大数据数据挖掘与智慧运营第六章关联分析
- 格式:pdf
- 大小:4.88 MB
- 文档页数:26
大数据分析师如何进行数据挖掘和关联分析一. 数据挖掘的概念和流程数据挖掘是通过运用统计分析、机器学习和模式识别等技术,从大量的数据中发现有用的模式、规律和知识。
数据挖掘的过程通常包括数据收集、数据预处理、特征选择、模型构建、模型评估和模型应用等步骤。
1. 数据收集数据挖掘的第一步是收集相关的数据。
数据可以来自各种来源,如数据库、文本文件、传感器、社交媒体等。
大数据分析师需要了解业务需求,确定需要收集的数据类型和来源,并采用合适的方法获取数据。
2. 数据预处理数据预处理是数据挖掘中非常重要的一步,它包括数据清洗、数据集成、数据转换和数据规约。
数据清洗是指去除数据中的噪声和异常值,确保数据的质量和准确性。
数据集成是将多个数据源的数据整合到一起,方便后续分析。
数据转换是对数据进行规范化和变换,以适应挖掘算法的需要。
数据规约是对数据进行简化和压缩,减少数据存储和计算的开销。
3. 特征选择特征选择是从大量的特征中选择出最具有代表性和区分性的特征。
通过特征选择可以减少数据维度,提高模型的训练和预测效率。
大数据分析师需要运用统计方法、信息论和机器学习等技术,对特征进行评估和选择。
4. 模型构建模型构建是数据挖掘的核心步骤,它根据业务需求选择合适的挖掘算法和模型。
常用的挖掘算法包括关联规则挖掘、分类和回归分析、聚类分析和时序分析等。
大数据分析师需要根据业务场景和数据特点选择合适的算法,并对模型进行建立和调优。
5. 模型评估模型评估是对挖掘模型进行性能评估和验证。
通过评估可以判断模型的准确性、稳定性和可信度。
评估方法包括交叉验证、混淆矩阵、ROC曲线等。
大数据分析师需要对模型进行评估,识别潜在的问题和改善的方向。
6. 模型应用模型应用是将挖掘模型应用到实际业务中,为决策提供支持和指导。
大数据分析师需要将挖掘结果进行解释和可视化,以便业务人员理解和接受,并根据反馈信息对模型进行迭代和优化。
二. 关联分析的方法和应用关联分析是一种常见的数据挖掘方法,它用于发现数据中的相关性和依赖关系。
数据挖掘与关联分析随着信息技术的发展,人们收集、储存、处理和传输数据的能力不断提高,数据成为世界各个行业的重要资源,也成为影响人们日常生活的重要因素之一。
而数据挖掘与关联分析是用于从大量数据中发现有用信息的技术,在当今信息化社会中越来越受到人们的关注。
数据挖掘是一种自动化的技术,它可以加快数据处理的速度和精度,可以有效地处理大量数据,并从中发现模式、趋势和规律,形成有用的信息。
数据挖掘技术可以对电子商务、医疗、金融、能源、环境等领域中的大量数据进行分析,为决策者提供可靠的信息支持。
数据挖掘的应用包括欺诈检测、客户关系管理、风险评估、产品定价、广告推荐等方面。
数据挖掘主要涉及四个方面的技术:聚类、分类、关联规则分析和异常检测。
其中,关联规则分析是数据挖掘中最常用的技术之一。
关联规则分析是一种用于发现项目之间关系的技术,比如一个超市经常出现的经典的购物篮分析问题,就是要找出那些商品通常会一起被购买。
如果发现了两个或多个项之间高度相关的关系,就可以通过这种关系来预测或识别客户的需求和购买行为。
通过关联规则分析,可以发现多种规律,例如超市产品排列的合理性、产品组合的适宜性、广告展示的优化等。
在这方面,数据挖掘技术有着显著的优势。
除了关联规则分析,还有一种经典的技术称为Apriori算法,它可以用于在大型数据集中查找频繁项集和关联规则,使得数据挖掘能够处理大规模数据集。
Apriori算法的原理是基于逐步迭代的基础上,从一个项集开始,对项集进行扩展,直到不再存在更多可以扩展的项集为止。
在实际应用中,数据挖掘和关联分析可以为公司、组织或政府提供战略性的信息和决策支持。
例如在银行业,数据挖掘技术可以用于检测欺诈行为、优化风险管理、提高客户忠诚度等。
在政府部门,数据挖掘技术可以帮助政府部门提高效率和业务水平,并且加强对公民服务的监督和管理。
在电子商务领域,数据挖掘技术可以帮助电商平台提高用户体验和收益,提升平台的竞争力。
学生超市购买商品的关联性分析前言“啤酒与尿布”是超市商品布局的一个经典案例,它是说在美国的沃尔玛超市中,将啤酒和尿布这两个看起来毫不相关的物品摆放在相邻的位置。
其原因就是沃尔玛通过大量的数据分析,发现有非常多的年轻爸爸在购买尿布的时候会顺手购买一些啤酒,因此沃尔玛将这两样完全没有联系的商品放在了一起。
这是关联分析在商业中一个非常成功的案例。
关联分析在超市中的应用,不仅仅局限在上述的沃尔玛的对超市商品布局的改善,特别针对于我校学生超市的特点,应用关联分析能够了解学生的购物特点及习惯,从而改善超市环境,提高收益。
我校学生超市的特点:1.规模较小。
通常情况下,位于学校的超市其规模通常较小,由于这个特点,使得学生超市的布局改善的空间非常小。
2.商品相对较为单一。
作为学生超市,其服务对象基本都是学生,针对学生的特点,学生超市的商品通常以日用品为主,主要包括衣食住行中的食和住,此外有比较多的学习用品。
我校学生在学生超市消费的特点:1.购物以食物、生活用品和学习用品为主。
2.购物时间比较集中。
围绕着上课,学生在学生超市购物的时间主要集中在上午上课前、中午放学后、下午放学后以及晚自习后。
3.在超市停留时间较短。
通常情况下,我校学生在超市购物停留时间较短,更多的都是有目的性的购物。
正因为以上学生超市和学生购物的特点,我们在做关联分析的时候将商品主要集中在了食物、日用品和学习用品上。
数据来源于我校学生实验超市,采集了2012年9月21日——9月30日的数据。
数据整理我们所得到的数据主要存在的问题包括重复记录、存在退货等,因此主要使用EXCEL对存在重复记录和退货的情况处理。
删除重复记录,使得每一项小票(代表一个ID)说购买的某种商品的记录都是1次,从而避免数据重复对分析结果的干扰。
而对于退货的商品,这去除该项记录。
经过这两项的整理,最后共得到有效的商品消费记录为45006项。
关联分析数据分析主要使用的是SAS中的Enterprise Mining模块。
数据挖掘关联分析1 引言在大型数据库中,关联规则挖掘是最常见的数据挖掘任务之一.关联规则挖掘就是从大量数据中发现项集之间的相关联系.Apriori 算法,前者采用逐层搜索的迭代策略,先产生候选集,再对候选集进行筛选,然后产生该层的频繁集。
2 Apriori 算法Apriori 算法是关联规则挖掘中最基本也是最常见的算法.它是由Agrawal 等人于1993年提出的一种最有影响的挖掘布尔关联规则频繁项集的算法,主要用来在大型数据库上进行快速挖掘关联规则。
2.1 算法基本思想Apriori 算法采用逐层迭代搜索方法,使用候选项集来找频繁项集。
其基本思想是: 首先找出所有频繁1-项集的集合L l,L1用于找频繁2-项集的集合L2,而L2用于找L3,如此下去,直到不能找到频繁k-项集。
并利用事先设定好的最小支持度阈值进行筛选,将小于最小支持度的候选项集删除,再进行下一次的合并生成该层的频繁项集。
经过筛选可减少候选项集数,从而加快关联规则挖掘的速度。
2.2 算法的挖掘如果一个项集是频繁的,那么它的所有子集都是频繁的先验原理成立的原因:XsYY⊆∀⇒X≥,YX()())s(:一个项集的支持度不会超过其任何子集的支持度该性质称作支持度的反单调性质2.2.1候选项集的生成Apriori 算法使用了Apriori性质来产生候选项集.任何非频繁的( k-1 )项集都不可能是频繁k-项集的子集.因此,如果一个候选k-项集的( k-1 )-子集不在L k -1中,则该候选项集也不可能是频繁的,从而可以从C k中删除.2.2.2由L k-1 生成L k设定k=1扫描事务数据库一次,生成频繁的1-项集如果存在两个或以上频繁k-项集,重复下面过程:[候选产生] 由长度为k的频繁项集生成长度为k+1的候选项集[候选前剪枝] 对每个候选项集,若其具有非频繁的长度为k的子集,则删除该候选项集[支持度计算] 扫描事务数据库一次,统计每个余下的候选项集的支持度[候选后剪枝] 删除非频繁的候选项集,仅保留频繁的(k+1)-项集,设定k = k+1Apriori流程图2.2.3候选项集的支持度计算1)扫描事务数据库,决定每个候选项集的支持度。
数据库中的数据挖掘与关联分析方法数据挖掘和关联分析是当今数据库领域中一项重要而常用的技术。
它们通过从大量的数据库中提取、分析和关联数据,帮助人们发现有价值的信息和隐藏的模式。
在本文中,我们将介绍数据库中的数据挖掘和关联分析方法,探讨它们的原理、应用和挑战。
数据挖掘是从大规模数据中发现潜在模式和知识的过程。
在数据库中,这一任务的关键是如何有效地处理大量的数据,并从中提取有用的信息。
数据挖掘方法可以分为监督学习和无监督学习两类。
监督学习通过已标记的数据集来训练模型,用于预测新数据的类别或属性。
无监督学习则通过发现数据中的隐含结构和相似性来分析模式。
关联分析是数据挖掘中的一个重要技术,用于发现数据集中项之间的关联关系。
在数据库中,关联分析的目标是找到项集的相关规则,即一个项集出现时,其他项集也可能出现的概率。
关联规则可以通过计算支持度和置信度来评估。
支持度衡量一个规则在整个数据集中出现的频次,而置信度则衡量了规则的可靠性。
数据挖掘和关联分析有广泛的应用领域。
商业领域中,数据挖掘可以帮助企业识别市场趋势、预测销售和客户需求,从而优化经营决策。
在医疗领域,数据挖掘可以帮助医生诊断疾病、制定治疗方案,并提供个性化的医疗建议。
在社交网络中,数据挖掘可以帮助用户发现和推荐感兴趣的内容和好友。
此外,据挖掘还可以应用于金融风险管理、欺诈检测、网络安全等领域。
尽管数据挖掘和关联分析在各个领域有很多应用,但实施时也面临许多挑战。
首先是处理大规模数据的问题。
现在的数据库通常包含巨量的数据,如何高效地处理、存储和计算这些数据是一个挑战。
其次是数据质量的问题。
由于数据的收集和整理过程中可能存在错误和缺失,如何处理不完整的数据和异常值对分析结果的准确性提出了要求。
此外,隐私和安全性是一个重要的考虑因素。
在进行数据挖掘和关联分析时,需要确保数据的机密性和合规性。
为了解决这些挑战,研究者们提出了许多改进的方法。
例如,可以使用并行化和分布式计算来提高数据处理的速度和容量。