩形,∴∠BCD=90°,∵PM⊥BC,PN⊥CD,∴∠PMC=∠PNC=90°=∠BCD,∴四边形CNPM是矩形,∴CM=PN,∴,故答案为;( 3 )∵PM⊥BC,AB⊥BC∴△PMC∽△ABC∴当AP=nPC时(n是正实数),∴PM= a∴四边形PMCN的面积= ,故答案为:.【分析】(1)由题意易得△PMC∽△ABC,可得比例式,由矩形的性质可得CM=PN,则结论可得证;(2)过P作PG⊥BC于G,作PH⊥CD于H,由辅助线和已知条件易得△PGM∽△PHN,则得比例式,由(1)可得比例式,即比值不变;(3)由(2)的方法可得,则四边形PMCN的面积= .2.如图,在一间黑屋子里用一盏白炽灯照一个球.(1)球在地面上的影子是什么形状?(2)当把白炽灯向上平移时,影子的大小会怎样变化?(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?【答案】(1)解:球在地面上的影子的形状是圆.(2)解:当把白炽灯向上平移时,影子会变小.(3)解:由已知可作轴截面,如图所示:依题可得:OE=1 m,AE=0.2 m,OF=3 m,AB⊥OF于H,在Rt△OAE中,∴OA= = = (m),∵∠AOH=∠EOA,∠AHO=∠EAO=90°,∴△OAH∽△OEA,∴,∴OH= == (m),又∵∠OAE=∠AHE=90°,∠AEO=∠HEA,∴△OAE∽△AHE,∴ = ,∴AH= ==2625 (m).依题可得:△AHO∽△CFO,∴ AHCF=OHOF ,∴CF= AH⋅OFOH = 2625×32425=64 (m),∴S影子=π·CF2=π· (64)2 = 38 π=0.375π(m2).答:球在地面上影子的面积是0.375π m2.【解析】【分析】(1)球在灯光的正下方,根据中心投影的特点可得影子是圆.(2)根据中心投影的特点:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;所以白炽灯向上移时,阴影会逐渐变小.(3)作轴截面(如图)由相似三角形的判定得三组三角形相似,再根据相似三角形的性质对应边成比例,可求得阴影的半径,再根据面积公式即可求出面积.3.(1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则 ________;②求证: .________(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分且平分?若存在,求出的值;若不存在,请说明理由.(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接 .设,则与的周长之比为________(用含的表达式表示).【答案】(1)解:4;证明:∵∠EDF=60°,∠B=160°∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,又∵∠B=∠C,∴(2)解:解:存在。
备考2019年中考数学压轴题专项培优训练:四边形1.把Rt△ABC和Rt△DEF按如图①摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF =10.如图②,△DEF从图①的位置出发,以每秒1个单位的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以每秒1个单位的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)△DEF在平移的过程中,AP=CE=(用含t的代数式表示);当点D落在Rt△ABC的边AC上时,求t的值.(2)在移动过程中,当0<t≤5时,连接PE,①设四边形APEQ的面积为y,求y与t之间的函数关系式并试探究y的最大值;②是否存在△PQE为直角三角形?若存在,请直接写出t的值;若不存在,请说明理由.2.如图1,在正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF,交点为G.若正方形的边长为4(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求AQ的长;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM (如图3),若AM和BF相交于点N,求四边形MNGH的面积.3.如图1,已知三角形纸片△AB C和△DEF重合在一起,AB=AC,DE=DF,△ABC ≌△DEF.数学实验课上,张老师让同学们用这两张纸片进行如下操作:【操作探究1】保持△ABC不动,将△DEF沿射线BC方向平移至图2所示位置,通过度量发现BE:CE=1:2,则S△CGE:S△CAB=;【操作探究2】保持△ABC不动,将△DEF通过一次全等变换(平移、旋转或翻折后和△ABC拼成以BC为一条对角线的菱形,请用语言描述你的全等变换过程.(友情提醒:描述过程要完整)【操作探究3】将两个三角形按图3所示放置:点C与点F重合,AB∥DE.保持△ABC不动,将△DEF沿射线DA方向平移.若AB=13,BC=10,设△DEF 平移的距离为m.①当m=0时,连接AD、BE,判断四边形ABED的形状并说明理由;②在平移的过程中,四边形ABED能否成为正方形?若能,请求出m的值;若不能,请说明理由.4.如图,已知正方形ABCD的边长为4、点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG、顶点G在线段PC 上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①点O与△APE的位置关系是,并说明理由;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,线段AE的大小也在改变,当AP =,AE达到最大值,最大值是.5.问题背景:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1:将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量AB=4cm,AC=8cm,问题解决:(1)将图1中的△ACD以点为A旋转中心,按逆时针方向能转∠α,使∠α=∠BAC,得到如图2所示的△AC'D,过点C作AC'的平行线,与DC'的延长线交于点E,则四边形ACEC'的形状是.(2)缜密小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC'D,连接CC',取CC'的中点F,连接AF并延长到点G,使FG=AF,连接CG、C'G,得到四边形ACGC',发现它是正方形,请你证明这个结论.实践探究:(3)创新小组在缜密小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC'相交于点H,如图4所示,连接CC',试求tan∠C'CH的值.6.在矩形ABCD中,AC、BD交于点O,点P、E分别是直线BD、BC上的动点,且PE=PC,过点E作EF∥AC交直线BD于点F(1)如图1,当∠COD=90°时,△BEF的形状是(2)如图2,当点P在线段BO上时,求证:OP=BF(3)当∠COD=60°、CD=3时,请直接写出当△PEF成为直角三角形时的面积.7.在正方形ABCD中,对角线AC、BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①):①求证:△BOG≌△POE;②猜想:=;(2)当点P与点C不重合时,如图②,的值会改变吗?试说明理由.8.在矩形ABCD中,E为射线BC上一点,DF⊥AE于F,连接DE.(1)如图1,若E在线段BC上,且CE=EF,求证:AD=AE;(2)若AB=6,AD=10,在点E的运动过程中,连接BF.①当△ABF是以AB为底的等腰三角形时,求BE的长;②当BF∥DE时,若S△ADF=m,S△DCE=n,探究m﹣n的值并简要说明理由.9.如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(8,0).(1)当α=60°时,△CBD的形状是;(2)设AH=m①连接HD,当△CHD的面积等于10时,求m的值;②当0°<α<90°旋转过程中,连接OH,当△OHC为等腰三角形时,请直接写出m的值.10.如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG 以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)①当t为时,以A、F、C、E为顶点的四边形是平行四边形(直接写出结果);②当t为时,S△ACE=2S△FCE.(直接写出结果)11.如图,四边形AOBC中,点C到直线OA,OB的距离相等为m,∠AOB=90°,OC平分∠AOB,OB长为n,且m=++4,四边形AOBC的面积为6.(1)求线段OA的长;(2)P为AB延长线上一点,PQ∥OC,交CB延长线于Q,探究∠OAP、∠ABQ、∠Q的数量关系并说明理由;(3)作AD平行CB交CO延长线于D,BE平分∠CBH,BE反向延长线交CO延长线于F,若设∠ADO=α,∠F=β,试求α+2β的值.12.(1)问题发现:如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是,位置关系是;(2)探究证明:如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC的延长线上时,连接EC,写出此时线段AD,BD,CD之间的等量关系,并证明;(3)拓展延仲:如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,请直接写出AF的长.13.如图(1),已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系(位置关系及数量关系),请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一角度α后(0°<α<90°),如图(2),通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;(3)若BC=DE=2,正方形DEFG绕点D逆时针方向旋转角度α(0°<α<360°)过程中,当BG为最小值时,求AF的值.14.综合与实践:问题情境:(1)如图1,点E是正方形ABCD边CD上的一点,连接BD、BE,将∠DBE绕点B顺针旋转90°,旋转后角的两边分别与射线DA交于点F和点G.①线段BE和BF的数量关系是;②写出线段DE、DF和BD之间的数量关系,并说明理由;操作探究:(2)在菱形ABCD中,∠ADC=60°,点E是菱形ABCD边CD所在直线上的一点,连接BD、BE,将∠DBE绕点B顺时针旋转120°,旋转后角的两边分别与射线DA交于点F和点G.①如图2,点E在线段DC上时,请探究线段DE、DF和BD之间的数量关系,写出结论并给出证明.②如图3,点E在线段CD的延长线上时,BE交射线DA于点M,若DE=DC=2a,直接写出线段FM和AG的长度.15.如图O为坐标原点,四边形ABCD是菱形,A(﹣8,8),B点在第一象限,AB=10,AB与y轴交于点F,对角线AC交y轴于点E(1)直接写出B、C点的坐标;(2)动点P从C点出发以每秒2个单位的速度沿折线段C﹣D﹣A运动,设运动时间为t秒,请用含t的代数式表示△EDP的面积;(3)在(2)的条件下,是否存在一点P,使△APE沿其一边翻折构成的四边形是菱形?若存在,请直接写出当t为多少秒时存在符合条件的点P;若不存在,请说明理由.16.如图,在平面直角坐标系中,长方形ABCD的顶点A(a,0),B(b,0)在坐标轴上,C的纵坐标是2,且a,b满足式子:(1)求出点A、B、C的坐标.(2)连接AC,在y轴上是否存在点M,使△COM的面积等于△ABC的面积,若存在请求出点M的坐标,若不存在请说明理由.(3)若点P是边CD上一动点,点Q是CD与y轴的交点,连接OP,OE平分∠AOP交直线CD于点E,OF⊥OE交直线CD于点F,当点P运动时,探究∠OPD 和∠EOQ之间的数量关系,并证明.参考答案1.解:(1)如图1,△DEF在平移的过程中,AP=CE=t;当D在AC上时,如图2,∵DE=DF,∴EC=CF=EF=5,∴t=5.故答案为:t;(2)①如图3,过点P作PM⊥BC于M,∴∠BMP=∠ACB=90°,∴△ABC∽△PBM,∴,∴,∴PM=8﹣t,又∵∠EDF=90°,∠DEF=45°,∴∠EQC=∠DEF=45°,∴CE=CQ=t,∴y=S△ACB﹣S△ECQ﹣S△PBE=AC•BC﹣EC•CQ﹣BE•PM,=×8×6﹣×t×t﹣(6﹣t)(8﹣t),=﹣t(0<t≤5),∵a=﹣<0,∴当x=﹣=﹣=时,y最大值=﹣×+×=,②存在.i)当∠PQE=90°时,如图4,过点P作PH⊥BE于H,过点P作PW⊥AC于W,∴△ABC∽△APW,∴,即,∴PW=t,AW=t,∴QW=8﹣t﹣t=8﹣t,EH=t﹣t=t,由①可得:CE=CQ=t,PH=8﹣t∴PQ2=PW2+QW2=(t)2+(8﹣t)2=t2﹣t+64,PE2=PH2+EH2=(8﹣t)2+(t)2=t2﹣t+64,EQ2=CE2+CQ2=t2+t2=2t2∵∠PQE=90°,在Rt△PEQ中,PQ2+EQ2=PE2,即:(t2﹣t+64)+(2t2)=t2﹣t+64解得:t1=0(舍去)t2=;当∠PEQ=90°,PE2+EQ2=PQ2即:(t2﹣t+64)+(2t2)=t2﹣t+64解得:t1=0(舍去)t2=20(舍去)∴此时不存在;当∠EPQ=90°时PQ2+PE2=EQ2,即:(t2﹣t+64)+(t2﹣t+64)=2t2,t1=(舍去)t2=4,综合上述:当t=或t=4时,△PQE是直角三角形.2.解:(1)证明:如图1,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∵,∴Rt△ABE≌Rt△BCF(SAS),∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF;(2)如图2,根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,∵PF=FC=2,PB=BC=4,在Rt△BPQ中,设QB=x,∴x2=(x﹣2)2+42,∴x=5,∴AQ=BQ﹣AB=5﹣4=1;(3)∵正方形边长为4,∵∠BAE=∠EAM,AE⊥BF,∴AN=AB=4,∵∠AHM=90°,∴GN∥HM,…(8分)∴△AGN∽△AHM∴=()2,∴=()2,∴S△AGN=,∴S四边形GHMN=S△AHM﹣S△AGN=4﹣=,∴四边形GHMN的面积是.3.解:(1)如图2,由题意知DE∥AB,∴△CGE∽△CAB,∴=()2,∵=,∴=,则=()2=,故答案为:4:9;(2)将△DEF沿EF翻折或绕BC中点旋转180°;(3)①∵AB∥DE且AB=BC=DC=DE,∴四边形ABED是平行四边形,∵∠DEC+∠CEB+∠CBE+∠ABC=180°,且∠DEC=∠ABC,∠CEB=∠CBE,∴∠DEC+∠CEB=90°,即∠BED=90°,∴四边形ABED是矩形;②能,如图,过点A作AG⊥BC,过点C作CH⊥BE,CM⊥AB,∴BG=BC=5,∴AG==12,∵S△ABC=AB•CM=BC•AG,∴CM==,则BH=CM=,BE=2BH=,∵四边形ABED是正方形,∴平移后BE=AB,则m=+13=或m=﹣13=.4.解:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠BPC,∴△APE∽△BCP,∴,即,解得:AE=;故答案为:;(2)①点O在△APE的外接圆上,理由是:证明:如图1,取PE的中点Q,连接A Q,OQ,∵∠POE=90°,∴OQ=PE,∵△APE是直角三角形,∴点Q是Rt△APE外接圆的圆心,∴AQ=PE,∴OQ=AQ=EQ=PQ,∴O在以Q为圆心,以OQ为半径的圆上,即点O在△APE的外接圆上;(到圆心的距离等于半径的点必在此圆上),故答案为:点O在△APE的外接圆上;②连接OA、AC,如图2所示,∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==4,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=2,即点O经过的路径长为2;(3)设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,∴,∴AE=(x﹣2)2+1,∴x=2时,AE的最大值为1,即当AP=2时,AE的最大值为1.故答案为:2,1.5.解:(1)在如图1中,∵AC是矩形ABCD的对角线,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠BAC,在如图2中,由旋转知,AC'=AC,∠AC'D=∠ACD,∴∠BAC=∠AC'D,∵∠CAC'=∠BAC,∴∠CAC'=∠AC'D,∴AC∥C'E,∵AC'∥CE,∴四边形ACEC'是平行四边形,∵AC=AC',∴▱ACEC'是菱形,故答案为:菱形;(2)在图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠CAD=∠ACB,∠B=90°,∴∠BAC+∠ACB=90°在图3中,由旋转知,∠DAC'=∠DAC,∴∠ACB=∠DAC',∴∠BAC+∠DAC'=90°,∵点D,A,B在同一条直线上,∴∠CAC'=90°,由旋转知,AC =AC ',∵点F 是CC '的中点,∴AG ⊥CC ',CF =C 'F ,∵AF =FG ,∴四边形ACGC '是平行四边形,∵AG ⊥CC ',∴▱ACGC '是菱形,∵∠CAC '=90°,∴菱形ACGC '是正方形;(3)在Rt △ABC 中,AB =4,AC =8,∴AC '=AC =8,AD =BC =4,sin ∠ACB ==,∴∠ACB =30°,由(2)结合平移知,∠CHC '=90°,在Rt △BCH 中,∠ACB =30°,∴BH =BC •sin30°=2,∴C 'H =BC '﹣BH =8﹣2,在Rt △ABH 中,AH =AB =2,∴CH =AC ﹣AH =8﹣2=6,在Rt △CHC '中,tan ∠C ′CH ==.6.解:(1)△BEF 是等腰直角三角形,理由是:如图1,∵∠COD =90°,∴AC ⊥BD ,∴矩形ABCD 是正方形,∴∠ACB =45°,∵EF ∥AC ,∴∠FEB =∠ACB =45°,∠F =∠BOC =90°,∴△BEF 是等腰直角三角形,故答案为:等腰直角三角形;(2)如图2,∵四边形ABCD是矩形,∴AC=BD,OB=BD,OC=AC,∴OB=OC,∴∠OBC=∠OCB=∠FBE,∵∠FBE=∠BEP+∠EPB,∠OCB=∠PCB+∠OCP,∵PE=PC,∴∠BEP=∠PCB,∴∠EPB=∠OCP,∵EF∥AC,∴∠COP=∠BFE,∴△PEF≌△CPO(AAS),∴OC=PF=OB,∴OB﹣PB=PF﹣PB,即OP=BF;(3)∵四边形ABCD是矩形,∴AC=BD,OD=BD,OC=AC,∴OD=OC,∵∠COD=60°,∴△COD是等边三角形,∴OC=CD=3,如图3,当∠PEF=90°时,∵EF∥AC,∴∠POC=∠OFE=60°,∴∠BFE=120°,∴OB =OC , ∴∠OBC =∠OCB =∠FEB =30°,∵∠FEP =90°,∴∠PEC =60°,∵PE =PC ,∴△PEC 是等边三角形,∴∠PCB =60°,∴∠PCO =60°﹣30°=30°=∠FPE ,∴△PFE ≌△COP (ASA ),∴PF =OC =3,Rt △PFE 中,EF =,PE =,∴S △PEF ===;∴当△PEF 成为直角三角形时的面积是.7.(1)①证明:∵四边形ABCD 是正方形,P 与C 重合,∴OB =OP ,∠BOC =∠BOG =90°,∵PF ⊥BG ,∠PFB =90°,∴∠GBO =90°﹣∠BGO ,∠EPO =90°﹣∠BGO ,∴∠GBO =∠EPO ,在△BOG 和△POE 中,∵,∴△BOG ≌△POE (ASA );②由①知,△BOG ≌△POE ,∴BG =PE ,∵∠BPE =∠ACB ,∠BPF +∠GPF =∠ACB ,∴∠BPF =∠GPF ,∵BF⊥PE,∴BF=BG,∴=,故答案为:;(2)解:猜想.证明:如图2,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OCB.∵∠OBC=∠OCB=45°,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=90°﹣∠BMN,∠NPE=90°﹣∠BMN,∴∠MBN=∠NPE,在△BMN和△PEN中,∵,∴△BMN≌△PEN(ASA),∴BM=PE.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,,∴△BPF≌△MPF(ASA).∴BF=MF.即BF=BM.∴BF=PE.即.8.(1)证明:在矩形ABCD中,∠DCE=90°,AD∥BC,∴∠ADE=∠DEC,∠DCE=∠DFE=90°,∵CE=EF,DE=DE,∴△CED≌△FED(HL),∴∠CED=∠FED,∴∠ADE=∠AED,∴AD=AE;(2)①分两种情况:当点E在线段BC上时,AF=BF,如图 1 所示:∴∠ABF=∠BAF,∵∠ABF+∠EBF=90°,∠BAF+∠BEF=90°,∴∠EBF=∠BEF,∴EF=BF,∴AF=EF,∵DF⊥AE,∴DE=AD=10,在矩形ABCD中,CD=AB=6,∠DCE=90°,∴CE=8,∴BE=10﹣8=2;当点E在BC延长线上时,AF=BF,如图 2 所示:同理可证AF=EF,∵DF⊥AE,∴DE=AD=10,在矩形ABCD中,CD=AB=6,∠DCE=90°,∴CE=8,∴BE=10+8=18,综上,BE的长是2或8;②m﹣n=0,理由如下:当BF∥DE时,延长BF交AD于G.如图3:在矩形ABCD中,AD∥BC,AD=BC,AB=CD,∠BAG=∠DCE=90°,∵BF∥DE,∴四边形BEDG是平行四边形,∴BE=DG,∴S△DEF=,AG=CE,▱BEDGS △BEF +S △DFG =S ▱BEDG ,∵△ABG ≌△CDE ,∴S △ABG =S △CDE ,∵S △ABE =S ▱BEDG ,∴S △ABE =S △BEF +S △DFG ,∴S △ABF =S △DFG ,∴S △ABF +S △AFG =S △DFG +S △AFG ,即S △ABG =S △ADF ,∴S △CDE =S △ADF ,即m ﹣n =0.9.解:(1)∵矩形COAB 绕点C 顺时针旋转60度的角,得到矩形CFED , ∴∠BCD =60°,CB =CD ,∴△CBD 为等边三角形;故答案为:等边三角形;(2)①∵四边形CFED 是矩形,∴∠DCH =90°,∵△CHD 的面积等于10,∴CD •CH =10,∵CD =4,∴,CH =5,Rt △BCH 中,由勾股定理得:BH ===3, ∴AH =8﹣3=5,即m =5;②当△OHC 为等腰三角形时,分三种情况:i )当OH =CH 时,如图2,∵OA=BC,∴Rt△AOH≌Rt△BCH(HL),∴AH=BH=4,即m=4;ii)当OH=OC=8时,如图3,∵OA=4,由勾股定理得:AH===4,即m=4;iii)当OC=CH=8时,如图4,此时F与H重合,则BH=4,∴m=8﹣4,综上,m的值是4或4或8﹣4.10.(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,∵在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=8﹣2t,解得:t=;当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣8(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣8,解得:t=8;综上可得:当t=或8s时,以A、C、E、F为顶点四边形是平行四边形.故答案为或8s.②∵AG∥BC,∴当AE=2CF时, S△AEC=S△EFC,∴t=2(8﹣2t)或t=2(2t﹣8),解得t=或,故答案为:或.11.解:分别以OB、OA所在的直线为x、y轴建立平面直角坐标系.(1)由题意,解得n=2,∴m=4,∴B(2,0),C(4,4).如图1中,∵S四边形AOBC=S△OBC+S△AOC,∴×2×4+×OA×4=6,∴OA=1.(2)如图2中,结论:∠ABQ+∠OAB﹣∠Q=135°.理由如下:∵OC∥PQ,∴∠Q=∠OCB,∵∠ABQ=∠1+∠OCB=∠1+∠Q,∠1=180°﹣∠OAB﹣∠AOC=180°﹣∠OAB ﹣45°=135°﹣∠OAB,∴∠ABQ=∠Q+135°﹣∠OAB,∴∠ABQ+∠OAB﹣∠Q=135°.(3)如图3中,∵AD∥BC,∴∠ADC=∠DCB=α,∵BE平分∠CBx,∴∠CBE=∠EBx,∵∠CBE=∠F+∠OCB=α+β,∴∠OBF=∠EBx=α+β,∵C(4,4),∴OC平分∠AOB,∴∠COB=45°=∠F+∠OBF=α+(α+β),∴α+2β=45°.12.解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=90°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴∠BCE=45°+45°=90°,故答案为:BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由是:如图2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴DE=AD,∴2AD2=BD2+CD2;(3)如图3,将AF绕点A逆时针旋转90°至AG,连接CG、FG,则△FAG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,同理得:△BAF≌△CAG,∴CG=BF=13,Rt△CGF中,∵CF=5,∴FG=12,∵△FAG是等腰直角三角形,∴AF==6.13.解:(1)结论:BG=AE.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,,∴△ADE≌△BDG(SAS),∴BG=AE.(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,,∴△BDG≌△ADE(SAS),∴BG=AE;②如图③中,连接AF.如图②中,在△BDG中,∵BD=1,DG=2,∴2﹣1≤BG≤1+2,∴GB的最小值为1,此时如图③中,G,B,D共线,在Rt△AEF中,AF===.14.解:(1)①∵∠DBE绕点B顺针旋转90°,如图(1)由旋转可知,∠DBE=∠GBF,∵四边形ABCD是正方形,∴∠BDC=∠ADB=45°,∵∠DBG=90°,∴∠G=45°,∴∠G=∠BDG,∴GB=BD,∴△GBF≌△DBE(SAS),∴BE=BF;故答案为:BE=BF②DF+DE=BD,理由如下:由旋转可知,∠DBE=∠GBF,∵四边形ABCD是正方形,∴∠BDC=∠ADB=45°,∵∠DBG=90°,∴∠G=45°,∴∠G=∠BDG,∴GB=BD,∴△GBF≌△DBE(SAS),∴DE=GF,∴DF+DE=DG,∵DG=BD,即DE+DF=BD;(2)①DF+DE=BD,理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=,由旋转120°得∠EBF=∠DBG=120°,∠EBD=∠FBG,在△DBG中,∠G=180°﹣120°﹣30°=30°,∴∠BDG=∠G=30°,∴BD=BG,∴△EBD≌△FBG(ASA),∴DE=FG,∴DE+DF=DF+FG=DG,过点B作BM⊥DG于点M,如图(2)∵BD=BG,∴DG=2DM,在Rt△BMD中,∠BDM=30°,∴BD=2BM.设BM=a,则BD=2a,DM=,∴DG=2a,∴,∴DF+DE=BD,②过点B作BM⊥DG,BN⊥DC,如图(3)∵DE=DC=2a,由①中同理可得:FM=7a,AG=4a.15.解:(1)如图1中,作AH⊥CD于H.∵四边形ABCD是菱形,∴CD=AB=BC=10,CD∥AB,∵A(﹣8,8),∴AH=OH=8,DH==6,∴OD=2,OC=8,∴B(2,8),C(8,0).(2)如图2,连接DE,作EK⊥AD于K.设直线AC的解析式为y=kx+b,∵A(﹣8,8),C(8,0),∴,∴,∴直线AC地方解析式为y=﹣x+4,∴E(0,4),∴EF=OE=4,∵四边形ABCD是菱形,∴∠EAF=∠EAK,∵AE=AE,∠AFE=∠AKE=90°,∴△AEF≌△AEK(AAS),∴EF=EK=4,当0≤t<5时,S=×4(10﹣t)=﹣2t+20.当5<t≤10时,S=×4(t﹣10)=2t﹣20.(3)①如图3中当点P在AD上,AP=AE时,沿PE翻折,可得四边形PAEA′为菱形,在Rt△AEF中,AE===4,∴AP=AE=4,∴t=20﹣4②如图4中,当点P在AD上,PA=PE时,沿AE翻折,可得四边形PAP′E是菱形,设PA=PE=EP′=AP′=x,在RtEFP′中,则有x2=(8﹣x)2+42,∴x=5,∴PA=5,∴t=20﹣5=15,综上所述,满足条件的t的值为20﹣4或15s.16.解:(1)∵又∵≥0,|b﹣4|≥0,∴a+b﹣2=0,b﹣4=0,∴a=﹣2,b=4,∴A(﹣2,0).B(4,0),∵四边形ABCD是矩形,点C的纵坐标为2,∴C(4,2).(2)设M(,t),∵S△ABC=×(4+2)×2=6,△COM的面积=△ABC的面积,∴•|t|•4=6,解得t=±3,∴M点坐标为(0,3)或(0,﹣3);(3)结论:∠OPD=2∠EOQ.∵OE平分∠AOP,∴∠AOE=∠POE=∠1+∠2,∵OF⊥OE,∴∠1+∠2+∠3=90°,∠4+∠AOE=90°,∴∠3=∠4,∵CD⊥y轴,∴CD∥AB,∴∠OPD=∠POB=2∠3,∵∠1+∠2+∠3=90°,∠2+∠3+∠4=90°,∴∠1+∠2+∠3=∠2+2∠3,∴∠1=∠3,∴∠OPD=2∠EOQ.。
培优专题02 四边形压轴题综合本考点是中考五星高频考点,难度中等及中等偏上,在全国各地市的中考试卷中都有考查。
(2022年攀枝花中考试卷第16题)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有 (填上所有正确结论的序号).【考点】正方形的判定;全等三角形的判定与性质;等边三角形的性质;平行四边形的判定与性质;菱形的判定与性质;矩形的判定与性质.【分析】①利用SAS证明△EFB≌△ACB,得出EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;根据两边分别相等的四边形是平行四边形得出四边形ADFE是平行四边形,即可判断结论①正确;②当∠BAC=150°时,求出∠EAD=90°,根据有一个角是90°的平行四边形是矩形即可判断结论②正确;③先证明AE=AD,根据一组邻边相等的平行四边形是菱形即可判断结论③正确;④根据正方形的判定:既是菱形,又是矩形的四边形是正方形即可判断结论④正确.【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD 是平行四边形,∴平行四边形ADFE 是矩形,故结论②正确;③由①知AB =AE ,AC =AD ,四边形AEFD 是平行四边形,∴当AB =AC 时,AE =AD ,∴平行四边形AEFD 是菱形,故结论③正确;④综合②③的结论知:当AB =AC ,且∠BAC =150°时,四边形AEFD 既是菱形,又是矩形,∴四边形AEFD 是正方形,故结论④正确.故答案为:①②③④.【点评】本题考查了平行四边形及矩形、菱形、正方形的判定,等边三角形的性质,全等三角形的判定与性质,熟练掌握特殊四边形的判定方法和性质是解答此题的关键.特殊四边形综合题是中考数学中的一大重点,也是一大难点。
人教版八年级数学下册第18章平行四边形培优练习(含答案)一、单选题(共有9道小题)1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三角形是否都为直角2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()…A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AD=2,则AC的长是()《A.2 B.4 C..4.下列说法正确的是()A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形,D.对角互补的平行四边形是矩形5.下列命题是假命题的是()A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形6.在Rt△ABC中,∠ACB=90°,AC=BC,CD是斜边AB的中线,若AB=,则点D到BC的距离为()D.27.下列命题是真命题的有()①对顶角相等;%ODBA②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。
A .1个 B .2个 C .3个 D .4个8.如图,已知点P 是矩形ABCD 内一点(不含边界),设1=PADθ∠,2=PBA θ∠,3=PCB θ∠,4=PDC θ∠,若∠APB =80°,∠CPD =50°,则( )A .1423()()30+-+=θθθθ︒B .2413()()40+-+=θθθθ︒>C .1234()()70+-+=θθθθ︒D .1234()()180+++=θθθθ︒9.如图,四边形ABCD 是矩形,AB=6cm ,BC=8cm ,把矩形沿直线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,连接AE.下列结论中结论正确的个数有 ( ) ①△FBD 是等腰三角形; ②四边形ABDE 是等腰梯形; ③图中有6对全等三角形; ④四边形BCDF 的周长为532; ⑤AE 的长为145cm.|A .2个B .3个个D .5个二、填空题(共有8道小题)10.如图,□ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使□ABCD 是矩形.11.如图,在矩形ABCD 中,AB <BC ,AC,BD 相交于点O ,则图中等腰三角形的个数是__。
八年级数学下《四边形》培优练习卷一、选择题1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形2.如图,在△ABC,∠ACB=90°中,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形A CEB的周长。
A.4 B.10+ 4 C. 10+2 D. 23.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE= ( )A.30° B.22.5° C.15° D.以上都不对4.如图,将矩形ABCD沿AE折叠,若∠BAD'=30°,则∠AED' 等于 ( )A.30° B.45° C.60° D.75°第6题5.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是 ( ) A.1.6 B.2.5 C.3 D.3.46.平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD五等分点,点B1,B2和D1,D2分别是BC和DA三等分点,若四边形A4B2C4D2面积为1.则平行四边形ABCD面积为 ( )A.2 B.35C.53D.157.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EB的长为()A.1 B.4C.4﹣2D.4﹣4第7题二、填空题8.在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为______.9.矩形的两条对角线的夹角为60°,一条对角线与较短边的和为15,则较长边的长为_______.10.已经△ABC中,∠C=90°,C=10,a:b=3:4 ,则a= b=11.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为度时,四边形ABFE为矩形.第11题第12题第13题第14题12.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F.连接CE,则CE的长是_______.13.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_______厘米.14.如图,△ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③CEBFSSCEDBFD=∆∆;④EF∥BC.其中正确的是_______.15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,7=∆ABCS,DE=2,AB=4,则AC长为.三、解答题16.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.17.已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=8,CD=1,求ED的长.18.如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、CD分别交于点E、F.求证:∠BEN=∠NFC. (提示:连结AC并取中点)19.如图,在Rt⊿ABC中,∠B=90°,AC=100cm,BC=80cm,点P从点A开始沿边AB向点B以1cm/s的速度运动,同时,另一点Q由点B开始沿边BC向点C以1.5cm/s的速度运动.(1)20s后,点P与点Q相距 cm.(2)在(1)的条件下,若P、Q两点同时在直线PQ上相向而行,多少秒后,两点相遇?(3)多少秒后,AP=CQ?20.△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线..AC、直线..BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),①试判别△DEF的形状,并说明理由;②判断四边形ECFD的面积是否发生变化,并说明理由.(2)设直线..ED交直线..BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;D DEADEDA。
《平行四边形》竞赛试题总分120分,时间120分钟一、填空题(共9小题,每小题3分,满分27分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_________.2.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是_________.(填一个即可)3.如图,已知矩形ABCD,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=____.4.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是_________;(2)当△ABC满足条件_________时,四边形ADEF为菱形;(3)当△ABC满足条件_________时,四边形ADEF不存在.1题2题3题4题5.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为________.6.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有_________对四边形面积相等;它们是_________.7.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为_________.8.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE 的度数为_________度.9.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为_________.6题7题8题9题二、选择题(共9小题,每小题3分,满分27分)10.如图,▱ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是()A.60°B.65°C.70°D.75°10题11题12题13题11.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()A.70°B.75°C.80°D.95°12.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A.2B.C.3D.13.如图,平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°14.四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是()A.两组角分别相等的四边形B.平行四边形C.对角线互相垂直的四边形D.对角线相等的四边形15.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.28415题16题16.如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12m B.20m C.22m D.24m17.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则()A.A D>BC B.A D<BCC.A D=BC D.A D与BC的大小关系不能确定18.已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形"这一结论的情况有()A.4种B.9种C.13种D.15种三、解答题(共10小题,满分66分)19.如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD 交于G,求证:GF∥AC.20.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.21.如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.22.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.23.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M 为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.24.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.25.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.26.阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_________S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_________个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_________个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?27.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.28.如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC 的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.参考答案与试题解析一、填空题(共9小题,每小题4分,满分36分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=.考点:矩形的性质;等腰三角形的性质。
A D
F
C
B E 13.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥B
C 于点E ,PF ⊥C
D 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PF
E =∠BAP ;⑤PD = 2EC .其中正确结论的番号是 .
14题 15题
15.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,BD ⊥DC ,BE =DC ,CE 平分∠BCD ,交AB 于点E ,交BD 于点H ,EN ∥DC 交BD 于点N .下列结论:
①BH =DH ;②CH =(21)EH +;③ENH EBH S
EH S EC
=.其中正确的是 如图,点P 是平行四边形ABCD 内一点,S △PAB =7,S △PAD =4,则S △PAC =
.
考点:平行四边形的性质;三角形的面积。
. 如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶
点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .
33、如图,△ABC 是斜边AB 的长为3的等腰直角三角形,在△ABC 内作第1个内接正方形A 1B 1D 1E 1(D 1、E 1在AB 上,A 1、B 1分别在AC 、BC 上),再在△A 1B 1C 内接同样的方法作第2个内接正方形A 2B 2D 2E 2,…如此下去,操作n 次,则第n 个小正方形A n B n D n E n 的边长是 . 5 n
5
4 3 图1 图12题 A
B C D P F E 13题 A B C D H N E。