金堂电厂600MW机组MCS优化项目经验总结
- 格式:pdf
- 大小:1012.89 KB
- 文档页数:3
600MW火力发电厂锅炉燃烧调节系统控制优化随着我国经济的快速发展,电力需求急剧增加。
火力发电作为我国主要的发电方式之一,对于保障国家电力供应具有重要的意义。
在火力发电厂中,锅炉是起到燃烧燃料产生蒸汽的重要设备,其燃烧调节系统控制优化对于保证锅炉安全、高效运行有着至关重要的作用。
600MW火力发电厂锅炉燃烧调节系统控制优化是保障发电厂正常运行的关键技术之一。
通过优化燃烧调节系统,可以提高锅炉的燃烧效率,降低燃料消耗,减少排放,提高发电效率,降低能耗成本。
针对600MW火力发电厂锅炉燃烧调节系统的优化,具有极大的意义和价值。
600MW火力发电厂锅炉燃烧调节系统的控制优化需要从煤种燃烧性能入手。
不同种类的煤炭燃烧性能存在着差异,对应的燃烧调节系统也需进行相应的调整。
通过研究不同种类煤炭的燃烧性能,可以针对性地优化燃烧调节系统参数,提高燃烧效率,减少燃料消耗。
600MW火力发电厂锅炉燃烧调节系统的优化还需要考虑燃烧过程中的热力特性。
煤炭燃烧产生的热量对于蒸汽产生有着重要作用,而燃烧调节系统的控制优化需要充分考虑燃烧过程中的热力特性,提高热效率,减少热能损失,提高蒸汽产生效率。
600MW火力发电厂锅炉燃烧调节系统的优化还需要关注燃烧设备的运行状态。
优化燃烧调节系统需要充分考虑燃烧设备的运行状态,通过实时监测和数据分析,实现燃烧设备的智能控制,提高设备的稳定性和可靠性,降低设备的故障率,保证锅炉安全、稳定、高效运行。
600MW火力发电厂锅炉燃烧调节系统的优化还需要结合先进的控制技术和智能化系统。
采用先进的控制技术和智能化系统,可以实现对燃烧过程的精准控制,提高控制精度,减少人为干预,降低操作成本,提高工作效率,提高设备利用率。
600MW火力发电厂锅炉燃烧调节系统的优化需要注重系统的整合和协调。
在进行燃烧调节系统的优化时,需要考虑系统的整体性和协调性,确保各个部分之间的协调运行,避免出现因某个部分的优化而导致整体性能下降的问题。
600MW火力发电机组一次调频控制策略优化【摘要】现在我国采用的电力供应方式仍旧为火力发电机组的形式,这种发电机组的单机容量一般主要在600WM-300WM之间,为了有效降低火力发电机组消耗的能源,必须要对火力发电机组进行调频控制,以保障火力发电机组的蓄热能得到有效的利用。
本文就600MW火力发电机组一次调频控制策略优化进行研究,以保障600MW火力发电机组运行的稳定性。
【关键词】一次调频;火力发电机组;策略作为电力系统运行的重要组成部分,频率与系统运行的稳定性和安全性息息相关。
因此,必须要对电力系统的频率进行有效的控制,保障一次调频能在规定的范围之内,保障600MW火力发电机组符合能得到实时调控,采用蓄热快速响应的方式反应电网的频率,准确的反应出机组的变化。
1600MW火力发电机组的特点600MW火力发电机组运行时,采用的一般主要是为指直流锅炉,相较于其他锅炉而言,直流锅炉本身具有蓄热能力小,下降管较细等特点,这种情况给600MW火力发电机组一次调频造成了非常大的阻碍。
在对600MW火力发电机组进行一次调频时,会出现无法实现短期动变负荷、快速动变负荷等情况,甚至部分600MW火力发电机组在进行一次调频时,还会出席那主汽压大幅度波动等问题。
现在我国600MW火力发电机组采用的一般都是直吹式制粉系统,相较于传统的中储式制粉系统而言,直吹式制粉系统响应负荷指令的速度非常慢,实现一次调频的难度非常高,在采取控制策略时,要保障机组运行的稳定性,以保障调频工作的顺利开展。
600MW火力发电机组自身的特点,在一定程度上增加了其一次调频的难度,必须要根据600MW火力发电机组的具体运行情况,制定符合系统运行情况的一次调频控制策略,以保障机组正常运行不会受到影响。
2一次调频控制策略的设计及应用2.1设备简介某国产600MW600MW火力发电机组锅炉由东方锅炉(集团)股份公司制造,前后墙对冲燃烧方式、超临界参数变压直流燃煤锅炉,一次中间再热;制粉系统采用双进双出磨煤机冷一次风正压直吹式系统。
600MW火力发电机组协调系统优化及合理调节摘要:随着中国改革开放的不断深入,社会发展水平也在不断提升,我国电网建设规模也随之扩大,人们用电需求量增加的同时,相关部门一定要重视电力输送的品质,一定要注意供电的稳定性及安全性。
如果想要满足人们日益增长的需要就必须要有一定协调系统。
能够对于系统进行一定程度的优化,以此来降低成本提高效率。
提高供电系统的安全性和稳定性。
本文通过分析火力发电机组的一些结构和性质,深入的进行探究系统的优化与调节的一些具体的方法,对于现有的问题提出了一些具体的解决方法。
推动供电系统的升级。
满足大多数人的需要。
关键词:600MW火力发电机组;优化;合理调节1.火电发电系统机组的协调控制系统1.1基本方式基本方式可以归为低级运行方式,机组可以在启动状态以及供电负荷较低的状态下运行,一般而言,汽轮机和锅炉辅助如果出现运行异常的情况时是可以运用这种办法排查故障的。
所谓的基本方式就是将锅炉与汽机的主要控制系统处于手动状态,然后由相关工作人员统一手动控制,这样便可以通过系统负荷指令跟踪管控机组的实际发出功率,而且可以使其始终保持向更高一级控制系统转换的状态。
1.2基本内容工艺水系统:(工艺水箱,工艺水泵,轴封水,冷却水)烟气系统:(进、出口挡板,旁路挡板,增压风机,冷却风机,密封风机,加热器,烟囱,吸收塔)浆液制配系统:(制出石灰石浆液,打入吸收塔,脱去原烟气中的硫份,从而维持硫效率,和ph值)供浆系统:石灰石供浆泵向吸收塔打浆,氧化系统:氧化风机3台,向吸收塔鼓入氧气,使吸收塔内的石灰石浆液氧化达到一定的密度后,可以启动石膏脱水系统。
石膏脱水系统:(真空泵,真空皮带机脱水机,滤布冲洗水泵,滤布冲洗水箱..)脱吸收塔内石膏,可以提高副产品的价值1.3机跟炉方式这种方式也叫做汽轮跟踪方式,它属于协调系统中一种比较高级的方式。
如果在一定的情况下,汽轮机状态正常,锅炉没有自主运行时,就可以采取这种方法来面对一些紧急发生的情况。
金堂电厂600MW#2高加下端差偏大的原因及处理摘要:针对金堂电厂600 MW亚临界燃煤火力发电机组,分析#2高压加热器下端差偏大的原因和系统缺陷,提出改进优化措施,提高高加运行的热经济性和安全稳定性。
关键词:高压加热器;端差;经济性高压加热器,简称高加,是在火力发电厂中利用回热抽汽对锅炉给水进行加热的表面式换热装置,可以提高锅炉给水温度,降低机组能耗,从而提高机组热效率。
我厂机组为N600-16.7/538/538-2型汽轮机,系东方汽轮机厂与日立公司合作设计生产的亚临界、一次中间再热、凝汽式、单轴、双背压、三缸四排汽、冲动式汽轮机。
其中我厂#2高压加热器型号为JG-2300-2。
一、高压加热器的原理和结构1、高压加热器的工作原理一台加热器内部可分为蒸汽冷却段、凝结段、疏水冷却段三个换热部分,其每个阶段的具体工作原理如下:蒸汽冷却段是利用从汽轮机抽出的蒸汽的一部分显热来提高给水温度的。
它位于给水出口流程侧,并有包壳板密闭。
采用蒸汽冷却段可以提高离开加热器的给水温度,使其接近或略超过该抽汽压力下的饱和温度。
从进口管进入的过热蒸汽在一组隔板的导向下,以适当的线速度和质量速度均匀地流过管子,并使蒸汽保留有足够的过热度以保证蒸汽离开该段时呈干燥状态。
这样,当蒸汽离开该段进入凝结段时,可以防止湿蒸汽冲蚀和水蚀的危害。
凝结段是利用蒸汽冷凝时的潜热来加热给水的。
一组隔板使蒸汽沿着加热器长度的方向均匀分布,起支撑传热管的作用。
进入该段的蒸汽,根据汽体冷却原理,自动平衡,直至由饱和蒸汽冷凝成饱和的凝结水,并汇集在加热器的底部,收集非凝结气体的排气管必须置于管束最低压力处以及壳内容易聚集非冷凝气体处。
非冷凝气体的聚集影响了传热,因而降低了效率并造成腐蚀。
疏水冷却段是把离开凝结段的疏水的热量传给进入加热器的给水,而使疏水温度降低到饱和温度以下。
疏水冷却段位于给水进口流程侧,并有包壳密闭。
疏水温度降低后,当流向下一个压力较低的加热器时,减弱了在管道内发生汽化的趋势。
600MW火电机组节能降耗分析与优化措施摘要:在全球气候变暖的大背景下,国际相继出台控制温室气体排放的措施,国家提出可持续发展战略,在能源太量消耗的背景下,能否通过结构优化和技术进步满足能源与环境的双重约束,降低能源消耗,提高生产效率。
关键词:600MW;火电机组;节能降耗;优化措施一、600MW机组节能优化项目及节能效果1.1锅炉点火前利用其他水源作为辅机冷却水某发电公司在机组设计安装阶段,为了防止夏季循环水温太高造成闭式水温升高,在A闭式冷却器冷却水门后加装一路深井水,作为夏季降低闭式冷却水的备用水源。
在锅炉上水打压阶段或机组启动阶段,投入该路冷却水降低闭式水温度或将相邻运行机组循环水联络运行,引入该机组循环水系统,关闭凝汽器进水侧2个入口门,循环水直接通过开式水泵后,进入闭式水冷却器作为冷却水源,回水直接进入该机水塔,通过水塔联络门进入相邻运行机组水塔。
该节能项目实施后,在锅炉水压试验或机组启动阶段,可不启动或推迟开式水泵、循环水泵启动。
节能效果:锅炉一次汽、二次汽打水压启动1次耗时6h,每小时可节电3185kW·h,共节约厂用电19110kW·h;机组冷态启动1次耗时10h,每小时可节电3185kW·h,共节约厂用电31850kW·h。
1.2无电动给水泵锅炉冷态启动上水该方案分2个阶段完成:第1阶段,锅炉启动上水初期至汽包压力达0.6MPa,用1台汽动给水泵的前置泵代替电动给水泵给锅炉上水;第2阶段,主机抽真空后,利用汽动给水泵的备用汽源辅汽冲转汽动给水泵、暖机,汽包压力达0.6MPa后,与单独运行的汽前泵并泵,随后停运该汽前泵,保持该汽动给水泵组运行;主机负荷达100MW时,另一台汽动给水泵用四段抽汽冲转,在主机负荷达240MW时,该汽动给水泵与前一台汽动给水泵并泵接待负荷;在主机负荷达360MW以上且机组运行稳定时,第1台投运的小机汽源由辅汽切换为四段抽汽,保证了机组启动过程中电动给水泵一直处于备用状态,节电效果显著。
600MW火电机组节能降耗分析与优化措施我国火电发电机组的主力是600MW级火电机组,发电集团面临的重要课题是开展针对600MW机组节能降耗这一问题的对策研究,从而提升机组运行的经济效益与综合竞争力。
以1台600MW超临界机组和1台600MW亚临界机组为典型案例,全面分析了汽轮机及热力系统、锅炉燃烧及制粉系统、辅机系统,使顺序阀控制优化、燃烧优化、汽轮机滑压优化、轴封改造及通流部分间隙的调整等综合优化措施得到了落实。
取得了很好的节能、降耗效果,亚临界机组和超临界机组供电煤耗分别下降9g/(kW·h)和27g/(kW·h)。
标签:600MW火电机组供电煤耗节能降耗优化措施引言在面对着两大全球核心问题可持续发展及气候变化的同时,还有经济危机的冲击,势在必行的是世界能源战略的转型。
是否能够通过优化结构及技术上的进步来满足能源和环境的双重约束是处在转型期的能源工业的主要课题。
在一部分政策的作用下,我国火电装机的结构性发生了变化,到2007年年底,我国600MW 级机组一共是232台,占火电总装机容量的20.53%,我国主力发电机组就是600MW级火电机组。
研究和实施600MW机组的节能、降耗的措施,对提高机组的经济运行水平及综合竞争力起了很好的推动作用。
一、600MW火电机组供电煤耗和节能存在的潜力1.供电煤耗的分析目前,我国的火力发电节能降耗的工作有了很大的进展,我国的供电煤耗的平均值由2006年的366g/(kW·h)下降到2008年的349g/(kW·h),年均下降了7~10g/(kW·h)。
但从实际情况来看,近几年来,我国火电装机的结构性调整是使供电煤耗下降的主要因素,而非降低单火电机组的煤耗。
2006至2008年期间各主要容量等级机组供电煤耗并没有明显改善,其中2008年600MW亚临界机组的供电煤耗比2006年增加2g/(kW·h)。