数据结构-考研辅导-图概况知识讲解
- 格式:ppt
- 大小:1.13 MB
- 文档页数:31
数据结构考研复习重点归纳数据结构是计算机科学中非常重要的一门基础课程,考研复习数据结构时,需要重点掌握的内容有以下几个方面。
1.线性表:线性表是数据结构中最基本的一种结构,常见的线性表有数组、链表和栈等。
考生需要掌握线性表的定义、插入、删除、查找等基本操作,并能够分析它们的时间复杂度。
2.树:树是一种非常重要且常见的数据结构,它具有分层结构和层次关系。
其中,二叉树是最简单也是最基本的一种树结构,树的遍历(如前序遍历、中序遍历和后序遍历)是树算法中的重要内容。
此外,还要了解一些特殊的树结构,如平衡树和B树等。
3.图:图是由节点和边组成的一种数据结构,它是一种非常灵活的结构,常用来表示各种实际问题中的关系。
在考研复习中,需要掌握图的基本概念(如顶点和边)、图的存储结构(如邻接矩阵和邻接表)以及图的遍历算法(如深度优先和广度优先)等。
4.查找和排序:在实际问题中,经常需要查找和排序数据。
查找算法(如顺序查找、二分查找和哈希查找)和排序算法(如冒泡排序、插入排序和快速排序)是数据结构中常见的算法,考生需要熟练掌握这些算法的原理和实现方法。
此外,还要了解一些高级的查找和排序算法,如二叉查找树和归并排序等。
5.散列表:散列表(也称哈希表)是一种特殊的数据结构,它利用散列函数将数据映射到一个固定大小的数组中。
散列表具有快速的查找和插入操作,常用于实现字典和数据库等应用。
在考研复习中,需要了解散列表的原理和实现方法,以及处理冲突的方法,如链地址法和开放地址法。
6.动态规划:动态规划是一种解决问题的数学方法,也是一种重要的算法思想。
在考研复习中,需要掌握动态规划的基本原理和解题思路,以及常见的动态规划算法,如背包问题和最长公共子序列等。
7.算法复杂度分析:在考研复习中,需要有一定的算法分析能力,能够对算法的时间复杂度和空间复杂度进行分析和估算。
此外,还要能够比较不同算法的效率,并选择合适的算法来解决实际问题。
除了以上重点内容,考生还要注意掌握一些基本的编程知识,如指针、递归和动态内存分配等。
《数据结构》复习重点知识点归纳一.数据结构的章节结构及重点构成数据结构学科的章节划分基本上为:概论,线性表,栈和队列,串,多维数组和广义表,树和二叉树,图,查找,内排,外排,文件,动态存储分配。
对于绝大多数的学校而言,“外排,文件,动态存储分配”三章基本上是不考的,在大多数高校的计算机本科教学过程中,这三章也是基本上不作讲授的。
所以,大家在这三章上可以不必花费过多的精力,只要知道基本的概念即可。
但是,对于报考名校特别是该校又有在试卷中对这三章进行过考核的历史,那么这部分朋友就要留意这三章了。
按照以上我们给出的章节以及对后三章的介绍,数据结构的章节比重大致为:·概论:内容很少,概念简单,分数大多只有几分,有的学校甚至不考。
·线性表:基础章节,必考内容之一。
考题多数为基本概念题,名校考题中,鲜有大型算法设计题,如果有,也是与其它章节内容相结合。
·栈和队列:基础章节,容易出基本概念题,必考内容之一。
而栈常与其它章节配合考查,也常与递归等概念相联系进行考查。
·串:基础章节,概念较为简单。
专门针对于此章的大型算法设计题很少,较常见的是根据KMP进行算法分析。
·多维数组及广义表:基础章节,基于数组的算法题也是常见的,分数比例波动较大,是出题的“可选单元”或“侯补单元”。
一般如果要出题,多数不会作为大题出。
数组常与“查找,排序”等章节结合来作为大题考查。
·树和二叉树:重点难点章节,各校必考章节。
各校在此章出题的不同之处在于,是否在本章中出一到两道大的算法设计题。
通过对多所学校的试卷分析,绝大多数学校在本章都曾有过出大型算法设计题的历史。
·图:重点难点章节,名校尤爱考。
如果作为重点来考,则多出现于分析与设计题型当中,可与树一章共同构成算法设计大题的题型设计。
·查找:重点难点章节,概念较多,联系较为紧密,容易混淆。
出题时可以作为分析型题目给出,在基本概念型题目中也较为常见。
数据结构的定义数据结构是计算机中存储、组织数据的方式,它定义了数据元素之间的逻辑关系以及如何在计算机中表示这些关系。
提高算法效率合适的数据结构可以显著提高算法的执行效率,降低时间复杂度和空间复杂度。
简化程序设计数据结构为程序设计提供了统一的抽象层,使得程序员可以更加专注于问题本身,而不是底层的数据表示和访问细节。
便于数据管理和维护良好的数据结构设计可以使得数据的管理和维护变得更加方便和高效。
数据结构的定义与重要性线性数据结构中的元素之间存在一对一的关系,如数组、链表、栈和队列等。
线性数据结构非线性数据结构中的元素之间存在一对多或多对多的关系,如树、图等。
非线性数据结构静态数据结构在程序运行期间不会发生改变,如数组、静态链表等。
静态数据结构动态数据结构在程序运行期间可以动态地添加或删除元素,如链表、动态数组等。
动态数据结构数据结构的分类01020304在计算机科学中,数据结构是算法设计和分析的基础,广泛应用于操作系统、编译原理、数据库等领域。
计算机科学在软件工程中,数据结构是软件设计和开发的重要组成部分,用于实现各种软件功能和性能优化。
软件工程在人工智能中,数据结构用于表示和处理各种复杂的数据和知识,如神经网络、决策树等。
人工智能在大数据处理中,数据结构用于高效地存储、管理和分析海量数据,如分布式文件系统、NoSQL 数据库等。
大数据处理数据结构的应用领域0102线性表是具有n个数据元素的有限序列创建、销毁、清空、判空、求长度、获取元素、修改元素、插入元素、删除元素等线性表的定义线性表的基本操作线性表的定义与基本操作03用一段地址连续的存储单元依次存储线性表的数据元素顺序存储结构的定义可以随机存取,即可以直接通过下标访问任意元素;存储密度高,每个节点只存储数据元素顺序存储结构的优点插入和删除操作需要移动大量元素;空间利用率不高,需要提前分配存储空间顺序存储结构的缺点链式存储结构的定义01用一组任意的存储单元存储线性表的数据元素,这组存储单元可以是连续的,也可以是不连续的链式存储结构的优点02插入和删除操作不需要移动大量元素,只需要修改指针;空间利用率高,不需要提前分配存储空间链式存储结构的缺点03不能随机存取,只能通过从头节点开始遍历的方式访问元素;存储密度低,每个节点除了存储数据元素外,还需要存储指向下一个节点的指针0102定义栈(Stack)是一种特殊的线性数据结构,其操作只能在一端(称为栈顶)进行,遵循后进先出(LIFO)的原则。
考研数据结构图的必背算法及知识点Prepared on 22 November 20201.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。
这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。
在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。
n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。
即无向连通图的生成树不是唯一的。
连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。
图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1条边。
最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。
最小生成树的性质:假设N=(V,{E})是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。
解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。
他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。
时间复杂度O(N^2)假设G=(V,E)为连通图,其中V为网图中所有顶点的集合,E为网图中所有带权边的集合。
数据结构考研笔记整理(全)一、第二章线性表●考纲内容●一、线性表的基本概念●线性表是具有相同数据结构类型的n个数据元素的有限序列;线性表为逻辑结构,实现线性表的存储结构为顺序表或者链表●二、线性表的实现●1、顺序表●定义(静态分配)●#define MaxSize 50 \\ typedef struct{ \\ ElemType data[MaxSize];\\ intlength;\\ }SqList;●定义(动态分配)●#define MaxSize 50\\ typedef strcut{\\ EleType *data; //指示动态非配数组的指针\\ int MaxSize,length;\\ }SqList;●c的动态分配语句为L.data=(ElemType*)malloc(sizeof(ElemType)*InitSize);●c++动态分配语句为L.data=new ElemType[InitSize];●插入操作●删除操作●按值寻找●2、链表●单链表●单链表的定义●●头插法建立单链表●●尾插法建立单链表●●按序号查找getElem(LinkList L,int i)和按值查找locateElem(LinkListL,ElemType e)●插入结点(后插)●p=getElem(L,i-1); //查找插入位置的前驱结点\\ s.next=p.next;\\p.next=s;●将前插操作转化为后插操作,即先将s插入的p的后面然后调换s和p的数据域●s.next=p.next;\\ p.next=s.next;\\ temp=p.data;\\ p.data=s.data;\\s.data=temp;●删除结点●p.getElem(L,i-1);\\ q=p.next;\\ p.next=q.next;\\ free(q);●双链表(结点中有prior指针和next指针)●循环链表●静态链表●借助数组来描述线性表的链式存储结构,结点中的指针域next为下一个元素的数组下标●三、线性表的应用●使用的时候如何选择链表还是顺序表?●表长难以估计,经常需要增加、删除操作——链表;表长可以估计,查询比较多——顺序表●链表的头插法,尾插法,逆置法,归并法,双指针法;顺序表结合排序算法和查找算法的应用●小知识点(选择题)二、第三章栈,队列和数组●考纲内容●一、栈和队列的基本概念●栈:后进先出,LIFO,逻辑结构上是一种操作受限的线性表●队列:先进先出,FIFO,逻辑结构上也是一种操作受限的线性表●二、栈和队列的顺序存储结构●栈的顺序存储●●队列的顺序存储●进队:队不满时,送值到队尾元素,再将队尾指针加一●出队:队不空时,取队头元素值,再将队头指针加一●判断队空:Q.front==Q.rear==0;●循环队列(牺牲一个单元来区分队空和队满,尾指针指向队尾元素的后一个位置,也就是即将要插入的位置)●初始:Q.front==Q.rear●队满:(Q.rear+1)%MaxSize=Q.front●出队,队首指针进1:Q.front=(Q.front+1)%MaxSize●入队,队尾指针进1:Q.rear=(Q.rear+1)%MaxSize●队列长度:(Q.rear+MaxSize-Q.front)%MaxSize●三、栈和队列的链式存储结构●栈的链式存储●●队列的链式存储●实际是上一个同时带有头指针和尾指针的单链表,尾指针指向单链表的最后一个结点,与顺序存储不同,通常带有头结点●四、多维数组的存储●行优先:00,01,02,10,11,12●列优先:00,10,01,11,02,12●五、特殊矩阵的压缩存储●对称矩阵●三角矩阵●三对角矩阵(带状矩阵)●稀疏矩阵●将非零元素及其相应的行和列构成一个三元组存储●十字链表法●六、栈、队列、数组的应用●栈在括号匹配中的应用●栈在递归中的应用●函数在递归调用过程中的特点:最后被调用的函数最先执行结束●队列在层次遍历中的应用●二叉树的层次遍历●1跟结点入队●2若队空,则结束遍历,否则重复3操作●3队列中的第一个结点出队并访问,若有左孩子,则左孩子入队;若有右孩子,则右孩子入队●重点为栈的(出入栈过程、出栈序列的合法性)和队列的操作及其特征●小知识点(选择题)●n个不同元素进栈,出栈元素不同排列的个数为{2n\choose n }/(n+1)●共享栈是指让两个顺序栈共享一个存储空间,将两个栈的栈底分别设置在共享空间的两端,两个栈顶向共享空间的中间延伸,可以更有效的利用存储空间,同时对存储效率没有什么影响●双端队列是指允许两端都可以进行入队和出队操作的队列●输出受限的双端队列:允许两端插入,只允许一端删除●输入受限的双端队列:允许两端删除,只允许一端插入三、第四章串●考纲内容●字符串模式匹配●暴力算法●注意指针回退时的操作是i=i-j+2;j=j+1;●kmp算法●手工求next数组时,next[j]=s的最长相等前后缀长度+1,其中s为1到j-1个字符组成的串●在实际kmp算法中,为了使公式更简洁、计算简单,如果串的位序是从1开始的,则next数组需要整体加一;如果串的位序是从0开始的,则next数组不需要加一●根据next数组求解nextval数组:如果p[j]==p[next[j]],则nextval[j]=nextval[next[j]],否则nextval[j]=next[j];●小知识点●串和线性表的区别:1线性表的数据元素可以不同,但串的数据元素一般是字符;2串的操作对象通常是子串而不是某一个字符四、第五章树与二叉树●考纲内容●一、树的基本概念●定义●树是一种递归的数据结构,是一种逻辑结构●树的性质●结点数为n,则边的数量为n-1●树中的结点数等于所有结点的度数之和加1(一个结点的孩子个数称为该结点的度,树中结点的最大度数称为树的度,每一条边表示一个结点,对应一个度,只有根结点上面无边,故结点树=度数之和+1)●度为m的树中第i层至多有m^{i-1}个结点(i\geq1)(m叉树的第i层最多有m^{i-1}个结点)●高度为h的m叉树至多有(m^h-1)/(m-1)个结点(假设每一个结点都有m个孩子,则由等比数列的求和公式可以推导出该式子)●具有n个结点的m叉树的最小高度是\lceil log_m(n(m-1)+1)\rceil(由高度为h的m叉树的最大结点树公式有,n满足式子(m^{h-1}-1)/(m-1) \leq n\leq (m^h-1)/(m-1))●高度为h的m叉树至少有h个结点;高为h,度为m的树至少有h+m-1个结点(m叉树并不等于度为m的树,m叉树可以为空树,要求所有结点的度小于等于m,而度为m的树一定有一个结点的度数为m)●二、二叉树●二叉树的定义及其主要特征●定义●特点●每个结点至多只有两颗子树●二叉树是有序树,其子树有左右之分,次序不能颠倒,否则将成为另一颗二叉树,即使树中结点只有一颗子树,也要区分他是左子树还是右子树●特殊的二叉树●满二叉树:高度为h,结点数为2^h-1,所有叶子结点都集中在二叉树的最下面一层,除叶子结点外的所有结点度数都为2,从根结点为1开始编号,对于编号为i的结点,其父结点为\lfloor i/2 \rfloor,左孩子(若有)编号为2i,右孩子(若有)编号为2i+1,所以编号为偶数的结点只可能是左孩子,编号为奇数的结点只可能是右孩子●完全二叉树:删除了满二叉树中编号更大的结点,高为h,结点数为n的完全二叉树的每个结点的编号都与高度为h的满二叉树中编号为1到n的结点相同。
第1章绪论内容提要:◆数据结构研究的内容。
针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。
数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。
数据——所有能被计算机识别、存储和处理的符号的集合。
数据元素——是数据的基本单位,具有完整确定的实际意义。
数据对象——具有相同性质的数据元素的集合,是数据的一个子集。
数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。
抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。
◆算法的定义及五个特征。
算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。
算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。
①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。
时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。
◆用计算语句频度来估算算法的时间复杂度。
第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。
线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。
顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。
链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。
通过指针来实现!◆线性表的操作在两种存储结构中的实现。
数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。
核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2) 插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。
考研866数据结构摘要:1.考研866 数据结构简介2.数据结构的重要性3.数据结构知识点梳理4.备考建议与策略正文:考研866 数据结构是我国研究生入学考试中的一门科目,主要考察学生对数据结构的理解和应用能力。
数据结构是计算机科学与技术专业的基础课程,对于程序设计和软件开发具有重要意义。
掌握数据结构知识不仅有助于提高编程水平,还能为以后的研究和工作奠定基础。
数据结构知识点梳理:1.线性表:包括栈、队列、链表等基本数据结构,以及它们的操作和应用。
2.栈与队列:涉及进栈、出栈、入队、出队等基本操作,以及栈与队列的应用,如广度优先搜索、深度优先搜索等。
3.树与二叉树:包括树的定义、性质、遍历、存储结构等,以及二叉树的相关概念和操作,如插入、删除、遍历等。
4.图:图的基本概念、存储结构、遍历方法、最短路径算法、最小生成树算法等。
5.排序算法:冒泡排序、插入排序、选择排序、快速排序、归并排序等常用排序算法及其时间复杂度分析。
6.查找算法:顺序查找、二分查找、哈希查找等常用查找算法及其应用。
备考建议与策略:1.制定学习计划:根据个人基础和时间安排制定合理的复习计划,确保每个知识点都能得到充分的复习。
2.理解为主,记忆为辅:数据结构的学习重点在于理解概念和原理,而不仅仅是死记硬背。
通过大量练习加深对知识点的理解。
3.动手实践:编程实现各种数据结构和算法,加深对知识点的理解,提高实际应用能力。
4.总结与反思:定期对学习过程进行总结和反思,找出自己的不足之处,及时调整学习方法。
5.模拟考试:参加模拟考试,熟悉考试环境,检验自己的学习成果,查漏补缺。
总之,考研866 数据结构是一门需要投入时间和精力去学习的科目。