11、2020年新教材素养突破人教A版数学必修第一册课时作业:第三章 函数的概念与性质11 Word版含解析
- 格式:doc
- 大小:90.50 KB
- 文档页数:4
3.1.2 用二分法求方程的近似解一、选择题1.用“二分法”可求近似解,对于精确度ε说法正确的是( )A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关2.下列图象与x轴均有交点,其中不能用二分法求函数零点的是( )3.对于函数f(x)在定义域内用二分法的求解过程如下:f(2007)<0,f(2008)<0,f(2009)>0,则下列叙述正确的是( )A.函数f(x)在(2007,2008)内不存在零点B.函数f(x)在(2008,2009)内不存在零点C.函数f(x)在(2008,2009)内存在零点,并且仅有一个D.函数f(x)在(2007,2008)内可能存在零点4.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )A.(1,1.25) B.(1.25,1.5)C.(1.5,2) D.不能确定5.利用计算器,列出自变量和函数值的对应关系如下表:A.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)6.已知x0是函数f(x)=2x+11-x的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则( )A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0二、填空题7.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号)①(-∞,1] ②[1,2] ③[2,3] ④[3,4]⑤[4,5] ⑥[5,6] ⑦[6,+∞)8.x0=2.5,那么下一个有根的区间是________.9.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.6875)<0,即可得出方程的一个近似解为____________(精确度为0.1).三、解答题10.确定函数f(x)=log x+x-4的零点所在的区间.1211.证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解.(精确度0.1)能力提升12.下列是关于函数y=f(x),x∈[a,b]的命题:①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是近似值.那么以上叙述中,正确的个数为( )A.0B.1C.3D.413.在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:你最多称几次就可以发现这枚假币?3.1.2 用二分法求方程的近似解知识梳理1.f(a)·f(b)<0 一分为二逐步逼近零点方程的近似解2.(1)f(a)·f(b)<0 (2)c(3)①c就是函数的零点②(a,c)③(c,b)作业设计1.B [依“二分法”的具体步骤可知,ε越大,零点的精确度越低.]2.A [由选项A中的图象可知,不存在一个区间(a,b),使f(a)·f(b)<0,即A 选项中的零点不是变号零点,不符合二分法的定义.]3.D4.B [∵f(1)·f(1.5)<0,x1=1+1.52=1.25.又∵f(1.25)<0,∴f(1.25)·f(1.5)<0,则方程的根落在区间(1.25,1.5)内.]5.C [设f(x)=2x-x2,根据列表有f(0.2)=1.149-0.04>0,f(0.6)>0,f(1.0)>0,f(1.4)>0,f(1.8)>0,f(2.2)<0,f(2.6)<0,f(3.0)<0,f(3.4)<0.因此方程的一个根在区间(1.8,2.2)内.]6.B [∵f(x)=2x-1x-1,f(x)由两部分组成,2x在(1,+∞)上单调递增,-1x-1在(1,+∞)上单调递增,∴f(x)在(1,+∞)上单调递增.∵x1<x0,∴f(x1)<f(x0)=0,又∵x2>x0,∴f(x2)>f(x0)=0.]7.③④⑤8.[2,2.5)解析令f(x)=x3-2x-5,则f(2)=-1<0,f(3)=16>0,f(2.5)=15.625-10=5.625>0.∵f(2)·f(2.5)<0,∴下一个有根的区间为[2,2.5).9.0.75或0.6875解析因为|0.75-0.6875|=0.0625<0.1,所以0.75或0.6875都可作为方程的近似解.10.解(答案不唯一)设y1=12log x,y2=4-x,则f(x)的零点个数即y1与y2的交点个数,作出两函数图象,如图.由图知,y1与y2在区间(0,1)内有一个交点,当x=4时,y1=-2,y2=0,f(4)<0,当x=8时,y1=-3,y2=-4,f(8)=1>0,∴在(4,8)内两曲线又有一个交点.故函数f(x)的两零点所在的区间为(0,1),(4,8).11.证明设函数f(x)=2x+3x-6,∵f(1)=-1<0,f(2)=4>0,又∵f(x)是增函数,∴函数f(x)=2x+3x-6在区间[1,2]内有唯一的零点,则方程6-3x=2x在区间[1,2]内有唯一一个实数解.设该解为x0,则x0∈[1,2],取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,∴x0∈(1,1.5),取x2=1.25,f(1.25)≈0.128>0,f(1)·f(1.25)<0,∴x∈(1,1.25),取x3=1.125,f(1.125)≈-0.444<0,f(1.125)·f(1.25)<0,∴x∈(1.125,1.25),取x4=1.1875,f(1.1875)≈-0.16<0,f(1.1875)·f(1.25)<0,∴x0∈(1.1875,1.25).∵|1.25-1.1875|=0.0625<0.1,∴1.1875可作为这个方程的实数解.12.A [∵①中x0∈[a,b]且f(x0)=0,∴x0是f(x)的一个零点,而不是(x0,0),∴①错误;②∵函数f(x)不一定连续,∴②错误;③方程f(x)=0的根一定是函数f(x)的零点,∴③错误;④用二分法求方程的根时,得到的根也可能是精确值,∴④也错误.]13.解第一次各13枚称重,选出较轻一端的13枚,继续称;第二次两端各6枚,若平衡,则剩下的一枚为假币,否则选出较轻的6枚继续称;第三次两端各3枚,选出较轻的3枚继续称;第四次两端各1枚,若不平衡,可找出假币;若平衡,则剩余的是假币.∴最多称四次.。
[教材解难]建立函数模型应把握的三个关口(1)事理关:通过阅读、理解,明白问题讲什么,熟悉实际背景,为解题打开突破口.(2)文理关:将实际问题的文字语言转化为数学的符号语言,用数学式子表达数学关系.(3)数理关:在构建数学模型的过程中,利用已有的数学知识进行检验,从而认定或构建相应的数学问题.[基础自测]1.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y =5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为()A.200副B.400副C.600副D.800副解析:利润z=10x-y=10x-(5x+4 000)≥0.解得x≥800.答案:D2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()解析:距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.答案:C3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A .45.606万元B .45.6万元C .45.56万元D .45.51万元解析:依题意可设甲销售x 辆,则乙销售(15-x )辆,总利润S =L 1+L 2,则总利润S =5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15(x -10.2)2+0.15×10.22+30(0≤x ≤15且x ∈N ),所以当x =10时,S max =45.6(万元).答案:B4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y =⎩⎪⎨⎪⎧ 4x , (1≤x <10,x ∈N *)2x +10, (10≤x <100,x ∈N *)1.5x , (x ≥100,x ∈N *)其中,x 代表拟录用人数,y 代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为________.解析:令y =60,若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25,满足题意;若1.5x =60,则x =40<100,不合题意.故拟录用人数为25人.答案:25题型一一次、二次函数模型[经典例题]例1某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个.现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价定为多少元时,才能使每天所赚的利润最大?并求出最大值.【解析】设每个提价x元(x≥0,x∈N),利润为y元.每天销售总额为(10+x)(100-10x)元,进货总额=8(100-10x)元,显然100-10x>0,即x<10,则y=(10+x)(100-10x)-8(100-10x)=(2+x)(100-10x)=-10(x-4)2+360(0≤x<10,x∈N).当x=4时,y取得最大值,此时销售单价应为14元,最大利润为360元.答:当售价定为14元时,可使每天所赚的利润最大,最大利润为360元.可根据实际问题建立二次函数模型解析式.方法归纳1.利用一次函数模型解决实际问题时,需注意以下两点:(1)待定系数法是求一次函数解析式的常用方法.(2)当一次项系数为正时,一次函数为增函数;当一次项系数为负时,一次函数为减函数.【解析】 (1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5 h 内行驶的路程为360 km.(2)根据题图,有 s =⎩⎪⎨⎪⎧ 50t +2 004,0≤t <1,80(t -1)+2 054,1≤t <2,90(t -2)+2 134,2≤t <3,75(t -3)+2 224,3≤t <4,65(t -4)+2 299,4≤t ≤5.这个函数的图象如下图所示. 当时间t 在[0,5]内变化时,对于任意的时刻t 都有唯一确定的行驶路程与之相对应.根据题图,在时间段[0,1),[1,2),[2,3),[3,4),[4,5]内行驶的平均速率分别为50 km /h ,80 km /h,90 km /h ,75 km /h ,(2)利用一次函数的单调性及二次函数的性质分别求分段函数各段上的最大值,取其最大的即可.一、选择题1.向一杯子中匀速注水时,杯中水面高度h随时间t变化的函数h=f(t)的图象如图所示,则杯子的形状是()解析:从题图中看出,在时间段[0,t1],[t1,t2]内水面高度是匀速上升的,在[0,t1]上升慢,在[t1,t2]上升快,故选A.答案:A2.据调查,某自行车存车处在某星期日的存车量为2 000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是( )A .y =0.3x +800(0≤x ≤2 000,x ∈N *)B .y =0.3x +1 600(0≤x ≤2 000,x ∈N *)C .y =-0.3x +800(0≤x ≤2 000,x ∈N *)D .y =-0.3x +1 600(0≤x ≤2 000,x ∈N *)解析:由题意知,变速车存车数为(2 000-x )辆次,则总收入y =0.5x +(2 000-x )×0.8=0.5x +1 600-0.8 x=-0.3x +1 600(0≤x ≤2 000,x ∈N *).答案:D3.某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档次产品60件,每提高一个档次将少生产3件产品,则每天获得利润最大时生产产品的档次是( )A .7B .8C .9D .10解析:由题意,当生产第k 档次的产品时,每天可获利润为:y =[8+2(k -1)][60-3(k -1)]=-6k 2+108k +378(1≤k ≤10),配方可得y =-6(k -9)2+864,∴当k =9时,获得利润最大.答案:C4.已知A ,B 两地相距150千米,某人开汽车以60千米/时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/时的速度返回A 地,则汽车离开A 地的距离x 关于时间t (时)的函数解析式是( )A .x =60tB .x =60t +50tC .x =⎩⎪⎨⎪⎧60t ,(0≤t ≤2.5)150-50t (t >3.5) D .x =⎩⎪⎨⎪⎧ 60t ,(0≤t ≤2.5)150,(2.5<t ≤3.5)150-50(t -3.5).(3.5<t ≤6.5)解析:显然出发、停留、返回三个过程中行走速度是不同的,故应分三段表示函数,选D.答案:D二、填空题5.某电脑公司2017年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2019年经营总收入要达到1 690万元,且计划从2017年到2019年,每年经营总收入。
3.1.1 函数的概念必备知识基础练1.下列四个图形中,不是以x为自变量的函数的图象是( )2.已知函数f(x)=+,则f(3)=( )A.1 B.2C.3 D.43.已知函数f(x)=x,则下列函数与f(x)表示同一函数的是( )A.y=B.y=C.y=()2D.y=4.函数y=f(x)与y轴的交点个数为( )A.至少1个 B.至多一个C.有且只有一个 D.与f(x)有关,不能确定5.[2022·广东深圳高一期末]函数f(x)=的定义域为( )A.[1,2)∪(2,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)6.[2022·山东青岛高一期末](多选)下面选项中,变量y是变量x的函数的是( ) A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP (国内生产总值)C.x表示某地区的学生某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税7.函数f(x)=的定义域是________.8.已知函数f(x)=-1,且f(a)=3,则a=________.关键能力综合练1.[2022·安徽歙县高一期末]∀x∈R,[x]表示不超过x的最大整数,十八世纪,函数y=[x]被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则[4.8]-[-3.5]=( )A.0 B.1 C.7 D.82.学习了函数的概念后,对于构成函数的要素:定义域、对应关系和值域,甲、乙、丙三个同学得出了各自的判断:甲:存在函数f(x),g(x),它们的定义域相同,值域相同,但对应关系不同;乙:存在函数f(x),g(x),它们的定义域相同,对应关系相同,但值域不同;丙:存在函数f(x),g(x),它们的对应关系相同,值域相同,但定义域不同.上述三个判断中,正确的个数是( )A.3 B.2 C.1 D.03.函数f(x)=-(x+3)0的定义域是( )A.(-∞,-3)∪(3,+∞)B. (-∞,-3)∪(-3,3)C.(-∞,-3)D.(-∞,3)4.若函数f(x)=3x-1,则f(f(1))的值为( )A.2 B.4C.5 D.145.已知函数f(x)=的定义域为R,则a的取值范围是( )A.[0,1] B.(0,+∞)C.[1,+∞) D.[0,+∞)6.(多选)下列各组函数是同一个函数的是( )A.f(x)=·与g(x)=B.f(x)= 与g(x)=xC.f(x)=与g(x)=D.f(x)=与g(x)=7.[2022·江苏盐城高一期末]函数f(x)=的定义域为________.8.[2022·辽宁营口高一期末][x]为不超过x的最大整数,若函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},则b-a的最大值为________.9.求下列函数的定义域:(1)y=·;(2)y=.10.已知定义域为R的函数f(x)=2x2-3和g(x)=4x,求f(g(-1)),g(f(-1)),f(f(-2)),g(g(-2))的值.核心素养升级练1.已知函数f(x)的定义域为(0,4),则函数g(x)=的定义域为( )A.(0,16) B.(-1,2)C.(-1,0)∪(0,2) D.(-2,0)∪(0,2)2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f(x)=x2,值域为{0,1}的“同族函数”共有________个.3.已知函数f(x)=.(1)求f(2)+f(),f(3)+f()的值;(2)求证:f(x)+f()是定值;(3)求f(2)+f(3)+…+f(2 022)+f()+f()+…+f()的值.3.1.1 函数的概念必备知识基础练1.答案:C解析:由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.2.答案:C解析:f(3)=+=3.3.答案:A解析:f(x)=x的定义域是R,四个选项中,B选项定义域是{x|x≠0},C选项定义域是{x|x≥0},不是同一函数,AD选项定义域都是R,D选项对应法则是y=|x|,不是同一函数,A选项化简后为y=x,是同一函数.4.答案:B解析:由函数定义可知,定义域包含x=0时,则与y轴有1个交点,当定义域不包含x=0时,则与y轴无交点,所以函数y=f(x)与y轴的交点个数最多为1个.5.答案:A解析:函数f(x)=有意义,则有,解得x≥1且x≠2,所以原函数的定义域是[1,2)∪(2,+∞).6.答案:ABD解析:ABD均满足函数的定义,C选项,同一个分数可以对应多个考试号,不满足对于任意的x,都有唯一的y与其对应,故C选项错误.7.答案:(-2,+∞)解析:x+2>0,x>-2,所以f(x)的定义域为(-2,+∞).8.答案:16解析:因为f(x)=-1,f(a)=3,所以-1=3,解得:a=16.关键能力综合练1.答案:D解析:由题意可知[4.8]-[-3.5]=4-(-4)=8.2.答案:B解析:甲:f(x)=x2,g(x)=|x|,两个函数的定义域和值域相同,但对应关系不同,故甲正确;乙:根据函数相等的定义可知,若两个函数的定义域相同,对应关系相同,值域一定相同,故乙错误;丙:f(x)=x2,x∈(1,2),g(x)=x2,x∈(-2,-1),两个函数的对应关系相同,值域相同,但定义域不同,故丙正确.3.答案:B解析:由f(x)=-(x+3)0,则,解得x<3且x≠-3,所以函数的定义域为(-∞,-3)∪(-3,3).4.答案:C解析:由f(x)=3x-1,所以f(1)=2,所以f(f(1))=f(2)=5.5.答案:D解析:由题意,函数f(x)=有意义,则满足ax2+1≥0,因为函数f(x)的定义域为R,即不等式ax2+1≥0在R上恒成立,当a=0时,1≥0恒成立,符合题意;当a>0时,ax2+1≥0恒成立,符合题意.当a<0时,不符合题意,综上可得,实数a的取值范围是[0,+∞).6.答案:CD解析:A选项,f(x)的定义域为{x|x≥1},g(x)的定义域为{x|x≤-1或x≥1},不是同一个函数.B选项,f(x)=,x≤0,f(x)==-x≠g(x),不是同一个函数.C选项,f(x)===g(x),是同一个函数.D选项,f(x)==1(x>0),g(x)==1(x>0),是同一个函数.7.答案:[1,5]解析:由-x2+6x-5≥0,得x2-6x+5≤0,(x-1)(x-5)≤0,解得1≤x≤5,所以函数的定义域为[1,5].8.答案:4解析:因为函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},所以b最大取到3,a最小取到-1,所以b-a的最大值为3-(-1)=4.9.解析:(1)依题意⇒2≤x≤3,所以函数的定义域为[2,3].(2)依题意,解得-2≤x<2且x≠-.所以函数的定义域为[-2,-)∪(-,2).10.解析:由已知g(-1)=4×(-1)=-4,f(-1)=2×(-1)2-3=-1,同理g(-2)=-8,f(-2)=5,所以f(g(-1))=f(-4)=29,g(f(-1))=g(-1)=-4,f(f(-2))=f(5)=47,g(g(-2))=g(-8)=-32.核心素养升级练1.答案:C解析:因为f(x)的定义域为(0,4),所以0<x2<4,解得-2<x<0或0<x<2.又因为x+1>0,解得x>-1,所以g(x)的定义域为(-1,0)∪(0,2).2.答案:3解析:已知函数解析式为f(x)=x2,值域为{0,1}的“同族函数”的定义域可以为:{0,1},{0,-1},{0,-1,1},所以“同族函数”共有3个.3.解析:(1)f(x)=,f(2)+f()=+=1,f(3)+f()=+=1.(2)f(x)+f()=+=+=1.(3)f(2)+f(3)+…+f(2 022)+f()+f()+…+f()=[f(2)+f()]+[f(3)+f()]+…+[f(2 022)+f()]=2 021×1=2 021.。
3.2.2函数模型的应用实例课时目标 1.能够找出简单实际问题中的函数关系式.2.初步体会应用一次函数、二次函数、指数函数、对数函数、幂函数模型解决实际问题.3.体会运用函数思想处理现实生活中的简单问题,培养对数学模型的应用意识.1.几种常见的函数模型(1)一次函数:y=______________________(2)二次函数:y=______________________(3)指数函数:y=______________________(4)对数函数:y=______________________(5)幂函数:y=________________________(6)指数型函数:y=pq x+r(7)分段函数2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________________;(3)________________;(4)________________;(5)______;(6)__________________________.一、选择题1.细菌繁殖时,细菌数随时间成倍增长.若实验开始时有300个细菌,以后的细菌数如下表所示:x(h)012 3细菌数30060012002400A.75B.100C.150D.2002.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如右图所示,由图中给出的信息可知,营销人员没有销售量时的收入是()A.310元B.300元C.290元D.280元3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是()A.减少7.84%B.增加7.84%C.减少9.5%D.不增不减4.某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()5.把长为12cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A.332cm2B.4cm2C.32cm2D.23cm26.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()A.x=15,y=12B.x=12,y=15C.x=14,y=10D.x=10,y=14题号12345 6答案二、填空题7.某不法商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,那么每台彩电原价是________元.8.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区,成立于1985年,最初一年年底只有麋鹿100头,由于科学的人工培育,这种当初快要濒临灭绝的动物的数量y(头)与时间x(年)的关系可以近似地由关系式y=a log2(x+1)给出,则2000年年底它们的数量约为________头.9.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.三、解答题10.东方旅社有100张普通客床,若每床每夜收租费10元时,客床可以全部租出;若每床每夜收费提高2元,便减少10张客床租出;若再提高2元,便再减少10张客床租出;依此情况继续下去.为了获得租金最多,每床每夜租金选择多少?11.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位为:元/10kg)与上市时间t(单位:天)的数据情况如下表:(1)根据上表数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a log b t;(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.能力提升12.某工厂生产一种电脑元件,每月的生产数据如表:y=ax+b或y=a x+b(a,b为常数,且a>0)来模拟这种电脑元件的月产量y千件与月份的关系.请问:用以上哪个模拟函数较好?说明理由.13.一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22,(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?1.函数模型的应用实例主要包括三个方面:(1)利用给定的函数模型解决实际问题;(2)建立确定性的函数模型解决问题;(3)建立拟合函数模型解决实际问题.2.函数拟合与预测的一般步骤:(1)能够根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况是一般不会发生的.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.3.2.2函数模型的应用实例知识梳理1.(1)kx+b(k≠0)(2)ax2+bx+c(a≠0)(3)a x(a>0且a≠1)(4)log a x(a>0且a≠1)(5)xα(α∈R) 2.(1)收集数据(2)画散点图(3)选择函数模型(4)求函数模型(5)检验(6)用函数模型解释实际问题作业设计1.A[由表中数据观察可得细菌数y与时间x的关系式为y =300·2x (x ∈Z ).当x =-2时,y =300×2-2=3004=75.]2.B [由题意可知,收入y 是销售量x 的一次函数,设y =ax +b ,将(1,800),(2,1300)代入得a =500,b =300. 当销售量为x =0时,y =300.]3.A [设某商品价格为a ,依题意得:a (1+0.2)2(1-0.2)2=a ×1.22×0.82=0.921 6a ,所以四年后的价格与原来价格比较(0.921 6-1)a =-0.078 4a ,即减少7.84%.]4.A [由于前三年年产量的增长速度越来越快,可用指数函数刻画,后三年年产量保持不变,可用一次函数刻画,故选A.] 5.D [设一段长为x cm ,则另一段长为(12-x )cm. ∴S =34(x 3)2+34(4-x 3)2=318(x -6)2+23≥2 3.] 6.A [由三角形相似得24-y 24-8=x 20,得x =54(24-y ), ∴S =xy =-54(y -12)2+180.∴当y =12时,S 有最大值,此时x =15.] 7.2250解析 设每台彩电的原价为x 元,则x (1+40%)×0.8-x =270,解得x =2250(元).8.400解析 由题意,x =1时y =100,代入求得a =100,2000年年底时,x =15,代入得y =400.9.2ln2 1024解析 当t =0.5时,y =2, ∴2=12k e , ∴k =2ln2,∴y =e 2t ln2,当t =5时, ∴y =e 10ln2=210=1024.10.解 设每床每夜租金为10+2n (n ∈N ),则租出的床位为 100-10n (n ∈N 且n <10) 租金f (n )=(10+2n )(100-10n ) =20[-(n -52)2+2254], 其中n ∈N 且n <10.所以,当n =2或n =3时,租金最多, 若n =2,则租出床位100-20=80(张); 若n =3,则租出床位100-30=70(张); 综合考虑,n 应当取3,即每床每夜租金选择10+2×3=16(元).11.解 (1)由所提供的数据可知,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常值函数,若用函数Q =at +b ,Q =a ·b t ,Q =a log b t 中的任意一个来反映时都应有a ≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述.将表格所提供的三组数据分别代入函数Q =at 2+bt +c ,可得:⎩⎨⎧150=2500a +50b +c ,108=12100a +110b +c ,150=62500a +250b +c ,解得a =1200,b =-32,c =4252.所以,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数为Q =1200t 2-32t +4252.(2)当t =--322×1200=150(天)时,芦荟种植成本最低为 Q =1200×1502-32×150+4252=100(元/10kg). 12.解 将(1,50)、(2,52)分别代入两解析式得: ⎩⎨⎧ 50=a +b 52=2a +b 或⎩⎨⎧50=a +b ,52=a 2+b .(a >0)解得⎩⎨⎧a =2b =48(两方程组的解相同).∴两函数分别为y =2x +48或y =2x +48. 当x =3时,对于y =2x +48有y =54; 当x =3时,对于y =2x +48有y =56. 由于56与53.9的误差较大, ∴选y =ax +b 较好.13.解 (1)设每年砍伐面积的百分比为x (0<x <1),则 a (1-x )10=12a ,即(1-x )10=12,解得x =1-11012⎛⎫⎪⎝⎭.(2)设经过m 年剩余面积为原来的22,则a (1-x )m =22a ,即11021122m ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,m 10=12,解得m =5,故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 31021122n ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.。
§3.2习题课课时目标 1.进一步体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.2.掌握几种初等函数的应用.3.理解用拟合函数的方法解决实际问题的方法.1.在我国大西北,某地区荒漠化土地面积每年平均比上年增长10.4%,专家预测经过x年可能增长到原来的y倍,则函数y=f(x)的图象大致为()2.能使不等式log2x<x2<2x成立的x的取值范围是()A.(0,+∞) B.(2,+∞)C.(-∞,2) D.(0,2)∪(4,+∞)3.四人赛跑,假设其跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2x4.某城市客运公司确定客票价格的方法是:如果行程不超过100km,票价是0.5元/km,如果超过100 km,超过100 km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是______________________.5.如图所示,要在一个边长为150m 的正方形草坪上,修建两条宽相等且相互垂直的十字形道路,如果要使绿化面积达到70%,则道路的宽为____________________m(精确到0.01m).一、选择题1.下面对函数f (x )=12log x 与g (x )=(12)x 在区间(0,+∞)上的衰减情况说法正确的是( )A .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越快B .f (x )的衰减速度越来越快,g (x )的衰减速度越来越慢C .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越慢D .f (x )的衰减速度越来越快,g (x )的衰减速度越来越快 2.下列函数中随x 的增大而增长速度最快的是( ) A .y =1100e x B .y =100ln x C .y =x 100D .y =100·2x3.一等腰三角形的周长是20,底边y 是关于腰长x 的函数,它的解析式为( )A .y =20-2x (x ≤10)B .y =20-2x (x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)4.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:型号 小包装 大包装 重量 100克 300克 包装费0.5元0.7元 销售价格 3.00元8.4元①买小包装实惠②买大包装实惠③卖3小包比卖1大包盈利多④卖1大包比卖3小包盈利多A.①③B.①④C.②③D.②④5.某商店出售A、B两种价格不同的商品,由于商品A连续两次提价20%,同时商品B连续两次降价20%,结果都以每件23元售出,若商店同时售出这两种商品各一件,则与价格不升不降时的情况比较,商店盈利情况是() A.多赚约6元B.少赚约6元C.多赚约2元D.盈利相同6.某地区植被破坏、土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则下列函数中与沙漠增加数y万公顷关于年数x的函数关系较为相似的是()A.y=0.2x B.y=110(x2+2x)C.y=2x10D.y=0.2+log16x二、填空题7.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供________人洗澡.8.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是__________________.9.已知甲、乙两地相距150km,某人开汽车以60km/h的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h的速度返回甲地,把汽车离开甲地的距离s表示为时间t的函数,则此函数表达式为________.三、解答题10.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ是正常数.(1)说明该函数是增函数还是减函数;(2)把t表示成原子数N的函数;(3)求当N=N02时,t的值.11.我县某企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系;(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).能力提升12.某乡镇现在人均一年占有粮食360kg,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y kg粮食,求出函数y关于x的解析式.13.如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.(1)写出y关于x的函数关系式,并指出这个函数的定义域.(2)当AE为何值时,绿地面积y最大?解决实际问题的解题过程:(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学数学中,我们建立的函数模型一般都是基本初等函数;(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点,正确选择函数知识求得函数模 型的解,并还原为实际问题的解. 这些步骤用框图表示:§3.2 习题课双基演练1.D [设某地区的原有荒漠化土地面积为a ,则x 年后的面积为a (1+10.4%)x,由题意y =a (1+10.4%)xa=1.104x,故选D.]2.D [由题意知x 的范围为x >0,由y =log 2x ,y =x 2,y =2x 的图象可知,当x >0时,log 2x <x 2,log 2x <2x .又因当x =2,4时x 2=2x ,故选D.] 3.D [由于指数函数的增长特点是越来越大,故选D.] 4.y =⎩⎨⎧0.5x (0<x ≤100)0.4x +10(x >100)5.24.50解析 设道路宽为x ,则2×150x -x 2150×150×100%=30%,解得x 1≈24.50,x 2≈275.50(舍去). 作业设计 1.C2.A [对于指数函数,当底数大于1时,函数值随x 的增大而增大的速度快,又∵e>2,故选A.]3.D [∵20=y +2x ,∴y =20-2x , 又y =20-2x >0且2x >y =20-2x , ∴5<x <10.]4.D [买小包装时每克费用为3100元,买大包装每克费用为8.4300=2.8100元,而3100>2.8100,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润是8.4-1.8×3-0.7=2.3(元).而2.3>2.1,卖1大包盈利多,故选D.]5.B [设A 、B 两种商品的原价为a 、b , 则a (1+20%)2=b (1-20%)2=23⇒a =23×2536,b =23×2516,a +b -46≈6(元).]6.C [将(1,0.2),(2,0.4),(3,0.76)与x =1,2,3时,选项A 、B 、C 、D 中得到的y 值做比较,y =2x10的y 值比较接近, 故选C.] 7.4解析 设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时y 有最小值,此时共放水34×172=289(升),可供4人洗澡. 8.y =1000.9576x解析 设每经过1年,剩留量为原来的a 倍,则y =a x , 且0.9576=a 100,从而a =0.95761100,因此y =0.9576x100.9.s =⎩⎨⎧60t (0≤t ≤2.5)150(2.5<t <3.5)325-50t (3.5≤t ≤6.5)解析 当0≤t ≤2.5时s =60t , 当2.5<t <3.5时s =150,当3.5≤t ≤6.5时s =150-50(t -3.5)=325-50t ,综上所述,s =⎩⎨⎧60t (0≤t ≤2.5),150(2.5<t <3.5),325-50t (3.5≤t ≤6.5).10.解 (1)由于N 0>0,λ>0,函数N =N 0e -λt 是属于指数函数y =e -x 类型的,所以它是减函数,即原子数N 的值随时间t 的增大而减少.(2)将N =N 0e -λt 写成e -λt =N N 0,根据对数的定义有-λt =ln N N 0,所以t =-1λ(ln N-ln N 0)=1λ(ln N 0-ln N ).(3)把N =N 02代入t =1λ(ln N 0-ln N ), 得t =1λ(ln N 0-ln N 02)=1λln 2.11.解 (1)投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元,由题设f (x )=k 1x ,g (x )=k 2x ,由图知f (1)=14,∴k 1=14,又g (4)=52,∴k 2=54. 从而f (x )=14x (x ≥0),g (x )=54x (x ≥0).(2)设A 产品投入x 万元,则B 产品投入10-x 万元,设企业的利润为y 万元, y =f (x )+g (10-x )=x 4+5410-x (0≤x ≤10), 令10-x =t ,则y =10-t 24+54t =-14(t -52)2+6516(0≤t ≤10), 当t =52,y max ≈4,此时x =10-254=3.75,10-x =6.25.所以投入A 产品3.75万元,投入B 产品6.25万元时,能使企业获得最大利润,且最大利润约为4万元.12.解 设该乡镇现在人口量为M ,则该乡镇现在一年的粮食总产量为360M ,经过1年后,该乡镇粮食总产量为360M (1+4%),人口量为M (1+1.2%),则人均占有粮食为360M (1+4%)M (1+1.2%);经过2年后,人均占有粮食为360M (1+4%)2M (1+1.2%)2;…;经过x 年后,人均占有粮食为y =360M (1+4%)xM (1+1.2%)x ,即所求函数解析式为y =360(1.041.012)x .经典小初高讲义小初高优秀教案 13.解 (1)S △AEH =S △CFG =12x 2,S △BEF =S △DGH =12(a -x )(2-x ).∴y =S 矩形ABCD -2S △AEH -2S △BEF =2a -x 2-(a -x )(2-x ) =-2x 2+(a +2)x .由⎩⎪⎨⎪⎧ x >0a -x >02-x ≥0a >2,得0<x ≤2.∴y =-2x 2+(a +2)x ,定义域为(0,2].(2)当a +24<2,即a <6时,则x =a +24时,y 取最大值(a +2)28;当a +24≥2,即a ≥6时,y =-2x 2+(a +2)x 在(0,2]上是增函数, 则x =2时,y max =2a -4.综上所述:当a <6,AE =a +24时,绿地面积取最大值(a +2)28; 当a ≥6,AE =2时,绿地面积取最大值2a -4.。