VHDL硬件描述语言与数字逻辑电路设计(第五版)侯伯亨章 (2)
- 格式:pptx
- 大小:1.13 MB
- 文档页数:87
VHDL语言介绍VHDL(VHSIC Hardware Description Language)是一种硬件描述语言,用于描述数字电路的结构和行为。
它是一种高级编程语言,用于描述数字系统中的硬件功能。
VHDL是一种被广泛应用于数字系统设计的硬件描述语言,它可以用于描述数字系统的结构和功能,并且允许进行仿真、综合和验证。
VHDL最初是由美国国防部(DoD)为了应对不同供应商生产的不同硬件之间互通性的问题而开发的。
它提供了一种用于描述数字电路的方法,可以在不同供应商的工具之间进行交换。
VHDL已成为一种行业标准,在数字系统设计领域被广泛应用。
VHDL的语法类似于Ada编程语言,它使用关键字、运算符和数据类型来描述数字系统中的硬件元素。
VHDL中的关键概念包括实体(entity)、架构(architecture)和过程(process)。
实体描述了数字系统的接口和功能,架构描述了数字系统的内部结构和行为,而过程描述了数字系统中的操作和控制。
VHDL主要有两种用途,一是用于模拟和验证数字系统的功能,二是用于综合数字系统的设计,生成实际的硬件电路。
在模拟和验证阶段,设计师可以使用VHDL描述数字系统的功能,并通过仿真工具对其进行验证。
在综合阶段,设计师可以使用VHDL描述数字系统的结构,并通过综合工具生成对应的硬件电路。
VHDL的优点在于其强大的表达能力和灵活性。
设计师可以使用VHDL描述各种复杂的数字系统,包括处理器、通信接口、存储器等。
VHDL还提供了丰富的数据类型和运算符,使设计师可以轻松地描述数字系统中的各种操作。
除了描述数字系统的结构和行为,VHDL还提供了丰富的标准库和模块化编程的方法。
设计师可以使用标准库中提供的各种功能模块来加速开发过程,并且可以将自己设计的模块封装成库以便重复使用。
VHDL还支持面向对象的设计方法,设计师可以使用面向对象的技术来组织和管理复杂的数字系统。
通过使用面向对象的方法,设计师可以将数字系统分解成多个模块,每个模块都有自己的接口和功能,并且可以通过继承和复用来简化设计过程。
教材:《VHDL硬件描述语言与数字逻辑电路设计》候伯亨 顾新西安电子科技大学 参考书:《EDA与数字系统设计》李国丽等机械工业出版社十、具有四种信号灯的交通灯控制器1、设计要求设计一个只有四种信号灯的交通灯控制器。
设计要求是:由一条主干道和—条支干道汇合成十字路口,在每个入口处设置红、绿、黄、左拐允许四盏信号灯,红灯亮禁止通行,绿灯亮允许通行,黄灯亮则给行驶中的车辆有时间停在禁行线外,左拐灯亮允许车辆向左拐弯。
信号灯变换次序为:主支干道交替允许通行,主干道每次放行40s,亮5s红灯让行驶中的车辆有时间停到禁行线外,左拐放行15s,克5s红灯;支干道放行30s,亮5s黄灯,左拐放行15s,亮5s红灯……。
各计时电路为倒计时显示。
其系统框图如图7-1所示。
图10-1 具有四种信号灯的交通灯控制器系统框图2、设计提示此设计问题可分成定时模块、主控电路、译码驱动电路和扫描显示几部分。
定时模块中设置40s、30s、15s、5s计时电路,倒计时可以用减法计数器实现。
状态表如表10-1所示。
表10-1 状态表由于主干道和支干道红灯亮的时间分别为55s和65s,所以,还要设置55s、65s倒计时显示电路。
主控电路和译码显示电路的设计,这里状态数为8个,要用3个JK触发器才能完成主控时序部分的设计。
设置主干道红灯显示信号为LAl,黄灯显示信号为LA2,绿灯信号LA3;左拐灯信号LA4,支干道红灯显示信号LB1,黄灯显示信号LB2,绿灯信号LB3,左拐灯信号LB4。
设置系统使能信号为EN,时钟信号为clk 。
硬件系统示意图如图10-2所示。
图10-2 具有四种信号灯的交通灯控制器硬件系统示意图。
VHDL硬件描述语言与数字逻辑电路设计修订版教学设计简介数字逻辑电路设计是电子信息工程专业的重要基础课程之一,是电子技术、计算机科学与技术等专业的核心课程。
数字电路的设计需要借助硬件描述语言,VHDL 是目前广泛应用的硬件描述语言之一。
本教学设计旨在帮助学生掌握VHDL语言的基本语法和使用方法,同时培养学生的数字电路设计能力,提高学生的实践应用能力。
教学目标1.掌握VHDL硬件描述语言的基本语法和编写方法;2.理解数字电路的基本原理和设计思路;3.初步掌握数字电路的设计方法和工具;4.能够运用所学知识设计、测试和验证数字电路。
教学内容第一周:数字电路基础1.数字电路的概念、分类和特点;2.布尔代数和逻辑运算;3.基本逻辑门及其特性。
第二至三周:VHDL简介及基本语法1.VHDL语言的概述和发展历程;2.VHDL语言中的数据类型和运算符;3.VHDL中模块的定义和实例化。
第四至五周:VHDL的结构体和数组1.VHDL结构体的定义和使用;2.VHDL数组的定义和使用;3.VHDL中多维数组的定义和使用。
第六至七周:VHDL数字电路建模1.VHDL中数字电路的建模方法;2.VHDL中数字电路的测试和验证方法。
第八周:VHDL数字电路实验1.VHDL数字电路设计实验的概述;2.VHDL数字电路设计实验的设计和验证。
教学方法本教学设计旨在培养学生的实际应用能力,故采用以实验为主、教学和实验相结合的教学模式。
在课堂讲授的基础上,设置数次小型实验和1次大实验,要求学生按照规定的实验内容和实验要求,独立完成实验。
实验内容1.VHDL模块的设计和仿真;2.VHDL数字电路的设计、仿真和验证;3.VHDL数字电路的综合和布局。
教学评价本教学设计采用多种评价方式,包括课堂表现、小型实验、大型实验和综合评价等。
其中,大型实验占据了60%以上的实验分数,要求学生在指定的时间内,完成从数字电路建模到综合布局的全部环节,并提交完整的实验报告。
《VHDL硬件描述语言》课程教学大纲课程代码:ABJD0414课程中文名称: VHDL硬件描述语言课程英文名称:Very-High-Speed Integrated Circuit HardwareDescription Language课程性质:必修课程学分数:2学分课程学时数:32学时授课对象:自动化专业本课程的前导课程:电路,模拟电子,C语言程序设计一、课程简介本课程是电类专业的专业基础课,要求学生通过本课程的学习和实验,初步掌握常用EDA工具的使用方法、FPGA的开发技术以及VHDL语言的编程方法。
能比较熟练地使用QuartusII等常用EDA软件对FPGA和CPLD作一些简单电路系统的设计,同时能较好地使用VHDL语言设计简单的逻辑电路和逻辑系统,学会行为仿真、时序仿真和硬件测试技术,为现代EDA工程技术的进一步学习,ASIC器件设计以及超大规模集成电路设计奠定基础。
作为一门专业基础课,除了为现代电子线路课程,软件无线电课程奠定理论和实践方面的基础外,还是其他一些课程的先修课,如微电子导论、现代ASIC设计、硬件描述语言仿真/综合器设计、大规模集成电路设计等。
二、教学基本内容和要求(一)概论介绍现代EDA技术,VHDL概况,介绍自顶向下的系统设计方法以及FPGA和CPLD的基本技术,要求对现代EDA技术及实现工具的使用方法和发展情况有一初步了解。
重点与难点:EDA技术的设计工具(二)EDA设计流程及工具首先介绍基于EDA软件的FPGA/CPLD开发流程和ASIC设计流程,然后分别介绍与这些设计流程中各环节密切相关的EDA工具软件,最后简述QuartusII的基本情况和IP。
重点与难点:EDA仿真设计流程。
(三)FPGA/CPLD结构与应用主要介绍几类常用的大规模可编程逻辑器件的结构和工作原理。
对CPLD的乘积项原理和FPGA的查找表原理分别进行剖析。
最后介绍相关的编程下载和测试技术。
重点与难点:FPGA/CPLD的工作作原理及编程技术。
《硬件描述语言》教学大纲课程名称:硬件描述语言英文名称:Hardware Description Language课程编号:09420016学时数及学分:64学时 4学分教材名称及作者:侯伯亨顾新编著:《VHDL硬件描述语言与数字逻辑电路设计》出版社、出版时间:西安电子科技大学出版社,1999年本大纲主笔人:侯俊勇一、课程的目的、要求和任务本课程是一门必修课。
主要介绍VHDL语言以及应用VHDL及EDA工具开发设计数字系统的基本方法及技术,具有很强的工程实践性。
本课程的教学目的是,使学生通过对VHDL语言及EDA技术的学习和训练,获得现代硬件数字电路的软件化设计方法,了解并初步掌握当代国际数字技术设计领域的最新技术;激发并调动学生创造性思维能力,为学生在数字技术领域的进一步深入探索和进行创新奠定基础。
二、大纲的基本内容及学时分配基本要求:1.掌握VHDL语言的程序结构、基本描述语句及描述方法;2.熟悉EDA实验开发系统的使用;3.掌握小型数字系统的VHDL设计技术。
教学内容:1.数字系统硬件设计概述(2)传统的硬件设计方法利用硬件描述语言(HDL)的硬件电路设计方法利用VHDL语言设计硬件电路的优点2.VHDL语言程序基本结构(6)VHDL语言设计的基本单元及其构成VHDL语言设计的基本单元及其构成VHDL语言构造体的子结构描述包集合、库及配置3.VHDL语言的数据类型及运算操作符(2)VHDL语言的客体及其分类VHDL语言的数据类型VHDL语言的运算操作符4.VHDL语言构造体的描述方式(6)构造体的行为描述方式构造体的寄存器传输(RTL)描述方式编构造体的结构描述方式5.VHDL语言的主要描述语句5.VHDL语言的主要描述语句(6)顺序描述语句并发描述语句其它语句和有关规定的说明6.数字系统的状态模型(3)二态数值系统三态数值系统四态数值系统九态数值系统十二态数值系统四十六态数值系统7.基本逻辑电路设计(6)组合逻辑电路设计时序电路设计存储器8.仿真及逻辑综合(2)仿真逻辑综合9.计时电路设计实例(6)1/100s计时器的功能要求和结构1/100s计时控制芯片设计10.处理器接口芯片设计实例(6)可编程并行接口芯片设计实例SCI串行接口芯片设计实例键盘接口芯片KBC设计实例11.93版和87版VHDL语言的主要区别(1)VHDL语言93版的特点87版到93版的移植问题12.MAX+plu sⅡ使用说明(8)MAX+plu sⅡ概述建立和编辑一个VHDL语言的工程文件VHDL语言程序的编译VHDL语言程序的仿真三、与其它课程的关系本课程的先修课程是:数字逻辑(数字电子技术)四、考核方式根据学生实际设计,操作实现情况综合评分。
VHDL与硬件描述语言VHDL(VHSIC Hardware Description Language)是一种硬件描述语言,被广泛应用于数字电路和系统的设计、仿真和验证中。
本文将介绍VHDL的基本概念、语法和应用,以及其在硬件设计中的重要性和优势。
一、VHDL的基本概念与语法VHDL是由美国国防部下属的VHSIC(Very High Speed Integrated Circuits)计划发起的硬件描述语言标准化工作中发展起来的,它源于Ada语言,并在此基础上进行了修改和扩展。
VHDL采用了面向对象的设计思想,通过描述硬件的结构和行为,实现了对数字系统的高层次抽象。
VHDL的基本元素包括实体(entity)、结构(architecture)和配置(configuration)。
实体定义了模块的接口和信号,结构描述了模块内部的组织和连接关系,配置用于将不同实体和结构进行绑定。
此外,VHDL还提供了丰富的数据类型、控制结构和函数库,以支持复杂的逻辑运算和算术操作。
VHDL代码的编写需要遵循一定的语法规则,如正确使用关键字、语句结束符号等。
此外,注释和缩进等规范的使用可以提高代码的可读性和可维护性。
二、VHDL的应用1. 数字电路设计VHDL在数字电路设计中被广泛应用,通过使用VHDL语言,设计人员可以描述和验证各种数字逻辑电路,包括组合逻辑电路和时序逻辑电路。
借助VHDL仿真工具,可以进行功能仿真、时序仿真和行为仿真,验证设计的正确性和性能。
2. 系统级设计除了用于电路级设计,VHDL还可以用于系统级设计。
通过对模块的整合和功能描述,可以搭建更为复杂的系统,并在此基础上进行仿真和验证。
VHDL支持高级抽象和层次化设计,使得系统级设计更加灵活和可重用。
3. ASIC和FPGA设计VHDL在应用特定的集成电路(ASIC)和现场可编程门阵列(FPGA)的设计中,具有非常重要的地位。
ASIC是在集成电路制造厂中进行定制化设计和生产的芯片,而FPGA则是可以在现场进行编程和配置的可重构芯片。