2017-2018学年高中数学人教B版必修三:阶段质量检测(二) 统 计 Word版含答案
- 格式:doc
- 大小:227.00 KB
- 文档页数:8
阶段质量检测(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积2.下列说法错误的是( )A.在统计里,最常用的简单随机抽样方法有抽签法和随机数法B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大3.(2016·开封高一检测)某学校有老师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从全体师生中抽取一个容量为n的样本,已知女学生一共抽取了80人,则n的值是( )A.193 B.192 C.191 D.1904.某班学生父母年龄的茎叶图如图,左边是父亲年龄,右边是母亲年龄,则该班同学父亲的平均年龄比母亲的平均年龄大( )A.2。
7岁B.3.1岁C.3.2岁D.4岁5.如果在一次实验中,测得(x,y)的四组数值分别是A(1,3),B(2,3。
8),C(3,5。
2),D(4,6),则y与x之间的回归直线方程是( )A.错误!=x+1.9 B。
错误!=1.04x+1。
9C.错误!=0。
95x+1。
04 D。
错误!=1.05x-0。
96.观察新生婴儿的体重,其频率分布直方图如图,则新生婴儿体重在(2 700,3 000)的频率为( )A.0.001 B.0.1 C.0.2 D.0。
37.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数大于该班女生成绩的平均数8.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图1图2A.1%B.2%C.3% D.5%9.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是()A.高一的中位数大,高二的平均数大B.高一的平均数大,高二的中位数大C.高一的平均数、中位数都大D.高二的平均数、中位数都大10.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为()A.32 B.0。
阶段质量检测(二)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的叙述中,不是解决问题的算法的是( )A.从北京到海南岛旅游,先坐火车,再坐飞机抵达B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.方程x2-4=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为152.在用二分法求方程零点的算法中,下列说法正确的是( )A.这个算法可以求所有的零点B.这个算法可以求任何方程的零点C.这个算法能求所有零点的近似解D.这个算法可以求变号零点近似解3.下列程序中的For语句终止循环时,S等于( )S=0For M=1 To 10S=S+MNext输出SA.1 B.5 C.10 D.554.运行以下程序时,执行循环体的次数是( )i=1Doi=i+1i=i*iLoop While i<10输出i.A.2 B.10 C.11 D.85.当a=1,b=3时,执行完下面的语句后x的值是( )If a<b Thenx=a+bElsex =a -b End If 输出x .A .1B .3C .4D .-26.(福建高考)阅读如图所示的程序框图,运行相应的程序,输出的s 值等于( )A .-3B .-10C .0D .-27.如图给出的是计算1+2+4+…+219的值的一个算法框图,则其中判断框内应填入的是( )A .i =19B .i ≥20C .i ≤19D .i ≤208.如图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2,x 2, x >2的值的算法框图,则在①、②和③处应分别填入的是( )A .y =-x ,y =0,y =x2B .y =-x ,y =x 2,y =0C .y =0,y =x 2,y =-x D .y =0,y =-x ,y =x 29.当a=16时,下面的算法输出的结果是( )If a<10 Theny=2*aElsey=a*aEnd If输出y.A.9B.32C.10D.25610.(重庆高考)执行如下图所示的程序框图,则输出的k的值是( )A.3 B.4 C.5 D.6二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.下列程序运行后输出的结果为________.x=5y=-20If x<0 Thenx=y-3Elsey=y+3End If输出x-y,y-x12.下面的程序运行后输出的结果是________.x=1i=1Dox=x+1i=i+1Loop While i<=5输出x.13.已知函数f(x)=|x-3|,下面算法框图表示的是输入x的值,求其相应函数值的算法,请将该算法框图补充完整.其中①处应填________,②处应填________.14.(湖南高考)如果执行如图所示的程序框图,输入x=4.5,则输出的数i=________.三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)如果直线l与直线l1:x+y-1=0关于y轴对称,设计求直线l的方程的算法.16.(12分)求两底半径分别为6和9,高为14的圆台的表面积,写出该问题的算法.17.(12分)根据下列算法语句画出相应的框图.S=1n=1DoS=S*nn=n+1Loop While S<1 000输出n.18.(14分)如图所示,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式.并写出算法,画出算法框图,写出程序.答 案1. 解析:选C 算法是解决某类问题的一系列步骤或程序,C 只描述了事实,没有解决问题的步骤.2. 解析:选D 二分法的理论依据是函数的零点存在定理.它解决的是求变号零点的问题,并不能求所有零点的近似值.3. 解析:选D S =0+1+2+3+…+10=55.4. 解析:选A 第一次执行循环体:i =1, i =i +1=2, i =i *i =4, i =4<10,成立第二次执行循环体:i =4, i =i +1=5 i =i *i =25 i =25<10,不成立,退出循环体,共执行了2次.5. 解析:选C ∵1<3,满足a <b ,∴x =1+3=4.6. 解析:选A 由程序框图可知,当k =1时,1<4,s =1,k =2;当k =2时,2<4,s =0,k =3;当k =3时,3<4,s =-3,k =4;当k =4时不满足条件,则输出s =-3.7. 解析:选B 计算S =1+2+4+…+219的值使用的是循环结构,当i ≥20时退出循环体,输出S .8. 解析:选B 当x >-1不成立时,y =-x ,故①处应填“y =-x ”;当x >-1成立时,若x >2,则y =x 2,即②处应填“y =x 2”,否则y =0,即③处应填“y =0”.9. 解析:选D 该程序是求分段函数y =⎩⎪⎨⎪⎧2a a <10,a 2a ≥10.的函数值.10. 解析:选C 第一次运行得s =1+(1-1)2=1,k =2;第二次运行得s =1+(2-1)2=2,k =3;第三次运行得s =2+(3-1)2=6,k =4;第四次运行得s =6+(4-1)2=15,k =5;第五次运行 得s =15+(5-1)2=31,满足条件,跳出循环,所以输出的k 的值是5.11. 解析:当x =5时,y =-20+3=-17所以最后输出的x -y =5-(-17)=22,y -x =-17-5=-22. 答案:22,-2212. 解析:每循环一次时,x 与i 均增加1,直到i >5时为止,所以输出结果为6.答案:613. 解析:f (x )=|x -3|=⎩⎪⎨⎪⎧x -3,x ≥3,3-x ,x <3.观察算法框图可知,当条件成立时,有y =3-x ,所以①处应填x <3.当条件不成立即x ≥3时,有y =x -3,所以②处应填y =x -3.答案:x <3 y =x -314. 解析:执行程序,i ,x 的取值依次为i =1,x =3.5;i =2,x =2.5;i =3,x =1.5;i =4,x =0.5;结束循环,输出i 的值为4.答案:415. 解:第一步,在l 上任取一点P (x ,y ). 第二步,写出P (x ,y )关于y 轴的对称点P 1(-x ,y ).第三步,由P 1(-x ,y )在直线l 1:x +y -1=0上,知P 1的坐标适合l 1的方程,即-x +y -1=0.第四步,化简,得l 的方程为x -y +1=0. 16. 解:算法如下:1.令r 1=6,r 2=9,h =14(如图).2.计算l =r 2-r 12+h 2.3.计算S 表=πr 21+πr 22+π(r 1+r 2)l . 4.输出运算结果S 表. 17. 解:框图如下所示:18. 解:函数关系式如下y =⎩⎪⎨⎪⎧2x , x ≤,8, <x,-x , <x算法如下: 1.输入x .2.如果0≤x ≤4,则使y =2x ;否则执行3. 3.如果4<x ≤8,则使y =8;否则执行4. 4.如果8<x ≤12,则使y =2(12-x );否则结束. 5.输出y .算法框图如图所示:算法语句如下: 输入x ;If x >=0 and x <=4 Then y =2*x ElseIf x <=8 Theny =8ElseIf x <=12 Theny =2*(12-x )End If End If End If 输出y.。
(三) 空间向量与立体几何(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与向量a =(1,-3,2)平行的一个向量的坐标是( )A.⎝ ⎛⎭⎪⎫13,1,1 B .(-1,-3,2) C.⎝ ⎛⎭⎪⎫-12,32,-1 D .()2,-3,-22【解析】 a =(1,-3,2)=-2⎝ ⎛⎭⎪⎫-12,32,-1.【答案】 C2.两平行平面α,β分别经过坐标原点O 和点A (2,1,1),且两平面的一个法向量n =(-1,0,1),则两平面间的距离是( )A.32 B .22C. 3D .3 2【解析】 两平面间的距离d =|OA →·n ||n |=22.【答案】 B3.已知A (2,-4,-1),B (-1,5,1),C (3,-4,1),D (0,0,0),令a =CA →,b =CB →,则a +b 为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2)【解析】 a =CA →=(-1,0,-2),b =CB →=(-4,9,0), ∴a +b =(-5,9,-2). 【答案】 B4.在平行六面体ABCD A 1B 1C 1D 1中,若AC 1→=aAB →+2bAD →+3cA 1A →,则abc 的值等于( )【导学号:15460084】A.16 B .56 C.76D .-16【解析】 ∵AC 1→=AB →+AD →-A 1A →=aAB →+2bAD →+3cA 1A →, ∴a =1,b =12,c =-13,∴abc =-16.【答案】 D5.在棱长为1的正方体ABCD A 1B 1C 1D 1中,下列结论不正确的是( ) A.AB →=-C 1D 1→B .AB →·BC →=0 C.AA 1→·B 1D 1→=0D .AC 1→·A 1C →=0【解析】 如图,AB →∥C 1D 1→,AB →⊥BC →,AA 1→⊥B 1D 1→,故A ,B ,C 选项均正确.【答案】 D6.已知向量a ,b 是平面α内的两个不相等的非零向量,非零向量c 在直线l 上,则“c ·a =0,且c ·b =0”是l ⊥α的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 若l ⊥α,则l 垂直于α内的所有直线,从而有c ·a =0,c ·b =0.反之,由于a ,b 是否共线没有确定,若共线,则结论不成立;若不共线,则结论成立.【答案】 B7.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .5【解析】 设BC 的中点为D ,则D (2,1,4), ∴AD →=(-1,-2,2), ∴|AD →|=-2+-2+22=3,即BC 边上的中线长为3.【答案】 B8.若向量a =(x,4,5),b =(1,-2,2),且a 与b 的夹角的余弦值为26,则x =( ) A .3 B .-3 C .-11D .3或-11【解析】 因为a·b =(x,4,5)·(1,-2,2)=x -8+10=x +2,且a 与b 的夹角的余弦值为26,所以26=x +2x 2+42+52×1+4+4,解得x =3或-11(舍去),故选A. 【答案】 A9.如图1,在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成的角的正弦值为( )图1A.63 B .255C.155D .105【解析】 以D 点为坐标原点,以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系(图略),则A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,1),∴BC 1→=(-2,0,1),AC →=(-2,2,0),且AC →为平面BB 1D 1D 的一个法向量. ∴cos 〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=45·8=105.∴sin 〈BC →1,AC →〉=|cos 〈BC →1,AC →〉|=105,∴BC 1与平面BB 1D 1D 所成的角的正弦值为105. 【答案】 D10.已知正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23 B .33 C.23D .13【解析】 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC→|n ||DC →|=23.【答案】 A11.已知正方体ABCD A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n 的值分别为( )A.12,-12 B .-12,-12C .-12,12D .12,12【解析】 由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故选A.【答案】 A12.在矩形ABCD 中,AB =3,AD =4,PA ⊥平面ABCD ,PA =435,那么二面角A BD P的大小为( )A .30°B .45°C .60°D .75°【解析】如图所示,建立空间直角坐标系, 则PB →=⎝ ⎛⎭⎪⎫3,0,-453,BD →=(-3,4,0).设n =(x ,y ,z )为平面PBD 的一个法向量,则⎩⎪⎨⎪⎧n ·PB →=0,n ·BD →=0,得⎩⎪⎨⎪⎧x ,y ,z⎝ ⎛⎭⎪⎫3,0,-453=0,x ,y ,z-3,4,=0.即⎩⎪⎨⎪⎧3x -453z =0,-3x +4y =0.令x =1,则n =⎝ ⎛⎭⎪⎫1,34,543.又n 1=⎝ ⎛⎭⎪⎫0,0,453为平面ABCD 的一个法向量, ∴cos 〈n 1,n 〉=n 1·n |n 1||n |=32,∴所求二面角为30°.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.若a =(2x,1,3),b =(1,-2y,9),且a 与b 为共线向量,则x =________,y =________.【导学号:15460085】【解析】 由题意得2x 1=1-2y =39,∴x =16,y =-32.【答案】 16 -3214.△ABC 的三个顶点坐标分别为A (0,0,2),B ⎝ ⎛⎭⎪⎫-32,12, 2,C (-1,0, 2),则角A 的大小为________.【解析】 AB →=⎝ ⎛⎭⎪⎫-32,12,0,AC →=(-1,0,0),则cos A =AB →·AC →|AB →||AC →|=321×1=32,故角A 的大小为30°.【答案】 30°15.在空间直角坐标系Oxyz 中,已知A (1,-2,3),B (2,1,-1),若直线AB 交平面xOz 于点C ,则点C 的坐标为________.【解析】 设点C 的坐标为(x,0,z ),则AC →=(x -1,2,z -3),AB →=(1,3,-4),因为AC →与AB →共线,所以x -11=23=z -3-4,解得⎩⎪⎨⎪⎧x =53,z =13,所以点C 的坐标为⎝ ⎛⎭⎪⎫53,0,13.【答案】 ⎝ ⎛⎭⎪⎫53,0,1316.如图2,在四棱锥S ABCD 中,底面ABCD 是边长为1的正方形,S 到A ,B ,C ,D 的距离都等于2.图2给出以下结论:①SA →+SB →+SC →+SD →=0;②SA →+SB →-SC →-SD →=0;③SA →-SB →+SC →-SD →=0;④SA →·SB →=SC →·SD →;⑤SA →·SC →=0,其中正确结论的序号是________.【解析】 容易推出:SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2×2cos∠ASB ,SC →·SD →=2×2cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确;其余三个都不正确,故正确结论的序号是③④.【答案】 ③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)如图3,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .图3(1)证明:平面PQC ⊥平面DCQ ; (2)证明:PC ∥平面BAQ .【证明】 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系Dxyz .(1)依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0),所以PQ →·DQ →=0,PQ →·DC →=0,即PQ ⊥DQ ,PQ ⊥DC 且DQ ∩DC =D . 故PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)根据题意,DA →=(1,0,0),AB →=(0,0,1),AQ →=(0,1,0),故有DA →·AB →=0,DA →·AQ →=0,所以DA →为平面BAQ 的一个法向量.又因为PC →=(0,-2,1),且DA →·PC →=0,即DA ⊥PC ,且PC ⊄平面BAQ ,故有PC ∥平面BAQ . 18. (本小题满分12分)如图4,在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值.图4【解】 因为BA 1→=BA →+AA 1→ =BA →+BB 1→,AC →=BC →-BA →, 且BA →·BC →=BB 1→·BA → =BB 1→·BC →=0,所以BA 1→·AC →=(BA →+BB 1→)·(BC →-BA →) =BA →·BC →-BA →2+BB 1→·BC →-BB 1→·BA → =-1.又|AC →|=2,|BA 1→|=1+2=3, 所以cos 〈BA 1→,AC →〉=BA 1→·AC →|BA 1→||AC →|=-16=-66,则异面直线BA 1与AC 所成角的余弦值为66. 19.(本小题满分12分)如图5,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.图5(1)求证:平面PBC ⊥平面PAC ;(2)若AB =2,AC =1,PA =1,求二面角C PB A 的余弦值. 【解】 (1)证明:由AB 是圆的直径,得AC ⊥BC , 由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC . 又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC . 因为BC ⊂平面PBC . 所以平面PBC ⊥平面PAC .(2)过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴,y 轴,z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC = 3. 又因为PA =1,所以A (0,1,0),B (3,0,0),P (0,1,1). 故CB →=(3,0,0),CP →=(0,1,1). 设平面BCP 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧ CB →·n 1=0,CP →·n 1=0,所以⎩⎨⎧3x 1=0,y 1+z 1=0,不妨令y 1=1,则n 1=(0,1,-1). 因为AP →=(0,0,1),AB →=(3,-1,0), 设平面ABP 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧AP →·n 2=0,AB →·n 2=0,所以⎩⎨⎧z 2=0,3x 2-y 2=0,不妨令x 2=1,则n 2=(1, 3,0). 于是cos 〈n 1,n 2〉=322=64. 由图知二面角C PB A 为锐角,故二面角C PB A 的余弦值为64.20. (本小题满分12分)如图6,在四棱锥P ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC =2AB =2AD =4BE ,平面PAB ⊥平面ABCD .图6(1)求证:平面PED ⊥平面PAC ;(2)若直线PE 与平面PAC 所成的角的正弦值为55,求二面角A PC D 的余弦值. 【解】 (1)证明:∵平面PAB ⊥平面ABCD , 平面PAB ∩平面ABCD =AB ,AB ⊥PA , ∴PA ⊥平面ABCD ,又∵AB ⊥AD ,故可建立空间直角坐标系Oxyz 如图所示, 不妨设BC =4,AP =λ(λ>0),则有D (0,2,0),E (2,1,0),C (2,4,0),P (0,0,λ), ∴AC →=(2,4,0),AP →=(0,0,λ),DE →=(2,-1,0), ∴DE →·AC →=4-4+0=0,DE →·AP →=0,∴DE ⊥AC ,DE ⊥AP 且AC ∩AP =A , ∴DE ⊥平面PAC . 又DE ⊂平面PED , ∴平面PED ⊥平面PAC .(2)由(1)知,平面PAC 的一个法向量是DE →=(2,-1,0),PE →=(2,1,-λ), 设直线PE 与平面PAC 所成的角为θ,∴sin θ=|cos 〈PE →,DE →〉|=⎪⎪⎪⎪⎪⎪4-155+λ2=55,解得λ=±2.∵λ>0,∴λ=2,即P (0,0,2),设平面PCD 的一个法向量为n =(x ,y ,z ),DC →=(2,2,0),DP →=(0,-2,2), 由n ⊥DC →,n ⊥DP →,∴⎩⎪⎨⎪⎧2x +2y =0,-2y +2z =0,不妨令x =1,则n =(1,-1,-1).∴cos 〈n ,DE →〉=2+13 5=155,显然二面角A PC D 的平面角是锐角, ∴二面角A PC D 的余弦值为155. 21.(本小题满分12分)如图7,四棱锥P ABCD 的底面ABCD 为一直角梯形,其中BA ⊥AD ,CD ⊥AD ,CD =AD =2AB ,PA ⊥底面ABCD ,E 是PC 的中点.图7(1)求证:BE ∥平面PAD ; (2)若BE ⊥平面PCD ,①求异面直线PD 与BC 所成角的余弦值; ②求二面角E BD C 的余弦值.【解】 设AB =a ,PA =b ,建立如图的空间直角坐标系,则A (0,0,0),B (a,0,0),P (0,0,b ),C (2a,2a,0),D (0,2a,0),E ⎝ ⎛⎭⎪⎫a ,a ,b 2.(1)BE →=⎝⎛⎭⎪⎫0,a ,b 2,AD →=(0,2a,0),AP →=(0,0,b ),所以BE →=12AD →+12AP →,因为BE ⊄平面PAD ,所以BE ∥平面PAD .(2)因为BE ⊥平面PCD ,所以BE ⊥PC ,即BE →·PC →=0,PC →=(2a,2a ,-b ),所以BE →·PC →=2a 2-b 22=0,则b =2a . ①PD →=(0,2a ,-2a ),BC →=(a,2a,0),cos 〈PD →,BC →〉=4a 222a ·5a =105,所以异面直线PD 与BC 所成角的余弦值为105. ②在平面BDE 和平面BDC 中,BE →=(0,a ,a ),BD →=(-a ,2a,0),BC →=(a,2a,0),所以平面BDE 的一个法向量为n 1=(2,1,-1);平面BDC 的一个法向量为n 2=(0,0,1);cos 〈n 1,n 2〉=-16,所以二面角E BD C 的余弦值为66. 22.(本小题满分12分)如图8,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).图8(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【解】 以D 为原点,射线DA ,DC ,DD 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0).(1)当λ=1时,FP →=(-1,0,1),因为BC 1→=(-2,0,2).所以BC 1→=2FP →,可知BC 1∥FP ,而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ FE →·n =0,FP →·n =0,得⎩⎪⎨⎪⎧x +y =0,-x +λz =0, 于是可取n =(λ,-λ,1),同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1),若存在λ,使得平面EFPQ 与平面PQMN 所在的二面角为直二面角, 则m·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22,故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.。
阶段质量检测(二) 统 计(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确. 3.某学校有教师200人,男学生1 200人,女学生1000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200 D.y ^=10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝⎛⎭⎪⎫1+1+…+1n =2x -3y +1. 6.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( ) A.211B.13C.12D.23解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7+3=22,故总体中大于或等于31.5的数据约占2266=13.7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人, ∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B 5×0+20×1+10×2+10×3+5×450=1.8.9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y ^=-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4解析:选C 去掉一个最高分95,去掉一个最低分77,平均数为80+15(5+3+6+5+6)=85,方差为15[(85-85)2+(85-83)2+(85-86)2+(85-85)2+(85-86)2]=1.2,因此选C.11.如果数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是s 2,则3x 1+2,3x 2+2,…,3x n +2的平均数和方差分别是( )A.x 和s 2 B .3x 和9s 2 C .3x +2和9s 2D .3x +2和12s 2+4解析:选C 3x 1+2,3x 2+2,…,3x n +2的平均数是3x +2,由于数据x 1,x 2,…x n 的方差为s 2,所以3x1+2,3x2+2,…,3x n+2的方差为9s2.12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是( )A.x=9B.y=8C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差解析:选B因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.解析:由平均数为10,得(x+y+10+11+9)×15=10,则x+y=20;又方差为2,∴[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x2+y2=208,2xy=192,∴|x-y|=错误!=错误!=4.答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)59408 66368 36016 26247 25965 49487 26968 8602177681 83458 21540 62651 69424 78197 20643 6729776413 66306 51671 54964 87683 30372 39469 97434解析:以3开始向右读,每次读取三位,重复和不在范围内的不读,依次为368,360,162,494,021.答案:368,360,162,494,02116.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人, 则x100=0.030×10,解得x =30.同理,y =20,z =10. 故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?解:(1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人所占比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人); 四川籍的有15+10+5+5+5=40(人). 设四川籍的驾驶人员应抽取x 人,依题意得5100=x40,解得x =2,即四川籍的应抽取2人. 20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100,s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57,∴s 2甲<s 2乙,故甲车间产品比较稳定.21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:(1)由分组[10,15)的频数是10, 频率是0.25知,10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3. 故p =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄yi (单位:千元)的数据资料,算得∑i =110x i=80,∑i =110y i=20,∑i =110x i y i=184,∑i =110x2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x =1n ∑i =1nx i =8010=8,y =1n ∑i =1ny i =2010=2,又∑i =110x2i -10x 2=720-10×82=80,∑i =110x i y i-10xy =184-10×8×2=24,由此得b ^=∑i =110xiyi -10xy∑i =110x2i -10x 2=2480=0.3, a ^=y -b ^x =2-0.3×8=-0.4, 故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。
模块综合测评(教师用书独具)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.问题:①有1000个乒乓球分别装在3种箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ。
随机抽样法Ⅱ。
系统抽样法Ⅲ.分层抽样法。
其中问题与方法能配对的是()A。
①Ⅰ,②Ⅱ B。
①Ⅲ,②ⅠC。
①Ⅱ,②Ⅲ D。
①Ⅲ,②Ⅱ【解析】本题考查三种抽样方法的定义及特点.【答案】B2.从装有2个红球和2个白球的红袋内任取两个球,那么下列事件中,互斥事件的个数是()①至少有一个白球;都是白球.②至少有一个白球;至少有一个红球.③恰好有一个白球;恰好有2个白球。
④至少有1个白球;都是红球.A。
0 B。
1 C.2 D。
3【解析】由互斥事件的定义知,选项③④是互斥事件。
故选C.【答案】C3。
在如图1所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )图1A。
6 B.8 C.10 D。
14【解析】由甲组数据的众数为14,得x=y=4,乙组数据中间两个数分别为6和14,所以中位数是错误!=10,故选C。
【答案】C4.用秦九韶算法求f(x)=12+3x-8x2+79x3+6x4+5x5+3x6在x=-4时的值时,v1的值为( )A。
3 B.-7 C.-34 D.-57【解析】根据秦九韶算法知:v1=v0x+a n-1,其中v0=a n=3(最高次项的系数),a n-1=5,∴v1=3×(-4)+5=-7.【答案】B5.从甲、乙两人手工制作的圆形产品中随机抽取6件,测得其直径如下:(单位:cm)甲:9.0,9.2,9.0,8。
5,9。
1,9.2;乙:8。
9,9。
6,9。
5,8。
5,8.6,8.9。
据以上数据估计两人的技术的稳定性,结论是()A。
单元质量评估(二)(第二章)(60分钟100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某班的78名同学已编号为1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被6整除的13名同学的作业本,这里运用的抽样方法是( )A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法【解析】选B.本题的抽样方法是将78人按6人一组分为13组,从每组中抽取最后一人,故是系统抽样法.【补偿训练】(2016·长沙高一检测)①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;②一次数学月考中,某班有10人在100分以上,32人在90~100分,12人低于90分,现从中抽取9人了解有关情况;③运动会工作人员为参加4×100m接力赛的6支队伍安排跑道.就这三件事,恰当的抽样方法分别为( )A.分层抽样、分层抽样、简单随机抽样B.系统抽样、系统抽样、简单随机抽样C.分层抽样、简单随机抽样、简单随机抽样D.系统抽样、分层抽样、简单随机抽样【解析】选 D.①中总体容量较多,抽取的样本容量较大,用系统抽样比较恰当;②中考试成绩各分数段之间的同学有明显的差异,应按分层抽样比较恰当;③中个体较少,按简单随机抽样比较恰当.2.(2016·惠州高一检测)在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的,且样本容量为140,则中间一组的频数为( )A.28B.40C.56D.60【解析】选B.设中间一组的频数为x,则其他8组的频数和为x,所以x+x=140,解得x=40.3.某全日制大学共有学生5600人,其中专科生有1300人、本科生有3000人、研究生有1300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取( )A.65人,150人,65人B.30人,150人,100人C.93人,94人,93人D.80人,120人,80人【解析】选A.抽样比为=,所以专科生应抽取×1300=65(人),本科生应抽取×3000=150(人),研究生应抽取×1300=65(人). 【补偿训练】将一个样本容量为100的数据分组,各组的频数如下: [17,19],1;(19,21],1;(21,23],3;(23,25],3;(25,27],18;(27,29], 16;(29,31],28;(31,33],30.根据样本频率分布,估计小于或等于29的数据大约占总体的( )A.58%B.42%C.40%D.16%【解析】选B.依题意可得=42%.4.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x-6.423;②y与x负相关且=-3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=-4.326x-4.578.其中一定不正确的结论是( )A.①②B.②③C.③④D.①④【解析】选D.①中y与x负相关而斜率为正,不正确;④中y与x正相关而斜率为负,不正确.5.(2016·大连高一检测)某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A.甲的极差是29B.乙的众数是21C.甲罚球命中率比乙高D.甲的中位数是24【解题指南】注意极差、众数、中位数的定义即可.【解析】选D.甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C成立;甲的中位数应该是23.6.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.1B.8C.12D.18【解题指南】本题考查了频率分布直方图,先利用已知数据估计总体数据,然后再根据比例计算第三组数据有疗效的人数.【解析】选C.由图知,样本总数为N==50.设第三组中有疗效的人数为x,则=0.36,解得x=12.7.(2016·北京高一检测)在某次测量中得到的A样本数据如下: 82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加上2所得数据,则A,B两样本的下列数字特征对应相同的是( )A.众数B.平均数C.中位数D.标准差【解析】选D.设A样本数据为x i,根据题意可知B样本数据为x i+2,则依据统计知识可知A,B两样本中的众数、平均数和中位数都相差2,只有方差相同,即标准差相同.【补偿训练】1.如图所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为和,样本标准差分别为s A和s B,则( )A.>,s A>s BB.<,s A>s BC.>,s A<s BD.<,s A<s B【解析】选B.A中的数据都不大于B中的数据,所以<,但A中的数据比B中的数据波动幅度大,所以s A>s B.2.甲、乙两名同学在五次数学测试中的成绩统计用茎叶图表示如下,若甲、乙两人的平均成绩分别用X甲,X乙表示,则下列结论正确的是( )A.X甲>X乙,甲比乙成绩稳定B.X甲>X乙,乙比甲成绩稳定C.X甲<X乙,甲比乙成绩稳定D.X甲<X乙,乙比甲成绩稳定【解析】选A.由茎叶图知,X甲=×(68+69+70+71+72)=70,X乙=×(63+68+69+69+71)=68,所以X甲>X乙,且甲比乙成绩稳定.8.(2016·太原高一检测)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数大于该班女生成绩的平均数【解析】选C.=(86+94+88+92+90)=90,=(88+93+93+88+93)=91,=[(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8,=[(88-91)2+(93-91)2+(93-91)2+(88-91)2+(93-91)2]=6.【补偿训练】如图1是某高三学生进入高中后的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A1,A2,…,A14.如图2是统计茎叶图中成绩在一定范围内考试次数的一个程序框图.那么程序框图输出的结果是( )图1A.7B.8C.9D.10【解题指南】关键是弄清程序框图的含义,分析程序框图中各变量、各语句的作用.【解析】选D.根据程序框图所示的顺序,可知该程序的作用是累计14次考试中成绩超过90分的次数.根据茎叶图可得超过90分的次数为10,故选D.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)9.(2016·聊城高一检测)某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.【解析】由频率分布图知,设90~100分数段的人数为x,则=,所以x=720.答案:72010.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x+y的值为________.【解析】甲班学生成绩的众数为85,结合茎叶图可知x=5;又因为乙班学生成绩的中位数是83,所以y=3,即x+y=5+3=8.答案:811.某企业五月中旬生产A,B,C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A,C产品的有关数据被污染看不清楚,统计员只记得A产品的样本容量比C产品的样本容量多10,请你根据以上信息补全表格中的数据:________,________,________,________.(从左到右、从上到下依次填入)【解析】由产品B的数据可知该分层抽样的抽样比k==,设产品C的样本容量为x,则产品A的样本容量为(x+10),那么x+10+130+x=3000×,解之得x=80,所以产品A的样本容量为90,产品A的数量为90÷=900,产品C的数量为80÷=800.答案:9008009080【误区警示】解答本题易出现如下两种错误一是对各层的量要区别清楚,特别是抽样比;二是对运算律理解不够,致使运算错误.12.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如下几组样本数据:据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是________.【解析】因为==4.5,==3.5,所以=-=3.5-0.7×4.5=0.35.所以回归直线方程为=0.7x+0.35.答案:=0.7x+0.35三、解答题(本大题共4个小题,共40分,解答时应写出必要的文字说明、证明过程或演算步骤)13.(10分)已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.【解析】由于数据-1,0,4,x,7,14的中位数为5,所以=5,x=6.设这组数据的平均数为,方差为s2,由题意得=×(-1+0+4+6+7+14)=5,s2=×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=.14.(10分)(2016·大庆高一检测)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率.(2)参加这次测试的学生有多少人.(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.【解析】(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,所以x=50.即参加这次测试的学生有50人.(3)达标率为0.3+0.4+0.2=90%,所以估计该年级学生跳绳测试的达标率为90%.【补偿训练】如图是一个样本的频率分布直方图,且在[15,18)内频数为8.(1)求样本容量.(2)若[12,15)一组的小长方形面积为0.06,求[12,15)一组的频数.(3)求样本在[18,33)内的频率.【解析】(1)由图可知[15,18)一组对应的纵轴数值为,且组距为3, 所以[15,18)一组对应的频率为×3=.又已知[15,18)一组的频数为8,所以样本容量n==50.(2)[12,15)一组的小长方形面积为0.06,即[12,15)一组的频率为0.06,且样本容量为50,所以[12,15)一组的频数为50×0.06=3.(3)由(1)、(2)知[12,15)一组的频数为3,[15,18)一组的频数为8,样本容量为50,所以[18,33)内频数为50-3-8=39,所以[18,33)内的频率为=0.78.15.(10分)(2016·乌鲁木齐高一检测)某高中在校学生2000人,高一年级与高二年级人数相同并且都比高三年级多1人.为了响应市教育局“阳光体育”号召,该校开展了跑步和跳绳两项比赛,要求每人都参加而且只参加其中一项,各年级参与项目人数情况如下表:其中a∶b∶c=2∶3∶5,全校参与跳绳的人数占总人数的.为了了解学生对本次活动的满意度,采用分层抽样从中抽取一个200人的样本进行调查,则高二年级中参与跑步的同学应抽取多少人?【解析】全校参与跳绳的人数占总人数的,则跳绳的人数为×2000=800,所以跑步的人数为×2000=1200.又a∶b∶c=2∶3∶5,所以a=×1200=240,b=×1200=360,c=×1200=600.抽取样本为200人,即抽样比例为=,则在抽取的样本中,应抽取的跑步的人数为×1200=120,则跑步的抽取率为=,所以高二年级中参与跑步的同学应抽取360×=36(人).【补偿训练】为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明.(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?【解析】(1)=100+=100,=100+=100,所以=142,所以=,从而>,所以物理成绩更稳定.(2)由于x与y之间具有线性相关关系,所以=0.5,=100-0.5×100=50.所以回归方程为y=0.5x+50.当y=115时,x=130.估计他的数学成绩大约是130分.16.(10分)某个体服装店经营某种服装,在某周内获纯利润y(元)与该周每天销售这种服装件数x之间的一组数据关系如下表:已知:=280,x i y i=3487.(1)求,.(2)画出散点图.(3)观察散点图,若y与x线性相关,请求纯利润y与每天销售件数x 之间的回归直线方程.【解析】(1)==6,==≈79.86.(2)散点图如图所示.(3)观察散点图知,y与x线性相关.设回归直线方程为=x+.因为=280,x i y i=3487,=6,=,所以===4.75.=-6×4.75≈51.36.所以回归直线方程为=4.75x+51.36.【补偿训练】已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据制作成如图的茎叶图.(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量.(2)为了估计池塘中鱼的总质量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的质量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.①估计池塘中鱼的质量在3千克以上(含3千克)的条数;②若第三组鱼的条数比第二组多7条、第四组鱼的条数也比第三组多7条,请将频率分布直方图补充完整;③在②的条件下估计池塘中鱼的质量的众数及池塘中鱼的总质量.【解析】(1)根据茎叶图可知,鲤鱼与鲫鱼的平均数目分别为80,20.由题意知,池塘中鱼的总数目为1000÷=20000(条),则估计鲤鱼数目为20000×=16000(条),鲫鱼数目为20000-16000=4000(条).(2)①根据题意,结合直方图可知,池塘中鱼的质量在3千克以上(含3千克)的条数约为20000×(0.12+0.08+0.04)×0.5=2400(条).②设第二组鱼的条数为x,则第三、四组鱼的条数分别为x+7,x+14,则有x+x+7+x+14=100×(1-0.55),解得x=8,故第二、三、四组的频率分别为0.08,0.15,0.22,它们在频率分布直方图中的小矩形的高度分别为0.16,0.30,0.44,据此可将频率分布直方图补充完整(如图).③众数为 2.25千克,平均数为0.25×0.04+0.75×0.08+1.25×0.15+…+4.25×0.02=2.02(千克),所以鱼的总质量为2.02×20000=40400(千克).。
第二章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知x 与y 之间的一组数据:则y 与x 的线性回归方程为y =b x +a 必过点导学号 95064555( D ) A .(2,2) B .(1,2) C .(1.5,0)D .(1.5,4)[解析] x =0+1+2+34=1.5,y =1+3+5+74=4.∵回归直线过样本的中心点(x ,y ),∴回归直线过点(1.5,4),故选D . 2.下列哪种工作不能使用抽样方法进行导学号 95064556( D ) A .测定一批炮弹的射程B .测定海洋某一水域的某种微生物的含量C .高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D .检测某学校全体高三学生的身高和体重的情况[解析] 抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A 、B 、C 都是从总体中抽取部分个体进行检验,选项D 是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法.故选D .3.高一·一班李明同学进行一项研究,他想得到全班同学的臂长数据,他应选择的最恰当的数据收集方法是导学号 95064557( A )A .做试验B .查阅资料C .设计调查问卷D .一一询问[解析] 全班人数不是很多,所以做试验最恰当.4.设有一个回归方程为y ^=2-2.5x ,变量x 增加一个单位时,变量y 导学号 95064558( C )A .平均增加1.5个单位B .平均增加2个单位C .平均减少2.5个单位D .平均减少2个单位[解析] 因为随变量x 增大,y 减小,x 、y 是负相关的,且b ^=-2.5,故选C . 5.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 且支出在[20,60)元的样本,其频率分布直方图如图所示,根据此图估计学生在课外读物方面的支出费用的中位数为( )元导学号 95064559( C )A .45B .3909C .4009D .46[解析] 40+10×0.160.36=4009.6.将1 000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,则抽取的第40个号码为导学号 95064560( A )A .0795B .0780C .0810D .0815 [解析] 由题意可知,该抽样为系统抽样,抽样间隔为20,则抽取的第40个号码为0015+20×39=0795,故选A .7.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为导学号 95064561( B )A .101B .808C .1 212D .2 012[解析] 根据分层抽样的概念知,12+21+25+43N =1296,解得N =808.8.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是导学号 95064562( A )A .91.5和91.5B .91.5和92C .91和91.5D .92和92[解析] 将这组数据从小到大排列,得87、89、90、91、92、93、94、96. 故平均数x -=87+89+90+91+92+93+94+968=91.5,中位数为91+922=91.5,故选A .9.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5~18岁的男生体重(单位:kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是导学号 95064563( C )A .20B .30C .40D .50[解析] 由题意,知这100名学生中体重在[56.5,64.5)的学生人数所占频率为(0.03+0.05+0.05+0.07)×2=0.4,所以这100名学生中体重在[56.5,64.5)的学生人数是0.4×100=40.10.网上大型汽车销售某品牌A 型汽车,在2016双十一期间,进行了降价促销,该型汽车的价格与月销量之间有如下关系:已知A 型汽车的购买量y 与价格x 符合如下线性回归方程:y =b x +80,若A 型汽车价格降到19万元,预测月销量大约是导学号 95064564( B )A .39B .42C .45D .50[解析] x =14(25+23.5+22+20.5)=22.75,y =14(30+33+36+39)=34.5,∵y ^=b ^x +80,∴34.5=b ^×22.75+80,∴b ^≈-2. ∵x =19,∴y =19×(-2)+80=42.11.数据5,7,7,8,10,11的标准差是导学号 95064565( C ) A .8 B .4 C .2D .1[解析] x =5+7+7+8+10+116=8,标准差S =(5-8)2+(7-8)2+(7-8)2+(8-8)2+(10-8)2+(11-8)26=2.12.设矩形的长为a ,宽为b ,其比满足b ∶a =5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是导学号 95064566( A )A .甲批次的总体平均数与标准值更接近B .乙批次的总体平均数与标准值更接近C .两个批次总体平均数与标准值接近程度相同D .两个批次总体平均数与标准值接近程度不能确定[解析] 本小题主要考查学生的知识迁移能力和统计的有关知识. x -甲=0.598+0.625+0.628+0.595+0.6395=0.617,x -乙=0.618+0.613+0.592+0.622+0.6205=0.613,故选A .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上.) 13.将一个容量为m 的样本分成3组,已知第一组频数为8,第二、三组的频率为0.15和0.45,则m =__20__.导学号 95064567[解析] 由题意知第一组的频率为1-(0.15+0.45)=0.4,∴8m=0.4,∴m =20. 14.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10天甲、乙两人日加工零件的平均数分别为__24__和__23__.导学号 95064568[解析] x -甲=110(10×2+20×5+30×3+17+6+7)=24,x -乙=110(10×3+20×4+30×3+17+11+2)=23.15.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55)、[55,65)、[65,75)、[75,85)、[85,95),由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[55,75)的人数是__13__. 导学号 95064569[解析] 由频率分布直方图知[55,75)之间的频率为(0.040+0.025)×10=0.65,故[55,75)之间的人数为0.65×20=13.16.某校甲、乙两个班级各有5名编号为1、2、3、4、5的学生进行投篮练习,每人投10次,投中的次数如下表:导学号 95064570则以上两组数据的方差中较小的一个为s 2= 25 .[解析] x 甲=6+7+7+8+75=7,x 乙=6+7+6+7+95=7.∴s 2甲=(6-7)2+(7-7)2+(7-7)2+(8-7)2+(7-7)25=25,s 2乙=(7-6)2+(7-7)2+(7-6)2+(7-7)2+(7-9)25=65,则两组数据的方差中较小的一个为s 2甲=25.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)下面的抽样方法是简单随机抽样吗?为什么?导学号 95064571 (1)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回,再拿一件,连续玩了5件;(3)从200个灯泡中逐个抽取20个进行质量检查. [解析] (1)不是简单随机抽样,因为这不是等可能抽样. (2)不是简单随机抽样,因为它是有放回的抽样.(3)是简单随机抽样,因为它满足简单随机抽样的几个特点.18.(本题满分12分)有关部门要了解甲型H1N1流感预防知识在学校的普及情况,制作了一份有10道题的问卷到各学校进行问卷调查.某中学A 、B 两个班各被随机抽取了5名学生接受问卷调查,A 班5名学生得分为:5,8,9,9,9;B 班5名学生得分为:6,7,8,9,10.(单位:分)请你估计A 、B 两个班中哪个班的问卷得分要稳定一些.导学号 95064572 [解析] A 班的5名学生的平均得分为(5+8+9+9+9)÷5=8(分), 方差s 21=15×[(5-8)2+(8-8)2+(9-8)2+(9-8)2+(9-8)2]=2.4; B 班的5名学生的平均得分为(6+7+8+9+10)÷5=8(分), 方差s 22=15×[(6-8)2+(7-8)2+(8-8)2+(9-8)2+(10-8)2]=2. ∴s 21>s 22.∴B 班的预防知识的问卷得分要稳定一些.19.(本题满分12分)一箱方便面共有50包,从中用随机抽样方法抽取了10包称量其重量(单位:g)结果为:60.5 61 60 60 61.5 59.5 59.5 58 60 60(1)指出总体、个体、样本、样本容量; (2)指出样本数据的众数、中位数、平均数; (3)求样本数据的方差.导学号 95064573[解析] (1)总体是这50包方便面所有的包重,个体是这一箱方便面中每一包的包重,样本是抽取的10包的包重,样本容量为10.(2)这组样本数据的众数是60,中位数为60,样本平均数x -=110×(60.5+61+60+60+61.5+59.5+59.5+58+60+60)=60.(3)样本数据的方差为 s 2=110[(60.5-60)2+(61-60)2+(60-60)2+(60-60)2+(61.5-60)2+(59.5-60)2+(59.5-60)2+(58-60)2+(60-60)2+(60-60)2]=0.8.20.(本题满分12分)某班的全体学生共有50人,参加数学测试(百分制)成绩的频率分布直方图如图,数据的分组依次为:[20,40)、[40,60)、[60,80)、[80,100].依此表可以估计这一次测试成绩的中位数为70分.导学号 95064574(1)求表中a 、b 的值;(2)请估计该班本次数学测试的平均分. [解析] (1)由中位数为70可得, 0.005×20+0.01×20+a ×10=0.5, 解得a =0.02.又20(0.005+0.01+0.02+b )=1, 解得b =0.015.(2)该班本次数学测试的平均分的估计值为30×0.1+50×0.2+70×0.4+90×0.3=68分.21.(本题满分12分)有一容量为50的样本,数据的分组以及各组的频数如下:导学号 95064575[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5),4. (1)列出样本的频率分布表; (2)画出频率分布直方图;(3)根据频率分布直方图估计,数据落在[15.5,24.5)内的可能性约是多少? [解析] (1)频率分布表为:(2)(3)数据落在[15.5,24.5)内的可能性为:8+9+1150=0.56.22.(本题满分12分)以下是某地搜集到的新房屋的销售价格y (单位:万元)和房屋的面积x (单位:m 2)的数据:导学号 95064576(1)(2)求线性回归方程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋面积为150 m 2时的销售价格(精确到0.1万元). [解析] (1)数据对应的散点图如图所示.(2)x =15∑=15x i =109,∑=15 (x i -x )2=1570,y =23.2,∑i =15(x i -x )(y i -y )=308.设所求回归直线方程为y ^=b ^x +a ^,则b ^=∑=15(x i -x )(y i -y )∑i =15(x i -x )2=3081570≈0.1962, a ^=y -b ^x =23.2-0.1962×109=1.8142.故所求回时直线方程为y ^=0.1962x +1.8142.回归直线如上图.(3)由(2)得当x =150时,销售价格的估计值为y ^=0.196×150+1.8142=31.2442≈31.2(万元).。
综合学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是导学号95064916(D)A.分层抽样B.抽签抽样C.随机抽样D.系统抽样[解析]号码顺序以一定的间隔抽取,这样的抽样是系统抽样.2.下列赋值语句正确的是导学号95064917(A)A.S=a+1B.a+1=SC.S-1=a D.S-a=1[解析]赋值语句只能给某个变量赋值,不能给一个表达式赋值,故选A.3.(2015·湖北理,2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为导学号95064918(B)A.134石B.169石C.338石D.1 365石[解析]设这批米内夹谷约为x石,则依题意有x1 534=28254,解得x≈169. 故本题正确答案为B.4.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有导学号95064919(D)A.60辆B.80辆C.70辆D.140辆[解析] 时速在[50,70)的汽车大约有200×10×(0.03+0.04)=140辆. 5.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是导学号 95064920( B ) A .16B .13C .12D .23[解析] 由条件可知,落在[31.5,43.5)内的数据有12+7+3=22(个),故所求的概率为2266=13. 6.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是导学号 95064921( C )A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件[解析] 甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.7.下列说法中,正确的是导学号 95064922( B ) A .数据5,4,4,3,5,2的众数是4B .一组数据的标准差的平方是这组数据的方差C .数据2,3,4,5的方差是数据4,6,8,10的方差的一半D .频率分布直方图中各小矩形的面积等于相应各组的频数[解析] A 中的众数是4和5;C 中,2,3,4,5的方差为1.25,而数据4,6,8,10的方差为5;D 中,频率分布直方图中各小矩形的面积等于相应各组的频率.8.168,54,264的最大公约数是导学号 95064923( B ) A .4 B .6 C .8D .9[解析](168,54)→(114,54)→(60,54)→(6,54)→(6,48)→(6,42)→(6,36)→(6,30)→(6,24)→(6,18)→(6,12)→(6,6)故168和54的最大公约数为6,又264=44×6,∴6为264与6的最大公约数,也是这三个数的最大公约数.9.(2017·山东理,6)执行两次如图所示的程序框图,若第一次输入x的值为7,第二次输入x的值为9,则第一次、第二次输出的a的值分别为导学号95064924(D)A.0,0 B.1,1C.0,1 D.1,0[解析]当x=7时,∵b=2,∴b2=4<7=x.又7不能被2整除,∴b=2+1=3.此时b2=9>7=x,∴退出循环,a=1,∴输出a=1.当x=9时,∵b=2,∴b2=4<9=x.又9不能被2整除,∴b=2+1=3.此时b2=9=x,又9能被3整除,∴退出循环,a=0.∴输出a=0.10.某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比,如图是将某年级60篇学生调查报告的成绩进行整理,分成5组画出的频率分布条形图.已知从左往右4个小组的频率分别是0.05,0.15,0.35,0.30,那么在这次评比中被评为优秀的调查报告有(分数大于等于80分为优秀,且分数为整数)导学号 95064925( D )A .18篇B .24篇C .25篇D .27篇[解析] 由频率分布条形图知从左往右第5个小组的频率为0.15故优秀数为60×(0.3+0.15)=27.11.如图是某次拉丁舞比赛七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1、a 2,则a 1、a 2的大小关系是导学号 95064926( B )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .无法确定[解析] 去掉一个最高分和一个最低分后,甲、乙都有5组数据,此时甲、乙得分的平均数分别为a 1=1+4+5×35+80=84,a 2=6+7+4×35+80=85,所以a 2>a 1.12.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y =ax 2-2bx +1在(-∞,12]上为减函数的概率是导学号 95064927( D )A .14B .34C .16D .56[解析] 由题意,函数y =ax 2-2bx +1在(-∞,12]上为减函数满足条件⎩⎪⎨⎪⎧a >0b a ≥12.∵第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,∴a 取1,2时,b 可取1,2,3,4,5,6;a 取3,4时,b 可取2,3,4,5,6;a 取5,6时,b 可取3,4,5,6,共30种.∵将一枚质地均匀的骰子先后抛掷两次,共有6×6=36种等可能发生的结果, ∴所求概率为3036=56.故选D .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上.) 13.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取__15__名学生.导学号 95064928[解析] 由已知,高二人数占总人数的310,所以抽取人数为310×50=15.14.下列程序运行的结果是__1_890__.导学号 95064929S =1;i =1;while i<10 S =S*i ; i =i +2;endprint (%io (2),2*s );[解析] 程序是计算2S 的值,而S =1×3×5×7×9=945,∴2S =1 890.15.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:导学号 95064930如上图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填__i ≤6__,输出的s =__a 1+a 2+…+a 6__.(注:框图中的赋值符号“=”也可以写成“←”或“:=”) [解析] 考查读表识图能力和程序框图.因为是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,所以图中判断框应填i ≤6,输出的s =a 1+a 2+…+a 6.16.下表是某厂1~4月份用水量(单位:百吨)的一组数据:导学号 95064931由其散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^=-0.7x +a ^,则a ^=__5.25__.[解析] x -=1+2+3+44=52,y -=4.5+4+3+2.54=72.由线性回归方程知a ^=y --(-0.7)·x -=72+710·52=5.25.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分10分)某中学高中三年级男子体育训练小组2017年5月测试的50 m 跑的成绩(单位:s)如下:6.4、6.5、7.0、6.8、7.1、7.3、6.9、7.4、7.5,设计一个算法,从这些成绩中搜索出小于6.8 s 的成绩,并画出程序框图.导学号 95064932[解析] 算法步骤如下: S1 i =1;S2 输入一个数据a ;S3 如果a <6.8,则输出a ,否则,执行S4; S4 i =i +1;S5 如果i >9,则结束算法,否则执行S2. 程序框图如右图:18.(本题满分12分)海关对同时从A 、B 、C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.导学号 95064933(1)求这6件样品中来自(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.[解析] (1)因为工作人员是按分层抽样抽取样品,所以各地区抽取样品的比例为:A ∶B ∶C =50∶150∶100=1∶3∶2各地区抽取的商品数分别别为A :6×16=1;B :6×36=3;C :6×26=2.(2)设各地商品分别为A 、B 1、B 2、B 3、C 1、C 2所以所含基本事件共有(A ,B 1),(A ,B 2),(A ,B 3),(A ,C 1),(A ,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2)15种不同情况,样本事件包括(B 1,B 2),(B 1,B 3),(B 2,B 3),(C 1,C 2)4种情况.所以,这两件商品来自同一地区的概率为P =415.19.(本题满分12分)高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:导学号 95064934(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.[解析] (1)因为分数在[50,60)之间的频数为2,频率为0.008×10=0.08,所以高一(1)班参加校生物竞赛的人数为20.08=25. 分数在[80,90)之间的频数为25-2-7-10-2=4,频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(2)设“至少有1人分数在[90,100]之间”为事件A ,将[80,90)之间的4人编号为1、2、3、4,[90,100]之间的2人编号为5、6.在[80,100]之间任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有1人分数在[90,100]之间的基本事件有9个,根据古典概型概率的计算公式,得P (A )=915=35.20.(本题满分12分)某高中在校学生2 000人,高一年级与高二年级人数相同并且都比高三年级多1人.为了响应市教育局“阳光体育”号召,该校开展了跑步和跳绳两项比赛,要求每人都参加而且只参加其中一项,各年级参与项目人数情况如下表:导学号 95064935其中a ∶b ∶c =2∶3∶5,全校参与跳绳的人数占总人数的25.为了了解学生对本次活动的满意度,采用分层抽样从中抽取一个200人的样本进行调查,则高二年级中参与跑步的同学应抽取多少人?[解析] 全校参与跳绳的人数占总人数的25,则跳绳的人数为25×2 000=800,所以跑步的人数为35×2 000=1 200.又a ∶b ∶c =2∶3∶5,所以a =210×1 200=240,b =310×1 200=360,c =510×1 200=600.抽取样本为200人,即抽样比例为2002 000=110,则在抽取的样本中,应抽取的跑步的人数为110×1 200=120,则跑步的抽取率为1201 200=110, 所以高二年级中参与跑步的同学应抽取360×110=36(人).21.(本题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:导学号 95064936(1)利用所给数据求年需求量与年份之间的回归方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2018年的粮食需求量.[解析] (1)由所给数据看出,年需求量与年份之间具有线性相关关系,下面来求回归方程.为此对数据预处理如下:x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5.a ^=y -b ^x =3.2.由上述计算结果,知所求回归方程为 y ^-257=b ^(x -2010)+a ^=6.5(x -2010)+3.2, 即y ^=6.5(x -2010)+260.2. ①(2)利用直线方程①,可预测该地2018年的粮食需求量为y ^=6.5×(2018-2010)+260.2=6.5×8+260.2=312.2(万吨)≈312(万吨).22.(本题满分12分)(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:导学号 95064937(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解析] (1)这种酸奶一天的需求量不超300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100,所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y大于零的概率的估计值为0.8.。
阶段质量检测(二) 统 计(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200 D.y ^=10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝⎛⎭⎫1+1+…+1n =2x -3y +1.6.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( ) A.211 B.13 C.12D.23解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7+3=22,故总体中大于或等于31.5的数据约占2266=13.7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人, ∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4 用水量y4.5432.5用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y ^=-0.7x +a ,则a 的值为( )A .5.25B .5C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4解析:选C 去掉一个最高分95,去掉一个最低分77,平均数为80+15(5+3+6+5+6)=85,方差为15[(85-85)2+(85-83)2+(85-86)2+(85-85)2+(85-86)2]=1.2,因此选C.11.如果数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是s 2,则3x 1+2,3x 2+2,…,3x n+2的平均数和方差分别是( )A.x 和s 2 B .3x 和9s 2 C .3x +2和9s 2D .3x +2和12s 2+4解析:选C 3x 1+2,3x 2+2,…,3x n +2的平均数是3x +2,由于数据x 1,x 2,…x n的方差为s2,所以3x1+2,3x2+2,…,3x n+2的方差为9s2.12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()A.x=9B.y=8C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差解析:选B因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.解析:由平均数为10,得(x+y+10+11+9)×15=10,则x+y=20;又方差为2,∴[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x2+y2=208,2xy=192,∴|x-y|=(x-y)2=x2+y2-2xy=4.答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)594086636836016262472596549487269688602177681834582154062651694247819720193672977641366306516715496487683303723946997434解析:以3开始向右读,每次读取三位,重复和不在范围内的不读,依次为368,360,162,494,021.答案:368,360,162,494,02116.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人, 则x100=0.030×10,解得x =30.同理,y =20,z =10. 故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?解:(1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人所占比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.19.(本小题满分12分)2019年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人); 四川籍的有15+10+5+5+5=40(人).设四川籍的驾驶人员应抽取x 人,依题意得5100=x 40,解得x =2,即四川籍的应抽取2人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100,s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定.21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率[10,15)100.25[15,20)25n[20,25)m p[25,30]20.05合计M1(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10,频率是0.25知,10M=0.25,所以M=40.因为频数之和为40,所以10+25+m+2=40,解得m=3.故p=340=0.075.因为a是对应分组[15,20)的频率与组距的商,所以a=2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得∑i=110x i=80,∑i=110y i=20,∑i=110x i y i=184,∑i=110x2i =720.(1)求家庭的月储蓄y对月收入x的线性回归方程y^=b^x+a^;(2)判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又∑i =110x 2i -10x 2=720-10×82=80, ∑i =110x i y i -10x y =184-10×8×2=24,由此得b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2=2480=0.3, a ^=y -b ^x =2-0.3×8=-0.4, 故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。
阶段质量检测(二) 统 计(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200 D.y ^=10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝⎛⎭⎫1+1+…+1n =2x -3y +1.6.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( ) A.211 B.13 C.12D.23解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7+3=22,故总体中大于或等于31.5的数据约占2266=13.7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人, ∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y ^=-0.7x +a ,则a 的值为( )A .5.25B .5C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4解析:选C 去掉一个最高分95,去掉一个最低分77,平均数为80+15(5+3+6+5+6)=85,方差为15[(85-85)2+(85-83)2+(85-86)2+(85-85)2+(85-86)2]=1.2,因此选C.11.如果数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是s 2,则3x 1+2,3x 2+2,…,3x n+2的平均数和方差分别是( )A.x 和s 2 B .3x 和9s 2 C .3x +2和9s 2D .3x +2和12s 2+4解析:选C 3x 1+2,3x 2+2,…,3x n +2的平均数是3x +2,由于数据x 1,x 2,…x n 的方差为s2,所以3x1+2,3x2+2,…,3x n+2的方差为9s2.12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()A.x=9B.y=8C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差解析:选B因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.解析:由平均数为10,得(x+y+10+11+9)×15=10,则x+y=20;又方差为2,∴[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x2+y2=208,2xy=192,∴|x-y|=(x-y)2=x2+y2-2xy=4.答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)594086636836016262472596549487269688602177681834582154062651694247819720643672977641366306516715496487683303723946997434解析:以3开始向右读,每次读取三位,重复和不在范围内的不读,依次为368,360,162,494,021.答案:368,360,162,494,02116.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人, 则x100=0.030×10,解得x =30.同理,y =20,z =10. 故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?解:(1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人所占比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人); 四川籍的有15+10+5+5+5=40(人). 设四川籍的驾驶人员应抽取x 人,依题意得5100=x 40,解得x =2,即四川籍的应抽取2人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100,s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定.21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 频率是0.25知,10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3. 故p =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又∑i =110x 2i -10x 2=720-10×82=80, ∑i =110x i y i -10x y =184-10×8×2=24,由此得b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2=2480=0.3, a ^=y -b ^x =2-0.3×8=-0.4, 故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。