【练习】1.1 二次函数
- 格式:pptx
- 大小:268.17 KB
- 文档页数:9
专题1.1 二次函数的图像与性质(一)(六大题型)【题型1 判断二次函数的个数】【题型2 利用二次函数的概念求字母的值】【题型3 二次函数的一般式】【题型4根据实际问题列二次函数销售问题】【题型5 根据实际问题列二次函数面积类】【题型6 根据实际问题列二次函数几何类】【题型1 判断二次函数的个数】【典例1】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2(x+3)2﹣2x2;⑤y=ax2+bx+c,⑥y=x2++5其中二次函数的个数为()A.1B.2C.3D.4【变式11】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2(x+3)2﹣2x2;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式12】已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式13】已知函数:①y=ax2;②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2;④y=+x.其中,二次函数的个数为()A.1个B.2个C.3个D.4个【变式14】下列函数中,是二次函数的有()①y=9x2﹣(3x﹣1)2;②;③y=x(1﹣x);④y=(1﹣2x)2A.1个B.2个C.3个D.4个【变式15】下列函数中,是二次函数的有()①y=1﹣3x2;②y=;③y=x(1+x);④y=(1﹣2x)(1+2x)A.1个B.2个C.3个D.4个【题型2 利用二次函数的概念求字母的值】【典例2】已知y关于x的二次函数解析式为y=(m﹣2)x|m|,则m=()A.±2B.1C.﹣2D.±1【变式21】有二次函数y=x m﹣2﹣2x+1,则m的值是()A.4B.2C.0D.4或2【变式22】已知y=mx|m﹣2|+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或4【变式23】若函数y=(a+1)x2+x+1是关于x的二次函数,则a的取值范围是()A.a≠0B.a≥1C.a≤﹣1D.a≠﹣1【变式24】如果函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,那么m的值为﹣.【变式25】若关于x的函数y=(2﹣a)x2﹣3x+4是二次函数,则a的取值范围是.【题型3 二次函数的一般式】【典例3】二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.3【变式31】将二次函数y=x(x﹣1)+3x化为一般形式后,正确的是()A.y=x2﹣x+3B.y=x2﹣2x+3C.y=x2﹣2x D.y=x2+2x【变式32】把二次函数y=﹣(x+3)2+11变成一般式是()A.y=﹣x2+20B.y=﹣x2+2C.y=﹣x2+6x+20D.y=﹣x2﹣6x+2【变式33】把二次函数y=﹣(x+3)(x+4)+11变成一般形式后,其二次项系数和一次项系数分别为()A.﹣1,﹣1B.﹣1,1C.﹣1,7D.﹣1,﹣7【变式34】二次函数的一般形式为()A.y=ax2+bx+c B.y=ax2+bx+c(a≠0)C.y=ax2+bx+c(b2﹣4ac≥0)D.y=ax2+bx+c(b2﹣4ac=0)【变式35】把抛物线y=(x﹣1)2+1化成一般式是.【变式36】把y=(3x﹣2)(x+3)化成一般形式后,一次项系数与常数项的和为.【题型4根据实际问题列二次函数销售问题】【典例4】某特许零售店“冰墩墩”的销售日益火爆,每个纪念品进价40元,销售期间发现,当销售单价定为44元时,每天可售出300个;销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元(x>44),商家每天销售纪念品获得的利润w元,则下列等式正确的是()A.y=10x+740B.y=10x﹣140C.w=(﹣10x+700)(x﹣40)D.w=(﹣10x+740)(x﹣40)【变式41】某商品现在的售价为每件60元,每星期可销售300件.商场为了清库存,决定让利销售,已知每降价1元,每星期可多销售20件,那么每星期的销售额W(元)与降价x(元)的函数关系为()A.W=(60+x)(300+20x)B.W=(60﹣x)(300+20x)C.W=(60+x)(300﹣20x)D.W=(60﹣x)(300﹣20x)【变式42】“抖音直播带货”已经成为一种热门的销售方式,某抖音主播代销某一品牌的电子产品(这里代销指厂家先免费提供货源,待货物销售后再进行结算,未售出的由厂家负责处理).销售中发现每件售价99元时,日销售量为200件,当每件电子产品每下降5元时,日销售量会增加10件.已知每售出1件电子产品,该主播需支付厂家和其他费用共50元,设每件电子产品售价为x(元),主播每天的利润为w(元),则w与x之间的函数解析式为()A.w=(99﹣x)[200+10(x﹣50)]B.w=(x﹣50)[200+10(99﹣x)]C.w=(x﹣50)(200+×10)D.w=(x﹣50)(200+×10)【变式43】2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价每提高2元,则每天少卖4套.设冰墩墩和雪容融套件每套售价定为x元时,则该商品每天销售套件所获利润w与x之间的函数关系式为()A.w=(200+×4)(x﹣48)B.w=(200﹣×4)(x﹣48)C.w=(200﹣×4)(x﹣34)D.w=(200+×4)(x﹣48)【变式44】某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y 元,那么y与x的函数关系式是.【变式45】某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.x(元∕件)15182022…y(件)250220200180…按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是.【变式46】某商店销售一种进价为50元/件的商品,当售价为60元/件时,一天可卖出200件;经调查发现,如果商品的单价每上涨1元,一天就会少卖出10件.设商品的售价上涨了x元/件(x是正整数),销售该商品一天的利润为y元,那么y与x的函数关系的表达式为.(不写出x的取值范围)【变式47】新华商场销售某种品牌的童装,每件进价为60元,市场调研表明:在一个阶段内销售这种童装时,当售价为80元,平均每月售出200件;售价每降低1元,平均每月多售出20件.设售价为x元,则这种童装在这段时间内,平均每月的销售量y(件)与x满足的函数关系式是;平均每月的销售利润W(元)与x满足的函数关系式是.【题型5 根据实际问题列二次函数面积类】【典例5】将一根长为50cm的铁丝弯成一个长方形(铁丝全部用完且无损耗)如图所示,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y 与x之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50xC.y=﹣x2+25x D.y=﹣2x2+25【变式51】长方形的周长为24cm,其中一边长为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2 B.y=12﹣x2 C.y=(12﹣x)•x D.y=2(12﹣x)【变式52】长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)【变式53】如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该农场计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m).则s关于x的函数关系式:(并写出自变量的取值范围)【变式54】如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB为x米,面积为S平方米,则S与x的之间的函数表达式为;自变量x的取值范围为.【变式55】如图,某农场要盖一排三间同样大小的长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,栅栏的总长为24m,设羊圈的总面积为S(不(m2),垂直于墙的一边长为x(m),则S关于x的函数关系式为.必写出自变量的取值范围)【变式56】有一长方形纸片,长、宽分别为8 cm和6 cm,现在长宽上分别剪去宽为x cm(x<6)的纸条(如图),则剩余部分(图中阴影部分)的面积y =,其中是自变量,是因变量.【题型6 根据实际问题列二次函数几何类】【典例6】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A 开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.【变式61】如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一条直线上,开始时点A与点N重合,让△ABC 以2cm/s的速度向左运动,最终点A与点M重合,求重叠部分的面积ycm2与时间ts之间的函数关系式.【变式62】如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.【变式63】如图,在Rt△ABC中,∠C=90°,AC=12mm,BC=24mm,动点P从点A开始沿边AC向C以2mm/s的速度移动,动点Q从点C开始沿边CB向B以4mm/s的速度移动.如果P、Q两点同时出发,那么△PCQ的面积S随出发时间t如何变化?写出函数关系式及t的取值范围.【变式64】如图,正方形ABCD的边长为4cm,E,F分别是BC、DC边上的动点,点E,F同时从点C均以每秒1cm的速度分别向点B,点D运动,当点E与点B重合时,运动停止.设运动时间为x(s),运动过程中△AEF的面积为y(cm2),请写出用x表示y的函数表达式,并写出自变量x的取值范围.【变式65】如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E 出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,求y与x之间的函数关系式.。
2023年中考数学一轮复习专题提优练习一次函数和二次函数综合一、选择题1.二次函数y 1=ax 2+bx +c 与一次函数y 2=mx +n 的图象如图所示,则满足ax 2+bx +c >mx +n 的x 的取值范围是( )A .﹣3<x <0B .x <﹣3或x >0C .x <﹣3D .0<x <3第1题 第2题2.如图,直线y =kx +b 与直线y =mx 相交于点A (﹣1,2),与x 轴相交于点B (﹣3,0),则关于x 的不等式组0<kx +b <mx 的解集为( )A .x >﹣3B .﹣3<x <﹣1C .﹣1<x <0D .﹣3<x <03.已知二次函数y=-(x -h)2(h 为常数),当自变量x 的值满足2≤x≤5时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或64.用列表法画二次函数y=x 2+bx+c 的图象时先列一个表,当表中自变量x 的值以相等间隔增加时,函数y 所对应的值依次为:20, 56, 110, 182, 274, 380, 506, 650. 其中有一个值不正确,这个不正确的值是( )A .505B .380C .274D .1825.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫作“整点”. 例如:P (1,0),Q (2,-2)都是“整点”. 抛物线y=mx 2-4mx+4m -2(m>0)与x 轴的交点为A ,B ,若抛物线在点A ,B 之间的部分与线段AB 所围成的区域(包含边界)恰有7个“整点”,则m 的取值范围是( )A .121<≤m B .121≤<m C .1<m ≤2 D .1≤m<26.四位同学在研究函数y=x 2+bx+c (b, c 是常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程x 2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4. 已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁7.根据关于x 的一元二次方程x 2+px +q =0,可列表如下:则方程x 2+px +q =0的正数解满足( )x 0 0.5 1 1.1 1.2 1.3 x 2+px +q﹣15﹣8.75﹣2﹣0.590.842.29A .解的整数部分是0,十分位是5B .解的整数部分是0,十分位是8C .解的整数部分是1,十分位是1D .解的整数部分是1,十分位是28. 已知二次函数c bx x y ++=2中,函数y 与自变量x 之间的部分对应值如下表所示:X … 0 1 2 3 … y…5212…点A (x 1,y 1),B (x 2,y 2)在函数图象上,则当0<x 1<1,2<x 2<3时,y 1与y 2的大小关系正确性是( )A .y 1≥y 2B .y 1>y 2C .y 1<y 2D .y 1≤y 2二、填空题9.已知二次函数y =ax 2+bx +c (a ≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x 的方程ax 2+bx +c =0的两个根分别是x 1=1.3和x 2= .10.如图,在抛物线y 1=ax 2(a >0)和和y 2=mx 2+nx (m <0)中,抛物线y 2的顶点在抛物线y 1上,且与x 轴的交点分别为(0,0)(4,0),则不等式(a ﹣m )x 2﹣nx <0的解集是 .第9题 第10题 第11题 第12题11.如图,二次函数y 1=ax 2+bx +c 与一次函数y 2=kx 的图象交于点A 和原点O ,点A 的横坐标为﹣4,点A 和点B 关于抛物线的对称轴对称,点B 的横坐标为1,则满足0<y 1<y 2的x 的取值范围是 .12. 如图是抛物线y=c bx ax ++2(0≠a )的一部分,其对称轴为直线x=2,若其与x 轴的一个交点为B (5,0),则由图像可知,不等式02>++c bx ax 的解集是________. 13. 如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣2,4),B (1,1),则方程ax 2=bx +c 的解是__________________.第13题 第14题14.已知点A (﹣2,0),点P 是直线y =x 上的一个动点,当以A ,O ,P 为顶点的三角形面积是3时,点P 的坐标为 .15. 对于二次函数322-==mx x y ,有下列说法:①它的图像与x 轴有两个公共点;②如果当x≤1时,y 随x 的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3. 其中正确的说法是___________(把你认为正确说法的序号都填上). 三、解答题16.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,其中点A (﹣1,0),点C (0,5),点D (1,8)都在抛物线上,M 为抛物线的顶点.(1)求抛物线的函数解析式; (2)求△MCB 的面积;(3)根据图形直接写出使一次函数值大于二次函数值的x 的取值范围.17.如图①,将抛物线y =ax 2(﹣1<a <0)平移到顶点恰好落在直线y =x ﹣3上,并设此时抛物线顶点的横坐标为m .(1)求抛物线的解析式(用含a 、m 的代数式表示)(2)如图②,Rt △ABC 与抛物线交于A 、D 、C 三点,∠B =90°,AB ∥x 轴,AD =2,BD :BC =1:2.①求△ADC 的面积(用含a 的代数式表示)②若△ADC 的面积为1,当2m ﹣1≤x ≤2m +1时,y 的最大值为﹣3,求m 的值.18.如图1,平面直角坐标系xOy 中,已知抛物线y =ax 2+4x 与x 轴交于O 、A 两点.直线y =kx +m 经过抛物线的顶点B 及另一点D (D 与A 不重合),交y 轴于点C .(1)当OA =4,OC =3时.①分别求该抛物线与直线BC 相应的函数表达式;②连结AC ,分别求出tan ∠CAO 、tan ∠BAC 的值,并说明∠CAO 与∠BAC 的大小关系; (2)如图2,过点D 作DE ⊥x 轴于点E ,连接CE .当a 为任意负数时,试探究AB 与CE 的位置关系?19.如图,在平面直角坐标系xOy 中,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(2,3)和(﹣3,﹣12).(1)求此二次函数的表达式;(2)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,若锐角∠PCO =∠ACO ,写出此时点P 的坐标;(3)若直线l :y =kx (k ≠0)与线段BC 交于点D (不与点B ,C 重合),则是否存在这样的直线l ,使得以B ,O ,D 为顶点的三角形与△BAC 相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由.20. 如图,抛物线y=ax ax 22(a<0)位于x 轴上方的图象记为F 1,它与x 轴交于P 1,O 两点,图象F 2与F 1关于原点O 对称,F 2与x 轴的另一个交点为P 2,将F 1与F 2同时沿x 轴向右平移P 1P 2的长度即可得F 5与F 6;……;按这样的方式一直平移下去即可得到一系列图象F 1,F 2,…,F n ,我们把这组图象称为“波浪抛物线”.(1)当a=-1时, ①求图象F 1的顶点坐标.②点H (2014,-3)________(填“在”或“不在”)该“波浪抛物线”上;若图象F n 的顶点T n 的横坐标为201,则图象F n 对应的解析式为__________,其自变量x 的取值范围为_________.(2)设图象F m ,F m+1的顶点分别为T m ,T m+1(m 为正整数),x 轴上一点Q 的坐标为(12,0).试探究:当a 为何值时,以O ,T m ,T m+1,Q 四点为顶点的四边形为矩形?并直接写出此时m 的值.21. 设二次函数)(2b a bx ax y +-+=(a ,b 是常数,a≠0).(1)判断该二次函数图象与x 轴的交点的个数,说明理由.(2)若该二次函数图象经过A (-1,4),B (0,-1),C (1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P (2,m )(m>0)在该二次函数图象上,求证:a>0.22. 如图所示,已知二次函数c bx x y ++-=2的图像经过点C (0,3),与x 轴分别交于点A.点B (3,0).点D (n, y 1).E (n+t ,y 2).F (n+4,y 3)都在这个二次函数的图像上,其中0<t<4,连接DE.DF.EF ,记ΔDEF 的面积为S.(1)求二次函数c bx x y ++-=2的表达式; (2)若n=0,求S 的最大值,并求此时t 的值;(3)若t=2,当n 取不同数值时,S 的值是否变化?如不变,求该定值;如变化,试用含n 的代数式表示S.23.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点).C.H.N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.。
二次函数练习题(1)A 卷一、选择题(每题5分,共30分)1.二次函数y=x 2+bx+c,若b+c=0,则它的图象一定过点( )A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)2.若直线y=ax+b(ab≠0)不过第三象限,则抛物线y=ax 2+bx 的顶点所在的象限是( )A.一B.二C.三D.四3.函数y=ax 2+bx+c 中,若ac<0,则它的图象与x 轴的位置关系为( )A.无交点B.有1个交点;C.有两个交点D.不确定4.抛物线与x 轴交点的横坐标为-2和1,且过点(2,8),它的关系式为( )A.y=2x 2-2x-4;B.y=-2x 2+2x-4;C.y=x 2+x-2;D.y=2x 2+2x-45.二次函数y=ax 2+bx+c 的图象如图1所示,下列五个代数式ab 、ac 、a-b+c 、b 2- 4ac 、2a+b 中,值大于0的个数为( )A.5B.4C.3D.26.二次函数y=ax 2+bx+c 与一次函数y=ax+c 在同一坐标系内的图象可能是图3所示的( )二、填空题:(每题5分,共30分)1.若抛物线y=x 2+(m-1)x+(m+3)顶点在y 轴上,则m=_______.2.把抛物线y=12x 2 向左平移三个单位, 再向下平移两个单位所得的关系式为________. 3.抛物线y=ax 2+12x-19顶点横坐标是3,则a=____________.4.若y=(a-1)231a x -是关于x 的二次函数,则a=____________.5.二次函数y=mx 2-3x+2m-m2的图象经过点(-1,-1),则m=_________.6.已知点(2,5),(4,5)是抛物线y=ax 2+bx+c 上的两点, 则这条抛物线的对称轴是______.三、解答题(共40分)1.已知二次函数的图象的对称轴为x=2,函数的最小值为3,且图象经过点(- 1,5),求此二次函数图象的关系式.2.二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C,如图2所示,AC= ,BC= ∠ACB=90°,求二次函数图象的关系式. 3.已知关于x 的二次函数2212m y x mx +=-+与2222m y x mx +=--, 这两个二次函数的图象中的一条与x 轴交于A, B 两个不同的点.图1 Cx B A Oy 图2 图3(l)试判断哪个二次函数的图象经过A, B两点;(2)若A点坐标为(-1, 0),试求B点坐标;(3)在(2)的条件下,对于经过A, B两点的二次函数,当x取何值时,y的值随x值的增大而减小?(B卷)拓广提高(30分)时间:45分钟满分:30分一、选择题(每题4分,共8分)1.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式为( )A.y=3(x-2)2+1B.y=3(x+2)2-1C.y=3(x-2)2-1D.y=3(x+2)2+12.已知二次函数y=x2-2mx+m-1的图象经过原点,与x轴的另一个交点为A, 抛物线的顶点为B,则△OAB的面积为( ) A.32B.2;C.1;D.12二、填空题:(每题2分,共20分)1.已知二次函数y=2x2-mx-4的图象与x轴的两个交点的横坐标的倒数和为2,则m=_________.2.二次函数y= ax2+ bx+ c 的图象如图5所示, 则这个二次函数的关系式为_________,当______时,y=3,根据图象回答:当x______时,y>0.三、解答题1.(1)请你画出函数y=12x2-4x+10的图象, 由图象你能发现这个函数具有哪些性质?(2)通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴、顶点坐标,这个函数有最大值还是最小值?这个值是多少?2.根据下列条件,分别求出对应的二次函数关系式.(1)已知抛物线的顶点是(-1,-2),且过点(1,10);(2)已知抛物线过三点:(0,-2),(1,0),(2,3).(C卷)新题推荐(20分)1.如图6所示,△ABC中,BC=4,∠B=45°,M、N分别是AB、AC上的点,MN∥BC.设MN=x,△MNC的面积为S.(1)求出S与x之间的函数关系式,并写出自变量x的取值范围.(2)是否存在平行于BC的线段MN,使△MNC的面积等于2? 若存在,请求出MN的长; 若不存在,请说明理由.2.如图7,已知直线12y x=-与抛物线2164y x=-+交于A B,两点.图5BMAN图6。
1.1二次函数1.通过对实际问题情境的分析,让学生经历二次函数概念的形成过程,学会用类比思想学习二次函数知识.2.掌握二次函数的概念.3.认识到二次函数来源于实际生活,感受到二次函数在实际生活中有着广泛的应用.重点:二次函数的概念.难点:理解变量之间的对应关系.一、新课导入1.对于“函数”这个词,我们并不陌生,大家还记得我们学过哪些函数吗?(学过正比例函数、一次函数、反比例函数)2.那么函数的定义是什么,大家还记得吗?能把学过的函数回忆一下吗?(在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y 值,那么我们称y是x的函数,其中x是自变量,y是因变量)从上面的几种函数来看,每一种函数都有一般的形式,那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.二、新知学习活动1观察思考:请用适当的函数解析式表示下列问题情境中的两个变量y与x之间的关系.(1)圆的面积y(cm2)与圆的半径x(cm).(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元.答案:(1)y=πx2;(2)y=20000(1+x)2=20000x2+40000x+20000.老师引导学生合作学习:1.先独立探究,尝试写出y与x之间的函数关系式;2.上述三个问题先易后难,在独立探究的基础上,小组进行合作交流,共同探讨.3.上述关系式具有哪些共同特征?教师引导学生观察、分析、比较三个函数关系式.引导学生观察时应注意:(1)学生能否找出自变量及因变量的函数.(2)学生能否归纳出三个函数的共同特点:经化简后都具有y=ax2+bx+c的形式(a,b,c是常数,a≠0).学生观察、思考问题,尝试回答问题.活动2归纳总结:(1)上述三个函数解析式化简后都具有y=ax2+bx+c(a,b,c是常数,且a≠0)的形式.(2)一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做x的二次函数.其中a为二次项系数,b为一次项系数,c为常数项.三、新知应用活动3典例探究:【例】如图,矩形ABCD中,AB=6,BC=12,E是AB上一点,E不与A,B重合,F是BC上一点,F不与B,C重合,且BF=2BE,若设BE=x,△DEF的面积为S,求S关于x 的函数关系,并求自变量x 的取值范围.【分析】先用x 的代数式表示AE ,BF ,CF 的长,再利用△DEF 的面积等于矩形面积依次减去△ADE ,△BEF ,△CDF 的面积这一等量关系列出函数关系式.【解】∵BE =x ,∴AE =6-x ,BF =2x ,CF =12-2x.∵S △DEF =S 矩形ABCD -S △ADE -S △BEF-S △CDF ,∴S =12×6-12×12(6-x)-12·x·2x -12×6(12-2x)=-x 2+12x.由题意,得⎩⎪⎨⎪⎧x >0,6-x >0,12-2x >0,解得0<x <6,即自变量x 的取值范围是0<x <6.综上,S 关于x 的函数关系式为S =-x 2+12x(0<x <6).四、巩固新知尝试完成下面各题.1.若y =(a -3)x 2-2x +5是二次函数,则a 的取值范围是__a≠3__.2.菱形的两条对角线的和为26 cm ,则菱形的面积S(cm 2)与一条对角线的长x(cm )之间的函数关系式为__S =12x(26-x)(0<x <26)__. 3.一台机器原价40万元,每次降价的百分率为x ,那么连续两次降价后的价格y(万元)为( C )A .y =40(1-x )B .y =40(1-x 2)C .y =40(1-x )2D .y =40(1+x )24.若()m m x m y ++=22是关于x 的二次函数,则常数m 的值为( A )A .1B .2C .-2D .1或-2五、课堂小结1.到目前为止,我们学习了哪些函数?这些函数之间有什么联系?2.二次函数的一般表达式是怎样的?对a ,b ,c 有什么条件限制?3.谈一谈你的收获和困惑.六、课后作业形如y=ax 2+bx+c(a ,b ,c 为常数,a ≠0)的函数称为二次函数,y=ax 2+bx+c (a ≠0)为二次函数的一般式.1.下列四个函数:①y=-x ;②y=x ;③y=x1;④y=x 2.其中二次函数的个数为(A). A.1 B.2 C.3 D.42.下列函数中,当x=0时,y=0的是(C).A.y=x2 B. y=x 2-1 C.y=5x 2-3x D.y=-3x+73.二次函数y=2x(x-3)的二次项系数与一次项系数之和为(D).A.2B.-2C.-1D.-44.某工厂第一年的利润为20万元,第三年的利润为y 万元.设该公司利润的平均年增长率为x,则y 关于x 的二次函数的表达式为(B).A.y=20(1-x)2B.y=20(1+x)2C.y=(1-x)2+2D.y=(1-x)2-205.已知函数k k x y +=2是关于x 的二次函数,那么k= 1或-2 .6.对于二次函数 y =2x 2-bx +3,当x =1时,y=1,则b 的值为 4 .7.已知函数y=x 2-6x+9,当x= 3 时,函数值为0.8.小汽车刹车距离s(m)关于速度v(km/h)的二次函数表达式为s=1001v 2.一辆小汽车正以100km/h 的速度行驶,突然发现前方80m 处停着一辆故障车,此时小汽车刹车 会 (填“会”或“不会”)有危险.9.已知()324232-+-=--x x m y m m 是二次函数,求m 的值.【答案】由题意得⎩⎨⎧≠-=--042232m m m ,解得m=-1.10.已知二次函数y=ax 2+bx+c ,当x=0时,y=7;当x=1时,y=0;当x=-2时,y=9.求它的函数表达式.【答案】根据题意得,⎪⎩⎪⎨⎧=+-=++=92407c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=752c b a .∴它的函数表达式为y=-2x 2-5x+7.11.下列各式中,y 是x 的二次函数的是(B).A.xy+x 2=2B.x 2-2y+2=0C.y=21x D.y 2-x=012.从地面竖直向上抛出一个小球,小球的高度h(m)关于小球运动时间t(s)的二次函数表达式为h=30t-5t 2.则小球从抛出到回落到地面所需要的时间是(A).A.6sB.4sC.3sD.2s13.若y=ax 2+bx+c ,则由表格中信息可知y 关于x 的二次函数的表达式为(A).14.已知函数()2222++=-m x m y 是二次函数,则m 的值为 2 .15.某批发市场批发甲种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y(万元)与进货量x(t)近似满足二次函数表达式y=ax 2+bx(其中a≠0,a ,b 为常数,x≥0),且进货量x 为1t 时,销售利润y 为1.4万元;进货量x 为2t 时,销售利润y 为2.6万元.求y 关于x 的二次函数的表达式.【答案】由题意得⎩⎨⎧=+=+6.2244.1b a b a ,解得⎩⎨⎧=-=5.11.0b a . ∴y 关于x 的二次函数表达式为y=-0.1x 2+1.5x .16.下列函数中,属于二次函数的是(B).A.y=-4x+5B.y=x(2x-3)C.y=(x+4)2-x 2D.y=21x 17.【常德】如图所示,正方形EFGH 的顶点在边长为2的正方形ABCD 的边上.若设AE=x ,正方形EFGH 的面积为y ,则y 关于x 的函数表达式为 y=2x 2-4x+4 .18.如图所示,△ABC 与△DEF 是两个全等的等腰直角三角形,BC=EF=8,∠C=∠F=90°,且点C ,E ,B ,F 在同一条直线上,将△ABC 沿CB 方向平移,AB 与DE 相交于点P.设CE=x ,△PBE 的面积为S ,求:(1)S 关于x 的函数表达式,并指出自变量的取值范围.(2)当x=3时,求△PBE 的面积.【答案】(1)∵CE=x ,BC=8,∴EB=8-x.∵△ABC 与△DEF 是两个全等的等腰直角三角形,∴∠ABC=∠DEF=45°∴△PBE 是等腰直角三角形.∴PB=PE=22EB=22 (8-x). ∴S=21PB·PE=21×22 (8-x)×22 (8-x)= 41 (8-x)2=41x 2-4x+16. ∵8-x >0,∴x <8.又∵x≥0,∴0≤x <8.S 关于x 的函数表达式为S=41x 2-4x+16,自变量的取值范围是0≤x <8. (2)当x=3时,S △PBE =41 (8-3)2=425.。
二次函数的应用练习题及答案一:知识点利润问题:总利润=总售价–总成本总利润=每件商品的利润×销售数量二:例题1、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个形,则这两个形面积之和的最小值是cm2.2、某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门,问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.若每件降价x 元,每天盈利y 元,求y 与x 的关系式.若商场平均每天要盈利1200元,每件衬衫应降价多少元?每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:房间每天的入住量y关于x的函数关系式.该宾馆每天的房间收费z关于x的函数关系式.该宾馆客房部每天的利润w关于x的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x,日销售量为y.写出日销售量y与销售单价x之间的函数关系式;设日销售的毛利润为P,求出毛利润P与销售单价x之间的函数关系式;在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少?7、我州有一种可食用的野生菌,上市时,外商经理按市场价格20元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160元,同时,平均每天有3千克的野生菌损坏不能出售.设x到后每千克该野生菌的市场价格为y元,试写出y 与x之间的函数关系式.O若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.经理将这批野生茵存放多少天后出售可获得最大利润W元?8、为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y与销售单价x之间的函数关系如图所示.求月销售量y与销售单价x之间的函数关系式;当销售单价定为50元时,为保证公司月利润达到5万元,该公司可安排员工多少人?若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?9、大学毕业生响应“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P与销售时间x之间有如下关系:P=-2x+80;又知前20天的销售价格Q1 与销售时间x之间有如下关系:Q1?1x?30 ,后10天的销售价格Q与2销售时间x之间有如下关系:Q2=45.试写出该商店前20天的日销售利润R1和后l0天的日销售利润R2分别与销售时间x之间的函数关系式;请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入一购进成本.10、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天的日销售量m与时间t的关系如下表:未来40天,前20天每天的价格y1与时间t的函数关系式为y1?t?25,后20天每天的价格y2与时间t的函数关系式为y2??1t?40。
《二次函数》作业设计方案(第一课时)一、作业目标本作业设计旨在通过第一课时的学习,使学生能够理解二次函数的概念、定义和基本性质,掌握二次函数的图像特征,并能运用所学知识解决简单的实际问题。
二、作业内容1. 理解二次函数的概念及定义。
要求学生能够理解二次函数是自变量x的二次多项式函数,即y=ax^2+bx+c(a≠0)。
同时,学生需要掌握二次函数的定义域和值域。
2. 掌握二次函数的图像特征。
通过绘制二次函数的图像,让学生观察并总结出开口方向、顶点坐标、对称轴等基本特征。
3. 练习二次函数的性质。
通过一定量的练习题,让学生熟悉二次函数的增减性、最值等性质,并能够根据已知条件求出未知量。
4. 运用二次函数解决实际问题。
结合生活实际,设置一些与二次函数相关的实际问题,让学生运用所学知识进行分析和解决。
三、作业要求1. 作业量适中。
作业应适量,不宜过多或过少,以保证学生在规定时间内完成。
2. 注重基础。
作业内容应以本课时所学的基础知识为主,帮助学生巩固和加深对二次函数的理解。
3. 循序渐进。
作业设置应遵循由易到难、由简单到复杂的原则,帮助学生逐步提高解决实际问题的能力。
4. 及时反馈。
学生应按时完成作业,并就疑难问题及时向老师请教,以便及时纠正错误,巩固所学知识。
四、作业评价1. 评价标准。
根据学生完成作业的准确性、解题思路的清晰度、解题步骤的完整性以及作业的整洁度等方面进行评价。
2. 评价方式。
采用教师评价、同学互评和自评相结合的方式,以全面了解学生的学习情况。
五、作业反馈1. 教师反馈。
教师应对学生的作业进行认真批改,及时指出错误并给出正确答案,同时要关注学生在解题过程中的亮点和不足,以便进行针对性的教学指导。
2. 学生自我反馈。
学生应根据教师的评价和同学的意见,对自己的学习情况进行反思和总结,找出自己的不足之处,并制定相应的改进措施。
3. 家长反馈。
家长应关注孩子的学习情况,了解孩子在完成作业过程中遇到的困难和问题,并与教师进行沟通,共同帮助孩子提高学习成绩。
1 函数()0f x ≥恒成立⇔ ()min 0f x ≥1.1 二次函数(定义域无限制)的恒成立问题对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有: (1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a【例1】 若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
【例2】 若关于的不等式的解集为,求实数的取值范围; 【练习1】 若函数R 上恒成立,求m 的取值范围。
2 函数()f x a ≥恒成立,⇔()min f x a ≥(分离参数法)2.1 二次函数(限制定义域)的恒成立问题【练习1】 当()1,2x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 . 【练习2】【2006江西】对于一切实数,不等式210x a x ++≥恒成立,则实数a 的取值范围是 【练习3】若不等式22210x mx m -++>对满足01x ≤≤的所有实数x 都成立,求m 的取值范围。
【练习4】 已知函数2()10f x x ax =++≥对于一切1(0,]2x ∈成立,求a 的取值范围。
【练习5】已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。
解: 将问题转化为xx x a 24-<对]4,0(∈x 恒成立。
x 02>--a ax x ),(+∞-∞a y =令x x x x g 24)(-=,则min )(x g a < 由144)(2-=-=xxx x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0<a 即a 的取值范围为)0,(-∞。
【练习6】已知函数()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。
二次函数练习题一.选择题(共21小题)1.二次函数y=ax2+bx+c的图象如图所示,以下结论中正确的是()A.abc<0B.4ac﹣b2>0C.当x<1时,y随x的增大而减小D.4a﹣2b+c>02.二次函数y=ax2+bx+c的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③2a﹣b=0;④abc>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个3.如图是二次函数y=ax2+bx+c(a≠0)的图象,根据图象信息,下列结论错误的是()A.abc<0B.2a+b=0C.4a﹣2b+c>0D.9a+3b+c=04.如图为二次函数y=ax2+bx+c的图象,在下列说法中正确的是()①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3③a+b+c<0;④当x>1时,y随x的增大而增大A.①③B.②④C.①②④D.②③④5.已知二次函数y=ax2+bx+c的图象如图所示,那么根据图象,下列判断中不正确的是()A.a<0B.b>0C.c>0D.abc>06.已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A.a<0、b>0、c>0 B.a<0、b<0、c>0C.a<0、b>0、c<0 D.a<0、b<0、c<07.已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A.b2﹣4ac>0B.a﹣b+c>0C.b=﹣4a D.关于x的方程ax2+bx+c=0的根是x1=﹣1,x2=58.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.abc<0B.2a+b<0C.b2﹣4ac<0D.a+b+c<09.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.11.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.12.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.13.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.14.抛物线y=x2+4x+5﹣m与x轴有两个不同的交点,则m的取值范围是()A.m<﹣1B.0<m≤1C.m<1D.m>115.如图是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(﹣1,0),那么抛物线与x轴的另一个交点是()A.(3,0)B.(4,0)C.(5,0)D.(6,0)16.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x的一元二次方程ax2﹣2ax+c=0的两实数根是()A.x1=﹣1,x2=1B.x1=﹣1,x2=2C.x1=﹣1,x2=3D.x1=﹣1,x2=017.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示:那么它的图象与x轴的另一个交点坐标是()A.(1,4)B.(2,0)C.(3,0)D.(4,0)18.如表给出了二次函数y=x2+2x﹣10中x,y的一些对应值,则可以估计一元二次方程x2+2x﹣10=0的一个近似解为()A.2.2B.2.3C.2.4D.2.519.二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的图象如图所示,则方程ax2+bx+c=m有实数根的条件是()A.m≥﹣4B.m≥0C.m≥5D.m≥620.如图,点A(2.18,﹣0.51),B(2.68,0.54),在二次函数y=ax2+bx+c(a≠0)的图象上,则方程ax2+bx+c =0的一个近似值可能是()A.2.18B.2.68C.﹣0.51D.2.4521.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:则一元二次方程ax2+bx+c=0的一个解x满足条件()A.1.2<x<1.3B.1.3<x<1.4C.1.4<x<1.5D.1.5<x<1.6二.解答题(共5小题)22.已知二次函数的图象如图所示,求该抛物线的解析式.23.已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:(1)观察上表可求得m的值为;(2)试求出这个二次函数的解析式;(3)若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,请直接写出n的取值范围.24.已知在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(1,0)、B(0,﹣5)、C(2,3).求这个二次函数的解析式,并求出其图象的顶点坐标和对称轴.25.已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(0,﹣4),求这个二次函数的解析式.26.已知某二次函数图象的对称轴是直线x=2,与y轴的交点坐标为(0,1),且经过点(5,6),且若此抛物线经过点(﹣2,y1)、(3,y2),求抛物线的解析式并比较y1与y2的大小.。