空间向量的数乘运算
- 格式:ppt
- 大小:672.01 KB
- 文档页数:3
8. 6 空间向量及其加减、数乘和数量积运算1.空间向量的有关概念(1) ___________________________________ 空间向量:在空间,我们把具有和的量叫做空间向量.(2) _________________________ 零向量:规定的向量叫做零向量.(3) __________________ 单位向量:的向量称为单位向量.(4) ___________________________________ 相反向量:与向量a 的向量,称为a 的相反向量,记为-a.(5) _________________________ 相等向量:的向量称为相等向量.(6) 空间向量的加法运算满足交换律及结合律:a+ b=__________ ;(a + b) + c = _______________ .2.空间向量的数乘运算⑴向量的数乘:实数入与空间向量a的乘积?a仍然是一个向量,称为向量的数乘.①当X _ 0时,入a与向量a方向相同;当X __ 0时,入a与向量a方向相反.②入a的长度是向量a的长度的________ 倍.(2) 空间向量的数乘运算满足分配律及结合律:①分配律:X(a+b)= __________ .②结合律:X宙)= _________ .(3) 共线向量:如果表示空间向量的有向线段所在的直线_____________________ ,则这些向量叫做共线向量或平行向量.⑷共线向量定理:对空间任意两个向量a, b(b z 0), a // b的充要条件是______________________ .⑸空间直线I的方向向量:和直线I _________ 的非零向量a叫做直线I的方向向量.⑹空间直线的向量表示:I为经过已知点A且平行于已知非零向量a的直线,对空间任意一点0,点P在直线I上的充要条件是___________________________________ ,特别地,如果 a = AB,则上式可以化为OP = 0A + tAB,或_________________ ,这也是空间三点A, B, P共线的充要条件.(7) 共面向量: _______________ 的向量叫做共面向量.(8) 空间共面向量定理:如果两个向量a, b 不共线,那么向量p 与向量a, b 共面的充要条件是推论:对空间任意一点0和不共线的三点A, B, C,满足向量关系式 _______________________________ ,其中__________ ,则点P 与点A, B, C 共面.3.空间向量的数量积运算(1) 空间向量的数量积:已知两个非零向量a, b,则 ___________________ 叫做a, b的数量积,记作a b,通常规定,0w〈a, b〉w n对于两个非零向量a, b, a丄b? ____________ .(2) 空间零向量与任何向量的数量积为.(3) a a = |a||a|cos〈 a, a>= ______ .(4) 空间向量的数量积满足如下的运算律:①(X) • b= __________ ;②ab= __________ (交换律);③ a (b+ c) = ________________ (分配律).自查自纠1. (1)大小方向⑵长度为0 (3)模为1⑷长度相等而方向相反⑸方向相同且模相等(6)b+ a a + (b+ c)2. (1)①〉v ②|入| (2)① 扫+?b ②(入卩)a(3) 互相平行或重合(4)存在实数入使a= ^bO)P= (i-t)oA+to)B (7)平行于同一个平面3. (1)|a||b|cos〈a, b> a b= 0 (2)0⑶|a|1 2 3 (4)① «a b) ② b a ③a b+ a cO 在长方体ABCD-A1BQ1D1 中,BA + Be + D D1=( )A. D1B1B.D1BD.B D1~--> —> —> —> —> —>解:BA+ BC+ DD1=CD + BC + DD1 =BD + DD1=BD1,故选D.电平行六面体ABCD-A1B1C1D1中,M为AC和BD的交点,若A B = a, AD = b, A A1 =等的是()11 11A . - 2a + 2b+ c B. 2a + ?b—c1 1 1 1C. —?a+ ?b—cD. —2 a—? b+ c解:BlM = B?B + BM = —c+ 1BD = —c+ 2(b—a) = —*a + 2b—c,故选C.nOB = OC,且/ AOB = Z AOC =三贝U cos〈3⑸平行⑹存在实数t,使齐=O +1aC.(8)存在惟一的有序实数对—> —> —> —>OP = xOA + yOB +(x, y),使p= x a + y bx+ y+ z= 1C.DB1c,则下列式子中与B1M相©如图所示,已知空间四边形OABC, ,BC >的值为()o解:设0A = a , OB = b , OC = c ,由已知条件〈a , b 〉=〈 a , c 〉= n 且 |b |= |c |, OA • BC = a (c — b )= a c — a b 3 11 f f=2|a ||c |— 2|a ||b |= 0,所以 cos 〈OA , BC 〉= 0•故选 A.已知空间四边形 OABC ,点M , N 分别是OA , BC 的中点,且OA = a , OB = b , OC = c ,用a , b , c 表示向 量 MN = ________ .解:如图所示,MN = *(MB + MC)= *[(OB — OM)+ (OC — OM)] = ^(OB + OC — 2O)M)= g(OB + OC — OA)=g(b + c —a ).故填 2(b + c — a ).(2017鞍山市育英中学月考)已知在正方体 ABCD-A i B i C i D i 中,侧面CCQ i D 的中心是F ,若A F = A D + mAB + nAA r ,贝H m = ________ , n = ________ .解:因为A F = A D + D F = A D + ^(D C + D D i )=A D +2(AB + A ^i ) = A D + ~A B + ^A X I ,所以 m = n =*.故填2; 4 5.类型一空间向量的运算GE (20i7枣阳市鹿头中学月考)如图所示,在空间几何体 ABCD-A i B i C i D i 中,各面为平行四边形, 设AA i = a , AB = b , AD = c , M , N , P 分别是AA i , BC , CQ i 的中点,试用 a , b , c 表示以下各向量:4 AP ;5 MP + NC i .解:(i)因为 P 是 C i D i 的中点,所以 AP = AA i + A i D i + D i P = a + AD + 2D i C i = a + c +?AB = a + c +^b. ⑵因为M 是AA i 的中点, 所以 IMP = MA + A P =苏》+A P =—a + a + c + 丁 b = 2a + ;b + c .-f f f i -f f i -f f又 NG = NC + CC i =尹c + AA i = 2AD + AA i方类解析1=2。
空间向量的数乘运算
在线性代数中,空间向量的数乘运算是指将一个向量与一个实数(标量)相乘的操作。
数乘是向量运算中最基本的运算之一。
设向量为 v = [x1, x2, ..., xn],标量为 a。
向量 v 乘以标量 a 的数乘结果记作 av,计算方法如下:
av = [ax1, ax2, ..., a*xn]
即将向量 v 的每个分量与标量 a 相乘得到新的向量 av。
数乘运算改变了向量的长度和方向,当 a > 0 时,数乘会拉长向量的长度,并保持方向不变;当 a < 0 时,数乘会拉长向量的长度,同时改变向量的方向;当 a = 0 时,数乘结果为零向量。
例如,对于向量 v = [2, -3, 4],标量 a = 3 进行数乘运算:
av = [32, 3(-3), 3*4]
= [6, -9, 12]
因此,数乘运算的结果是 av = [6, -9, 12]。
数乘运算在线性代数中广泛应用,它可以用于调整向量的大小、实现向量的平行移动等操作,同时也是计算矩阵乘法、向量内积、向量投影等许多重要运算的基础。
《空间向量的数乘运算》教案第一章:引言1.1 课程背景在高中数学中,向量是描述物理运动、几何图形等方面的重要工具。
数乘运算作为向量运算的基础,对于学生理解和掌握向量的性质和运算规律具有重要意义。
1.2 教学目标通过本章学习,使学生了解数乘运算的概念,掌握数乘运算的性质和运算规律,能够运用数乘运算解决实际问题。
第二章:数乘运算的定义及性质2.1 数乘运算的定义定义:对于向量a和实数λ,数乘运算定义为λa,记作λa。
2.2 数乘运算的性质性质1:交换律对于任意实数λ和μ,有λa = μa。
性质2:结合律对于任意实数λ、μ和向量a,有(λμ)a = λ(μa)。
性质3:分配律对于任意实数λ、μ和向量a、b,有(λ+ μ)a = λa + μa,以及λ(a + b) = λa + λb。
第三章:数乘运算的运算规律3.1 数乘运算与向量长度的关系数乘运算不改变向量的长度,即|λa| = |a|。
数乘运算不改变向量的方向,即λa与a同向或反向。
第四章:数乘运算的应用4.1 数乘运算在几何中的应用数乘运算可以用来放大或缩小向量,例如,在几何作图中,可以通过数乘运算来构造特定长度的向量。
4.2 数乘运算在物理中的应用在物理学中,数乘运算可以用来表示向量的速度、加速度等物理量的倍数。
第五章:小结与练习5.1 数乘运算的概念和性质本章学习了数乘运算的定义及性质,包括交换律、结合律和分配律。
5.2 数乘运算的运算规律本章学习了数乘运算与向量长度和方向的关系。
5.3 数乘运算的应用本章学习了数乘运算在几何和物理中的应用。
1. 判断下列命题的正确性:(1) 对于任意向量a和实数λ,λa = μa。
(2) 对于任意实数λ、μ和向量a,有(λμ)a = λ(μa)。
(3) 对于任意实数λ、μ和向量a、b,有(λ+ μ)a = λa + μa,以及λ(a + b) = λa + λb。
2. 判断下列命题的正确性:(1) 数乘运算会改变向量的长度。
3.1.2 空间向量的数乘运算问题导学一、空间向量的数乘运算活动与探究1如图所示,已知正方体ABCD -A ′B ′C ′D ′,点E 是上底面A ′B ′C ′D ′的中心,求下列各式中x ,y ,z 的值:(1)''BD xAD y AB z AA =++u u u u r u u u r u u u r u u u r ;(2)'AE x AD y AB z AA =++u u u r u u u r u u u r u u u r .迁移与应用1.已知正方体ABCD -A ′B ′C ′D ′中,点F 是侧面CDD ′C ′的中心,若AF u u u r =AD u u u r+x AB u u u r +y 'AA u u u r,则x -y 等于( ).A .0B .1C .12D .-122.如图,平行六面体A 1B 1C 1D 1-ABCD 中,AM u u u u r =12MC u u u u r ,1A N u u u u r =2ND u u u r ,设AB u u u r =a ,ADu u u r=b ,1AA u u u r=c ,试用a ,b ,c 表示MN u u u u r .确定要表示的向量的终点是否是三角形边的中点,若是,利用平行四边形法则即可;若不是,利用封闭图形,寻找到所要表示的向量所对应的线段为其一边的一个封闭图形,利用这一图形中欲求向量与已知向量所在线段的联系,进行相应的向量运算是处理此类问题的基本技巧.一般地,可以找到的封闭图形不是唯一的.但无论哪一种途径,结果应是唯一的.二、共线向量活动与探究2如图,在平行六面体ABCD-A1B1C1D1中,M,N分别是C1D1,AB的中点,E在AA1上且AE=2EA1,F在CC1上且CF=12FC1,判断MEu u u r与NFu u u r是否共线?迁移与应用1.已知向量a ,b 且AB u u u r=a +2b ,BC uuu r =-5a +6b ,CD uuu r =7a -2b ,则一定共线的三点为( ).A .A ,B ,D B .A ,B ,C C .B ,C ,D D .A ,C ,D2.如图,四边形ABCD 和ABEF 都是平行四边形,且不共面,M ,N 分别是AC ,BF 的中点.判断CE u u u r 与MN u u u u r是否共线.1.判断向量a,b共线的方法有两种:(1)定义法,即证明a,b所在基线平行或重合.(2)利用“a=λb⇒a∥b”判断.2.如果a,b是由空间图形中的有向线段表示的,可利用空间向量的运算性质,结合具体图形,化简得出a=λb,从而得出a∥b,即a与b共线.三、共面向量活动与探究3已知A ,B ,C 三点不共线,平面ABC 外的一点M 满足OM u u u u r =13OA u u u r +13OB uuu r +13OC u u u r.(1)判断MA u u u r ,MB u u u r ,MC u u uu r 三个向量是否共面;(2)判断点M 是否在平面ABC 内.迁移与应用1.下列说法中正确的是( ). A .平面内的任意两个向量都共线 B .空间的任意三个向量都不共面 C .空间的任意两个向量都共面 D .空间的任意三个向量都共面2.如图所示,已知ABCD ,从平面AC 外一点O 引向量OE uuu r =k OA u u u r ,OF u u u r =k OB uuu r ,OG u u u r=k OC u u u r ,OH u u u r =k OD u u u r,求证:(1)四点E ,F ,G ,H 共面; (2)平面AC ∥平面EG .1.证明向量共面,可以利用共面向量的充要条件,也可直接利用定义,通过线面平行、直线在平面内等进行证明.2.利用向量法证明点共面、线共面问题,关键是熟练地进行向量表示,恰当应用向量共面的充要条件,解题过程中注意直线与向量的相互转化.3.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP u u u r =x MA u u u r+y MB u u u r.满足这个关系式的点P 都在平面MAB 内;反之,平面MAB 内的任一点P 都满足这个关系式.这个充要条件常用以证明四点共面.答案:课前·预习导学 【预习导引】1.(1)λa 向量 (2)①相同 ②0 ③相反 ④|λ| (3)①λa +λb λa +μa ②(λμ)a预习交流1 提示:OG u u u r =OM u u u u r +MG u u u u r =OM u u u u r +23MN u u u u r=12OA u u ur +23(MO u u u u r +OC u u u r +CN u u u r )=12a +2311+()22⎡⎤-+-⎢⎥⎣⎦a c b c =12a -13a +23c +13b -13c =16a +13b +13c . 2.(1)互相平行或重合 共线向量 平行向量 (2)a =λb (3)方向向量 OA u u u r +t AB u u u r预习交流2 提示:由加法的平行四边形法则知①中P ,A ,B 三点不共线;②中向量表达式可化为PA u u u r =-2PB u u u r,故三点共线;同理③中P ,A ,B 三点也共线.3.(1)同一个平面 (2)(x ,y ) x a +y b (3)x AB u u u r +y AC u u u r OA u u u r +x AB u u u r+y AC u u u r预习交流3 (1)提示:不成立.因为当p 与a ,b 都共线时,存在不唯一的实数对(x ,y )使p =x a +y b 成立.当p 与a ,b 不共线时,不存在实数对(x ,y )使p =x a +y b 成立.(2)提示:原式可以变形为OP uuu r =(1-y -z )OA u u u r +y OB uuu r +z OC u u u r, ∴OP uuu r -OA u u u r =y (OB uuu r -OA u u u r )+z (OC u u u r -OA u u u r),即AP u u u r =y AB u u u r+z AC u u u r .∴点P 与点A ,B ,C 共面. 课堂·合作探究 【问题导学】活动与探究1 思路分析:利用三角形法则或平行四边形法则表示出指定向量,再根据对应向量系数相等,求出x ,y ,z 的值.解:(1)因为'BD u u u u r =BD u u u r +'DD u u u u r=BA u u u r +AD u u u r +'DD u u u u r =-AB u u u r +AD u u u r +'AA u u u r , 又'BD u u u u r =x AD u u u r +y AB u u u r +z 'AA u u u r ,所以x =1,y =-1,z =1.(2)因为AE u u u r ='AA u u u r +'A E u u u u r ='AA u u u r +12''A C u u u u ur='AA u u u r +12(''A B u u u u u r +''A D u u u u u r )='AA u u u r +12''A B u u u u u r +12''A D u u u u u r=12AD u u ur +12AB u u u r +'AA u u u r , 又AE u u u r =x AD u u u r +y AB u u u r +z 'AA u u u r ,所以x =12,y =12,z =1.迁移与应用 1.A解析:如图所示,∵AF AD DF =+u u u r u u u r u u u r,∴'DF x AB y AA =+u u u r u u u r u u u r .∴1''2DC xAB y AA =+u u u ur u u u r u u u r . ∴1''2AB xAB y AA =+u u uu r u u u r u u u r 'xAB yBB =+u u u r u u u r .∴11'''22AB BB xAB yBB +=+u u uu r u u u r u u u r u u u r . ∴12x y ==,x -y =0.2.解:MN u u u u r =MC u u u u r +CD uuu r +DN u u u r =23AC u u u r -AB u u u r +131DA u u uu r=23(AB u u ur +AD u u u r )-AB u u u r +13(1DD u u u u r +11D A u u u u r ) =23(AB u u ur +AD u u u r )-AB u u u r +13(1AA u u u r -AD u u u r ) =-13AB u u ur +13AD u u u r +131AA u u u r=-13a +13b +13c .活动与探究2 思路分析:结合给出的平行六面体,利用向量的线性运算对ME u u u r 或NFu u u r 进行化简转化,根据共线向量定理进行判断.解:由已知可得:ME u u u r =1MD u u u u r +11D A u u u u r +1A E u u u r=12BA u uu r +CB u u u r +131A A u u u r =-NB uuu r +CB u u u r +131C C u u u u r =CN u u u r +FC uuu r =FN u u u r =-NF u u u r .所以ME u u u r=-NF u u u r ,故ME u u u r 与NF u u ur 共线.迁移与应用 1.A 解析:因为BD u u u r =BC uuur +CD uuu r =-5a +6b +7a -2b =2a +4b =2AB u u u r ,所以AB u u u r 与BD u u u r共线,即A ,B ,D 三点共线.2.解:∵M ,N 分别是AC ,BF 的中点,而四边形ABCD ,ABEF 都是平行四边形,∴MN u u u u r =MA u u u r +AF u u u r +FN u u u r =12CA u u u r +AF u u u r +12FB u u u r .又∵MN u u u u r =MC u u u u r +CE u u u r +EB u u u r +BN u u u r=-12CA u uu r +CE u u u r -AF u u u r -12FB u u u r ,∴12CA u uu r +AF u u u r +12FB u u u r =-12CA u uu r +CE u u u r -AF u u u r -12FB u u u r .∴CE u u u r =CA u u u r +2AF u u u r +FB u u u r =2(MA u u u r +AF u u u r +FN u u ur )=2MN u u u u r , ∴CE u u u r ∥MN u u u u r ,即CE u u u r 与MN u u u u r共线.活动与探究3 思路分析:要证明三个向量共面,只需证明存在实数x ,y ,使MA u u u r =x MB u u u r+y MC u u u u r,证明了三个向量共面,点M 就在平面内.解:(1)∵OA u u u r +OB uuu r +OC u u u r =3OM u u u u r, ∴OA u u u r -OM u u u u r =(OM u u u u r -OB uuu r )+(OM u u u u r -OC u u u r),∴MA u u u r =BM u u u u r +CM u u u u r =-MB u u u r -MC u u uu r .∴向量MA u u u r ,MB u u u r ,MC u u uu r 共面.(2)由(1)向量MA u u u r ,MB u u u r ,MC u u uu r 共面,三个向量又有公共点M ,∴M ,A ,B ,C 共面.即点M 在平面ABC 内. 迁移与应用 1.C2.证明:(1)因为四边形ABCD 是平行四边形,所以AC u u u r =AB u u u r +AD u u u r ,EG u u u r =OG u u u r -OE uuu r =k OC u u u r -k OA u u u r =k AC u u u r =k (AB u u u r +AD u u u r )=k (OB uuu r -OA u u u r +OD u u u r -OA u u u r )=OF u u u r -OE uuu r +OH u u u r -OE uuu r =EF u u u r +EH u u u r .所以E ,F ,G ,H 共面.(2)EF u u u r =OF u u u r -OE uuu r =k (OB uuu r -OA u u u r )=k AB u u u r,且由第(1)小题的证明中知EG u u u r =k AC u u u r,于是EF ∥AB ,EG ∥AC .所以平面EG ∥平面AC .当堂检测1.当|a|=|b|≠0,且a ,b 不共线时,a +b 与a -b 的关系是( ). A .共面 B .不共面 C .共线 D .无法确定答案:A 解析:空间中任何两个向量都是共面向量,但不一定共线. 2.下面关于空间向量的说法正确的是( ). A .若向量a ,b 平行,则a ,b 所在的直线平行B .若向量a ,b 所在直线是异面直线,则a ,b 不共面C .若A ,B ,C ,D 四点不共面,则向量AB u u u r ,CD uuur 不共面D .若A ,B ,C ,D 四点不共面,则向量AB u u u r ,AC u u u r ,AD u u u r不共面答案:D 解析:可以通过平移将空间中任意两个向量平移到一个平面内,因此空间任意两个向量都是共面的,故B ,C 都不正确.注意向量平行与直线平行的区别,可知A 不正确,可用反证法证明D 是正确的.3.如图所示,已知空间四边形ABCD 中,F 为BC 的中点,E 为AD 的中点,若EF u u u r =λ(AB u u u r+DC u u u r),则λ=______.答案:12 解析:如图所示,取AC 的中点G ,连结EG ,GF ,则EF u u u r =EG u u u r +GF u u u r =12(AB u u u r +DC u u u r ).∴12λ=. 4.在空间四边形ABCD 中,连结AC ,BD .若△BCD 是正三角形,且E 为其中心,则1322AB BC DE AD +--u u u r u u u r u u u r u u u r 的化简结果为__________. 答案:0 解析:如图,延长DE 交BC 于点F ,根据题意知F 为BC 的中点.又因为E 为正三角形BCD 的中心, 所以DE u u u r =23DF u u u r 即DF u u u r =32DE u u u r , 所以AB u u u r +12BC u u u r -32DE u u u r -AD u u u r =(AB u u u r -AD u u u r )+BF u u u r -32DE u u u r =DB u u u r +BF u u u r -DF u u u r =DF u u u r -DF u u u r =0.5.已知ABCD -A ′B ′C ′D ′是平行六面体.(1)化简12'23AA BC AB ++u u u r u u u r u u u r ,并在图中标出其结果; 答案:解:)如图,取AA ′的中点E ,则12'AA u u u r ='EA u u u r .又BC uuu r =''A D u u u u u r ,AB u u u r =''D C u u u u u r ,取F 为D ′C ′的一个三等分点2'''3D F D C ⎛⎫= ⎪⎝⎭,则'D F u u u u r =23AB u u u r . ∴12'AA u u u r +BC uuu r +23AB u u u r ='EA u u u r +''A D u u u u u r +'D F u u u u r =EF u u u r . (说明:表示方法不惟一) (2)设M 是底面平行四边形ABCD 的中心,N 在侧面BCC ′B ′的对角线BC ′上,且BN =3NC ′,设MN u u u u r =αAB u u u r +βAD u u u r +γ'AA u u u r ,试求α,β,γ的值. 答案:解:MN u u u u r =MB u u u r +BN u u u r =12DB u u u r +34'BC u u u u r =12(DA u u u r +AB u u u r )+34(BC uuu r +'CC u u u u r )=12(-AD u u u r +AB u u u r )+34(AD u u u r +'AA u u u r )=12AB u u u r +14AD u u u r +34'AA u u u r , ∴12α=,14β=,34γ=.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.。