数值计算CH4数值积分与数值微分—43Romberg算法.ppt
- 格式:ppt
- 大小:422.00 KB
- 文档页数:19
第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。
在微积分中,我们熟知,牛顿—莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。
对定积分()ba I f x dx =⎰,若()f x 在区间[,]ab 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()ba f x dx Fb F a =-⎰ 似乎问题已经解决,其实不然。
如1)()f x 是由测量或数值计算以数据表形式给出时,Newton-Leibnitz 公式无法应用。
2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-=等等,它们的原函数不能用初等函数的有限形式表示。
3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。
例如下列积分24111ln11arc 1)arc 1)xdxxtg tg C++=+⎡⎤+++-+⎣⎦⎰对于上述这些情况,都要求建立定积分的近似计算方法—数值积分法。
1.1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定。
由积分中值定理:对()[,]f x C a b∈,存在[,]a bξ∈,有()()()baf x dx b a fξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a-而高为()fξ的矩形面积(图4-1)。
问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()fξ。
我们将()fξ称为区间[,]a b上的平均高度。
这样,只要对平均高度()fξ提供一种算法,相应地便获得一种数值求积分方法。
如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b a T f a f b -=+ (1.1)便是我们所熟悉的梯形公式(图4-2)。
第4 章4数与数微数值积分与数值微分本章内容411.1 光波的特性4.1 引言4.2 Newton-Cotes 公式1.2 光波在介质界面上的反射和折射4.3 Romverg 算法4.4Gauss 1.3 光波在金属表面上的反射和折射4.4 Gauss 公式4.5 数值微分2本章要求主要内容:机械求积、牛顿柯特斯公式、龙贝格算法、高斯公式、•—数值微分。
•基本要求–(1)了解数值微分公式的导出方法及常用的数值微分公式。
–(2) 掌握数值积分公式的导出方法,截断误差;理解代数精度的概念,会用待定系数法。
–(3) 掌握梯形求积公式,抛物线求积公式,牛顿-柯特斯公式的构造及使用,并会应用公式求积分。
(4)熟悉复化梯形公式复化辛普生公式–(4) 熟悉复化梯形公式,复化辛普生公式。
–(5) 会用龙贝格积分法。
–(6) 了解高斯型求积公式的概念及导出方法,能构造简单问题的高精度求积公式,会使用常见的几种高斯型求积公式进行计算。
积公式会使用常见的几种高斯型求积公式进行计算•重点、难点重点牛顿柯特斯公式–重点:牛顿-柯特斯公式;–难点:代数精度的概念。
3414114.1 引言4.1.1 数值求积的基本思想一、问题,d)(∫=b a xxfI数学分析中的处方法由微积分学基本定当如何求积分数学分析中的处理方法:由微积分学基本定理,当f(x)在[a, b]上连续时,存在原函数F(x),牛顿-莱布尼茨(Newton-Leibniz)公式:).()(d)(aFbFxxf ba−=∫但有时用上面的方法计算定积分有困难但有时用上面的方法计算定积分有困难。
441N-L4.1 引言N L公式失效的情形:这时,N-L公式也不能直接运用。
因此有必要研究问题即用数值方法计算定积分因此,有必要研究数值积分问题,即用数值方法计算定积分的近似值.541二、构造数值积分公式的基本思想4.1 引言、构造数值积分公式的基本思想问题:点ξ的具体位置一般是不知道的,因而难以准确算出的值,怎么办?f(ξ)641采用不同的近似计算方法从而得到各种不同的4.1 引言)对f(ξ)采用不同的近似计算方法,从而得到各种不同的数值求积公式。