泰州市姜堰区2018-2019学年七年级下期中考试数学测试题-附答案
- 格式:doc
- 大小:233.08 KB
- 文档页数:5
2018-2019学年江苏省泰州市姜堰市七年级(下)期中数学试卷一、选择题(每小题3分,共18分)1.(3分)如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是()A.B. C.D.2.(3分)下列每组数分别是三根木棒的长度,能用它们搭成三角形的是()A.2cm,2cm,4cm B.3cm,9cm,5cmC.5cm,12cm,13cm D.6cm,10cm,4cm3.(3分)下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a24.(3分)若a<b,则下列各式一定成立的是()C.a﹣1<b﹣1 D.3a>3bA.a+3>b+3 B.5.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.x4﹣16=(x2+4)(x2﹣4)D.10x2﹣5x=5x(2x﹣1)6.(3分)已知方程组和有相同的解,则a,b的值为()A.B.C.D.二、填空题(每空3分,共30分)7.(3分)3﹣2=.8.(3分)将0.00000034用科学记数法表示应为.9.(6分)一个多边形的内角和等于1080°,这个多边形是边形.10.(3分)若a m=2,a n=3,则a m﹣n的值为.11.(3分)如果是方程6x+by=32的解,则b=.12.(3分)若x2+mx﹣15=(x+3)(x+n),则mn的值为.13.(3分)计算:(﹣3)2017×()2018=.14.(3分)若a+b=3,ab=2,则a2+b2=.15.(3分)已知关于x的不等式(m﹣2)x>2m﹣4的解集为x<2,则m的取值范围是.16.(3分)已知方程组的解是,则关于x、y的方程组的解是三、解答题(本大题共102分)17.(10分)(1)计算:(﹣)﹣2+(π﹣2)0﹣|﹣3|;(2)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.18.(10分)把下列各式因式分解:(1)x2﹣9(2)a3b﹣2a2b2+ab319.(10分)解方程组:(1)(2)20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)﹣>21.(10分)(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.23.(8分)观察下列各式:1×5+4=32…………①3×7+4=52…………②5×9+4=72…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25.(12分)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.26.(14分)已知关于x、y的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若(4x+2)2y=1,直接写出k的值;(4)若k≤1,设m=2x﹣3y,且m为正整数,求m的值.2018-2019学年江苏省泰州市姜堰市七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是()A.B. C.D.【解答】解:观察图形可知,图案D可以看作由“基本图案”经过平移得到.故选:D.2.(3分)下列每组数分别是三根木棒的长度,能用它们搭成三角形的是()A.2cm,2cm,4cm B.3cm,9cm,5cmC.5cm,12cm,13cm D.6cm,10cm,4cm【解答】解:A、2+2=4,故以这三根木棒不能构成三角形,不符合题意;B、3+5<9,故以这三根木棒不能构成三角形,不符合题意;C、5+12>13,故以这三根木棒可以构成三角形,符合题意;D、6+4=10,故以这三根木棒不能构成三角形,不符合题意.故选:C.3.(3分)下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a2【解答】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.4.(3分)若a<b,则下列各式一定成立的是()C.a﹣1<b﹣1 D.3a>3bA.a+3>b+3 B.【解答】解:由a<b,得到a+3<b+3,<,a﹣1<b﹣1,3a<3b,故选:C.5.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.x4﹣16=(x2+4)(x2﹣4)D.10x2﹣5x=5x(2x﹣1)【解答】解:根据因式分解的定义可知:D选项为因式分解,故选:D.6.(3分)已知方程组和有相同的解,则a,b的值为()A.B.C.D.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D.二、填空题(每空3分,共30分)7.(3分)3﹣2=.【解答】解:原式==.故答案为:.8.(3分)将0.00000034用科学记数法表示应为 3.4×10﹣7.【解答】解:0.00000034=3.4×10﹣7,故答案为:3.4×10﹣7.9.(6分)一个多边形的内角和等于1080°,这个多边形是8边形.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.10.(3分)若a m=2,a n=3,则a m﹣n的值为.【解答】解:a m﹣n=a m÷a n=2÷3=,故答案为:.11.(3分)如果是方程6x+by=32的解,则b=7.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.12.(3分)若x2+mx﹣15=(x+3)(x+n),则mn的值为10.【解答】解:由x2+mx﹣15=(x+3)(x+n)=x2+(3+n)x+3n,比较系数,得m=3+n,﹣15=3n,解得m=﹣2,n=﹣5,∴mn=(﹣2)×(﹣5)=10.13.(3分)计算:(﹣3)2017×()2018=﹣.【解答】解:(﹣3)2017×()2018=(﹣3×)2017×=﹣.故答案为:﹣.14.(3分)若a +b=3,ab=2,则a 2+b 2= 5 .【解答】解:∵a +b=3,ab=2,∴a 2+b 2=(a +b )2﹣2ab=9﹣4=5.故答案为:5.15.(3分)已知关于x 的不等式(m ﹣2)x >2m ﹣4的解集为x <2,则m 的取值范围是 m <2 .【解答】解:不等式(m ﹣2)x >2m ﹣4的解集为x <2,∴m ﹣2<0,m <2,故答案为:m <2.16.(3分)已知方程组的解是,则关于x 、y 的方程组的解是【解答】解:∵方程组的解是,∴,把∴代入,得,整理,得①﹣②,得(a 1﹣a 2)x=4(a 1﹣a 2),∴x=4.把x=4代入①,得4a 1﹣2y=4a 1+4所以y=﹣2∴原方程组的解为故答案为:三、解答题(本大题共102分)17.(10分)(1)计算:(﹣)﹣2+(π﹣2)0﹣|﹣3|;(2)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.【解答】解:(1)原式=4+1﹣3=2;(2)原式=x2+6xy+9y2﹣(x2﹣9y2)=x2+6xy+9y2﹣x2+9y2=6xy+18y2,当x=3、y=﹣2时,原式=6×3×(﹣2)+18×(﹣2)2=﹣36+72=36.18.(10分)把下列各式因式分解:(1)x2﹣9(2)a3b﹣2a2b2+ab3【解答】解:(1)原式=(x+3)(x﹣3);(2)原式=ab(a2﹣2ab+b2)=ab(a﹣b)2.19.(10分)解方程组:(1)(2)【解答】解:(1),①﹣②得:3y=﹣4,解得:y=﹣,①+②×2得:3x=11,解得:x=,则方程组的解为;(2)方程组整理得:,①×2﹣②得:x=﹣2,把x=﹣2代入①得:y=6,则方程组的解为.20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)﹣>【解答】(本题满分(10分),每小题5分)解:(1)2(x+1)>3x﹣4,2x+2>3x﹣4,2x﹣3x>﹣4﹣2,﹣x>﹣6,x<6,在数轴上表示为:(2)﹣>,去分母得:3(x﹣1)﹣(4x﹣3)>2,去括号得:3x﹣3﹣4x+3>2,合并同类项得:﹣x>2,系数化为1得:x<﹣2.21.(10分)(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.【解答】解:(1)∵2x•43﹣x•81+x=32,∴2x•(22)3﹣x•(23)1+x=25,2x•26﹣2x•23+3x=25,2x+6﹣2x+3+3x=25,即22x+9=25,则2x+9=5,解得:x=﹣2;(2)原式=3x2+x﹣3x﹣1﹣(x2+4x+4)+5=3x2+x﹣3x﹣1﹣x2﹣4x﹣4+5=2x2﹣6x,∵x2﹣3x﹣1=0,∴x2﹣3x=1,则原式=2(x2﹣3x)=2.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.【解答】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=110°,∴∠FDE=70°,∵DF平分∠BDE,∴∠FDB=70°,∵DF∥AC,∴∠C=∠FDB=70°23.(8分)观察下列各式:1×5+4=32…………①3×7+4=52…………②5×9+4=72…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.【解答】解:(1)第6个等式为11×15+4=132;(2)由题意知(2n﹣1)(2n+3)+4=(2n+1)2,理由:左边=4n2+6n﹣2n﹣3+4=4n2+4n+1=(2n+1)2=右边,∴(2n﹣1)(2n+3)+4=(2n+1)2.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?【解答】解:设该商品每件的定价为x元,进价为y元,由题意得:,解得:.答:该商品每件的定价为55元,进价为20元.25.(12分)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.【解答】解:(1)∵x2﹣2xy+2y2﹣2y+1=0∴x2﹣2xy+y2+y2﹣2y+1=0∴(x﹣y)2+(y﹣1)2=0∴x﹣y=0,y﹣1=0,∴x=1,y=1,∴x+2y=3;(2)∵a2+5b2﹣4ab﹣2b+1=0∴a2+4b2﹣4ab+b2﹣2b+1=0∴(a﹣2b)2+(b﹣1)2=0∴a﹣2b=0,b﹣1=0∴a=2,b=1;(3))∵m=n+4,∴n(n+4)+t2﹣8t+20=0∴n2+4n+4+t2﹣8t+16=0∴(n+2)2+(t﹣4)2=0∴n+2=0,t﹣4=0∴n=﹣2,t=4∴m=n+4=2∴n2m﹣t=(﹣2)0=1.26.(14分)已知关于x、y的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若(4x+2)2y=1,直接写出k的值;(4)若k≤1,设m=2x﹣3y,且m为正整数,求m的值.【解答】解:(1)②+①,得4x=2k﹣1,即x=;②﹣①,得2y=﹣4k+3即y=所以原方程组的解为(2)方程组的解x、y满足x+y>5,所以+>5,整理得﹣6k>15,所以k<﹣;(3)由于a0=1(a≠0),(4x+2)2y=1,所以2y=0,即2×=0解得:k=;因为1n=1,(4x+2)2y=1,所以4x+2=1即4×+2=1解,得k=0.所以当k=0或时,(4x+2)2y=1.(4)m=2x﹣3y=2×﹣3×=7k﹣5由于m为正整数,所以m>0即7k﹣5>0,k>所以<k≤1当k=时,m=7k﹣5=1;当k=1时,m=7k﹣5=2.答:m的值为1或2.。
堰区2018-2019学年度第二学期期中测试七年级数学试题 2019.04(满分:150分 考试时间:120分钟)一、选择题(每小题3分,共18分,每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入下表相应的空格内.)1.12-的值是A .2-B .2C .21 D .21- 2.下列长度的三根木棒首尾相接,不能做成三角形框架的是A .4cm 、7cm 、3cmB .7cm 、3cm 、8cmC .5cm 、6cm 、7cmD .2cm 、4cm 、5cm 3.如果21=+a a ,那么221aa +的值是 A .2 B .4 C .0 D .4-4.多边形内角和的度数可能为A .0240 B .0360 C .0480 D .05205.如图,一块四边形绿化园地,四角都做有半径为1的圆形喷水池,则这四个喷水池占去的绿化园地的面积为A .π21B .πC .π2D .π46.如图,把矩形ABCD 沿EF 折叠,点A 、B 分别落在A ′、B ′处.A ′B ′与AD 交于点G ,若∠CF B ′=60°,则∠AEF = A .110° B .115° C .120° D .130°二、填空题(每小题3分,共30分)7.遗传物质脱氧核糖核酸(DNA)的分子直径为0.00000023cm ,则,这个数据用科学记数法表示为 cm .8.我们可以用直尺和三角尺画平行线,如图,在这一过程中,所用到的判断两直线平行的第6题图第5题图10.如图,AD 、AE 分别是△ABC 的高和角平分线,∠B =20º,∠C =50º,则∠EAD = .11.如果5=+b a ,3=-b a ,那么=-22b a .12.若252++kx x (其中k 为常数)是一个完全平方式,则k 的值是 . 13.=⨯-10072014421)( .14.若一个多边形的内角和是它外角和的3倍,则这个多边形是 边形.15.如图,一艘轮船在A 处看见巡逻艇M 在其北偏东58°的方向上,此时一艘客船在B处看见巡逻艇M 在其北偏东12°的方向上,则此时从巡逻艇上看这两艘船的视角∠AMB=.16.有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片,如果要拼成一个长为(3a +b),宽为(2a +3b)的大长方形,则需要C 类卡片 张.三、解答题(本大题共102分)17.(本大题10分,每小题5分)计算: (1)()223)31(3-+-- (2)22734)2()(2a a a ÷--第15题图 AB C a abb b a 第16题图 第8题图第10题图18.(本题10分,每小题5分)因式分解:(1)224b a -(2)322396xy y x y x +-19.(本题8分)先化简,再求值:)34)(3()2)(2)2(32y x x y x y x y x --+-++-(,其中1,1=-=y x20.(本题10分,每小题5分)解方程组:(1)⎩⎨⎧-=-+=3232y x x y (2)⎪⎩⎪⎨⎧=+-=+13121023y x y x21.(本题10分)已知23m=,53=n 。
…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………江苏省泰州市姜堰区2018-2019学年七年级下学期数学期中考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共6题)1. 二元一次方程组 的解为( )A .B .C .D .2. 下列运动属于平移的是( )A . 小朋友荡秋千B . 自行车在行进中车轮的运动C . 地球绕着太阳转D . 小华乘手扶电梯从一楼到二楼3. 如图,直线a 、b 被直线c 所截,a∥b ,∥2=48°,则∥1的度数为( )A . 48°B . 58°C . 132°D . 122°4. 下列各式从左到右的变形,是因式分解的是( ) A.x B.C.答案第2页,总20页…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………D .5. 已知三角形的两边分别为3和6,则此三角形的第三条边的长可能是( )A . 3B . 5C . 9D . 106. 甲、乙两种商品,若购买甲1件、乙2件共需130元,购甲2件、乙1件共需200元,则购甲、乙两种商品各一件共需( )A . 130元B . 100元C . 120元D . 110元第Ⅱ卷 主观题第Ⅱ卷的注释评卷人得分一、填空题(共10题)1. 一个多边形的内角和是720°,这个多边形的边数是 .2.= .3. 计算:= .4. 将0.0000007用科学记数法表示为 .5. 若是关于 , 的二元一次方程的解,则 = .6. 若代数式x 2+mx+9是完全平方式,那么m = .7. 计算:= .8. 若代数式 的值为0,则代数式 的值为 .9. 如图,在∥ABC 中,∥B =80°,∥C =40°,AD∥BC 于点D ,AE 平分∥BAC ,则∥DAE = °10. 已知、、、…、是从1或0中取值的一列数(1和0都至少有一个),若,则这列数的个数 为 .…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分二、计算题(共5题)11. 计算或化简: (1)(2)12. 因式分解:(1)(2)13. 解方程组:(1)(2)14.(1)已知 ,求 的值.(2)先化简再求值: ,其中 , .15. 已知关于 , 的二元一次方程组 的解互为相反数,求k 的值.评卷人得分三、解答题(共2题)答案第4页,总20页…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………16. 如图,CE∥AF ,垂足为E ,CE 与BF 交于点D ,∥F=50º,∥C=30º,求∥EDF 和∥DBA 的度数.17. 用二元一次方程组解决问题:某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为5元/辆,现在停车场内停有50辆中、小型汽车,这些车共缴纳停车费390元,中、小型汽车各有多少辆? 评卷人得分四、综合题(共3题)18. 如图,在∥ABC 中,已知∥BDC=∥EFD ,∥AED =∥ACB.(1)试判断∥DEF 与∥B 的大小关系,并说明理由;(2)若D 、E 、F 分别是AB 、AC 、CD 边上的中点,S ∥DEF =4,求S ∥ABC . 19. 如图,四边形ABCD 的内角∥DCB 与外角∥ABE 的平分线相交于点F.(1)若BF∥CD ,∥ABC=80°,求∥DCB 的度数;…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(2)已知四边形ABCD 中,∥A=105º,∥D=125º,求∥F 的度数;(3)猜想∥F 、∥A 、∥D 之间的数量关系,并说明理由.20. 用若干块如左图所示的正方形或长方形纸片拼成图(1)和图(2)(1)如图(1),若AD=7,AB=8,求 与 的值;(2)如图(1),若长方形ABCD 的面积为35,其中阴影部分的面积为20,求长方形ABCD 的周长;(3)如图(2),若AD 的长度为5,AB 的长度为 . ①当 = , = 时, , 的值有无数组; ②当 , 时, , 的值不存在.参数答案1.【答案】:【解释】:。
2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
2017-2018学年江苏省泰州市姜堰市七年级(下)期中数学试卷一、选择题(每小题3分,共18分)1.(3分)如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是()A. B.C.D.2.(3分)下列每组数分别是三根木棒的长度,能用它们搭成三角形的是()A.2cm,2cm,4cm B.3cm,9cm,5cmC.5cm,12cm,13cm D.6cm,10cm,4cm3.(3分)下列运算中,正确的是()A.(ab2)2=a2b4 B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a24.(3分)若a<b,则下列各式一定成立的是()C.a﹣1<b﹣1 D.3a>3bA.a+3>b+3 B.5.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.x4﹣16=(x2+4)(x2﹣4)D.10x2﹣5x=5x(2x﹣1)6.(3分)已知方程组和有相同的解,则a,b的值为()A.B.C.D.二、填空题(每空3分,共30分)7.(3分)3﹣2= .8.(3分)将0.00000034用科学记数法表示应为.9.(6分)一个多边形的内角和等于1080°,这个多边形是边形.10.(3分)若a m=2,a n=3,则a m﹣n的值为.11.(3分)如果是方程6x+by=32的解,则b= .12.(3分)若x2+mx﹣15=(x+3)(x+n),则mn的值为.13.(3分)计算:(﹣3)2017×()2018= .14.(3分)若a+b=3,ab=2,则a2+b2= .15.(3分)已知关于x的不等式(m﹣2)x>2m﹣4的解集为x<2,则m的取值范围是.16.(3分)已知方程组的解是,则关于x、y的方程组的解是三、解答题(本大题共102分)17.(10分)(1)计算:(﹣)﹣2+(π﹣2)0﹣|﹣3|;(2)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.18.(10分)把下列各式因式分解:(1)x2﹣9(2)a3b﹣2a2b2+ab319.(10分)解方程组:(1)(2)20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)﹣>21.(10分)(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.23.(8分)观察下列各式:1×5+4=32…………①3×7+4=52…………②5×9+4=72…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25.(12分)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.26.(14分)已知关于x、y的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若(4x+2)2y=1,直接写出k的值;(4)若k≤1,设m=2x﹣3y,且m为正整数,求m的值.2017-2018学年江苏省泰州市姜堰市七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是()A. B.C.D.【解答】解:观察图形可知,图案D可以看作由“基本图案”经过平移得到.故选:D.2.(3分)下列每组数分别是三根木棒的长度,能用它们搭成三角形的是()A.2cm,2cm,4cm B.3cm,9cm,5cmC.5cm,12cm,13cm D.6cm,10cm,4cm【解答】解:A、2+2=4,故以这三根木棒不能构成三角形,不符合题意;B、3+5<9,故以这三根木棒不能构成三角形,不符合题意;C、5+12>13,故以这三根木棒可以构成三角形,符合题意;D、6+4=10,故以这三根木棒不能构成三角形,不符合题意.故选:C.3.(3分)下列运算中,正确的是()A.(ab2)2=a2b4 B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a2【解答】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.4.(3分)若a<b,则下列各式一定成立的是()A .a+3>b+3B .C .a ﹣1<b ﹣1D .3a >3b【解答】解:由a <b ,得到a+3<b+3,<,a ﹣1<b ﹣1,3a <3b ,故选:C .5.(3分)下列各式由左边到右边的变形中,是分解因式的是( )A .a (x+y )=ax+ayB .x 2﹣4x+4=x (x ﹣4)+4C .x 4﹣16=(x 2+4)(x 2﹣4)D .10x 2﹣5x=5x (2x ﹣1)【解答】解:根据因式分解的定义可知:D 选项为因式分解,故选:D .6.(3分)已知方程组和有相同的解,则a ,b 的值为()A .B .C .D .【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D .二、填空题(每空3分,共30分)7.(3分)3﹣2= .【解答】解:原式==.故答案为:.8.(3分)将0.00000034用科学记数法表示应为 3.4×10﹣7.【解答】解:0.00000034=3.4×10﹣7,故答案为:3.4×10﹣7.9.(6分)一个多边形的内角和等于1080°,这个多边形是8 边形.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.10.(3分)若a m=2,a n=3,则a m﹣n的值为.【解答】解:a m﹣n=a m÷a n=2÷3=,故答案为:.11.(3分)如果是方程6x+by=32的解,则b= 7 .【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.12.(3分)若x2+mx﹣15=(x+3)(x+n),则mn的值为10 .【解答】解:由x2+mx﹣15=(x+3)(x+n)=x2+(3+n)x+3n,比较系数,得m=3+n,﹣15=3n,解得m=﹣2,n=﹣5,∴mn=(﹣2)×(﹣5)=10.13.(3分)计算:(﹣3)2017×()2018= ﹣.【解答】解:(﹣3)2017×()2018=(﹣3×)2017×=﹣.故答案为:﹣.14.(3分)若a+b=3,ab=2,则a2+b2= 5 .【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=5.故答案为:5.15.(3分)已知关于x的不等式(m﹣2)x>2m﹣4的解集为x<2,则m的取值范围是m<2 .【解答】解:不等式(m﹣2)x>2m﹣4的解集为x<2,∴m﹣2<0,m<2,故答案为:m<2.16.(3分)已知方程组的解是,则关于x、y的方程组的解是【解答】解:∵方程组的解是,∴,把∴代入,得,整理,得①﹣②,得(a1﹣a2)x=4(a1﹣a2),∴x=4.把x=4代入①,得4a1﹣2y=4a1+4所以y=﹣2∴原方程组的解为故答案为:三、解答题(本大题共102分)17.(10分)(1)计算:(﹣)﹣2+(π﹣2)0﹣|﹣3|;(2)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.【解答】解:(1)原式=4+1﹣3=2;(2)原式=x2+6xy+9y2﹣(x2﹣9y2)=x2+6xy+9y2﹣x2+9y2=6xy+18y2,当x=3、y=﹣2时,原式=6×3×(﹣2)+18×(﹣2)2=﹣36+72=36.18.(10分)把下列各式因式分解:(1)x2﹣9(2)a3b﹣2a2b2+ab3【解答】解:(1)原式=(x+3)(x﹣3);(2)原式=ab(a2﹣2ab+b2)=ab(a﹣b)2.19.(10分)解方程组:(1)(2)【解答】解:(1),①﹣②得:3y=﹣4,解得:y=﹣,①+②×2得:3x=11,解得:x=,则方程组的解为;(2)方程组整理得:,①×2﹣②得:x=﹣2,把x=﹣2代入①得:y=6,则方程组的解为.20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)﹣>【解答】(本题满分(10分),每小题5分)解:(1)2(x+1)>3x﹣4,2x+2>3x﹣4,2x﹣3x>﹣4﹣2,﹣x>﹣6,x<6,在数轴上表示为:(2)﹣>,去分母得:3(x﹣1)﹣(4x﹣3)>2,去括号得:3x﹣3﹣4x+3>2,合并同类项得:﹣x>2,系数化为1得:x<﹣2.21.(10分)(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.【解答】解:(1)∵2x•43﹣x•81+x=32,∴2x•(22)3﹣x•(23)1+x=25,2x•26﹣2x•23+3x=25,2x+6﹣2x+3+3x=25,即22x+9=25,则2x+9=5,解得:x=﹣2;(2)原式=3x2+x﹣3x﹣1﹣(x2+4x+4)+5=3x2+x﹣3x﹣1﹣x2﹣4x﹣4+5=2x2﹣6x,∵x2﹣3x﹣1=0,∴x2﹣3x=1,则原式=2(x2﹣3x)=2.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.【解答】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=110°,∴∠FDE=70°,∵DF平分∠BDE,∴∠FDB=70°,∵DF∥AC,∴∠C=∠FDB=70°23.(8分)观察下列各式:1×5+4=32…………①3×7+4=52…………②5×9+4=72…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.【解答】解:(1)第6个等式为11×15+4=132;(2)由题意知(2n﹣1)(2n+3)+4=(2n+1)2,理由:左边=4n2+6n﹣2n﹣3+4=4n2+4n+1=(2n+1)2=右边,∴(2n﹣1)(2n+3)+4=(2n+1)2.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?【解答】解:设该商品每件的定价为x元,进价为y元,由题意得:,解得:.答:该商品每件的定价为55元,进价为20元.25.(12分)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.【解答】解:(1)∵x2﹣2xy+2y2﹣2y+1=0∴x2﹣2xy+y2+y2﹣2y+1=0∴(x﹣y)2+(y﹣1)2=0∴x﹣y=0,y﹣1=0,∴x=1,y=1,∴x+2y=3;(2)∵a2+5b2﹣4ab﹣2b+1=0∴a2+4b2﹣4ab+b2﹣2b+1=0∴(a﹣2b)2+(b﹣1)2=0∴a﹣2b=0,b﹣1=0∴a=2,b=1;(3))∵m=n+4,∴n(n+4)+t2﹣8t+20=0∴n2+4n+4+t2﹣8t+16=0∴(n+2)2+(t﹣4)2=0∴n+2=0,t﹣4=0∴n=﹣2,t=4∴m=n+4=2∴n2m﹣t=(﹣2)0=1.26.(14分)已知关于x、y的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若(4x+2)2y=1,直接写出k的值;(4)若k≤1,设m=2x﹣3y,且m为正整数,求m的值.【解答】解:(1)②+①,得4x=2k﹣1,即x=;②﹣①,得2y=﹣4k+3即y=所以原方程组的解为(2)方程组的解x、y满足x+y>5,所以+>5,整理得﹣6k>15,所以k<﹣;(3)由于a0=1(a≠0),(4x+2)2y=1,所以2y=0,即2×=0解得:k=;因为1n=1,(4x+2)2y=1,所以4x+2=1即4×+2=1解,得k=0.所以当k=0或时,(4x+2)2y=1.(4)m=2x﹣3y=2×﹣3×=7k﹣5由于m为正整数,所以m>0即7k﹣5>0,k>所以<k≤1当k=时,m=7k﹣5=1;当k=1时,m=7k﹣5=2.答:m的值为1或2.。
姜堰区2019~2019学年度第二学期期中测试七年级数学试题(时间:120分钟 满分:150分)一、精心选一选(每题3分,共18分)1.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .2.下列计算中,正确的是( )A .235a b ab +=B .()23636a a =C .623a a a ÷=D .325a a a +=3.如果一个正多边形的一个内角是144°,则这个多边形是( )A .正十边形B .正九边形C .正八边形D .正七边形4.如图,AD 是∠EAC 的平分线,AD∥BC,∠B=28°,则∠C 为( )A .28°B .56°C .14°D .124°5.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm 6.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有()A .4种 B .3种 C .2种 D .1种二、细心填一填(每题3分,共30分)7.某种感冒病毒的直径是0.00000012米,用科学记数法表示为___________米.8.一个三角形的两边长分别是2和4,第三边长为偶数,则这个三角形的周长是______.9.5,8=-=+b a b a 如果,则=-22b a .10.如图,一把直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =1200,则∠DBC 的度数为 .11.如图,B 处在A 处的南偏西40°方向,C 处在A 处的南偏东12°方向,C 处在B 处的北偏东80°方向,则∠ACB 的度数为 .第5题图第4题第15题图 第10题图第11题图12.已知⎩⎨⎧-==21y x 是方程4=+ny mx 的解,则2244n mn m +-的值为 . 13.若正有理数m 使得214x mx ++是一个完全平方式,则m = . 14.已知2x y -=,则224x y y --= .15.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合,若∠A =68°,则∠1+∠2= °.16.若b a 2164==,则代数式b a 2+= .三、耐心解一解(共102分)17.计算(本题满分8分)(1)031)2()2()31(-⨯-+--π (2)2273(2)()a a a -÷-18.利用乘法公式计算(本题满分10分)(1)()()()2222x y x y x y -+-+ (2)()()44x y x y +++-19.因式分解(本题满分10分)(1))()(2a b b a x --- (2)22222y x 4)y x (-+20.解下列方程组(本题满分10分)(1) ⎩⎨⎧=+=-.524y x y x (2) ⎩⎨⎧-=--=-.235442y x y xM'M CB A 第21题图 (1)如图,点M 是△ABC 中AB 的中点,经平移后,点M 落在'M 处.请在正方形网格中画出△ABC 平移后的图形△'''A B C .(2)若图中一小网格的边长为1,则△ABC 的面积为 .22.(本题满分10分)某小区计划投资2.2万元种玉兰树和松柏树共50棵,已知某苗圃负责种玉兰树和松柏树的价格分别为:500元/棵,400元/棵,问可种玉兰树和松柏树各多少棵?23.(本题满分10分)在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求,的值;(2)求a 、b 、c 的值.24.(本题满分10分)(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为 .(2)若169)4(,9)4(22=+=-y x y x,求xy 的值.第24题图第23题图阅读材料:若m 2-2mn +2n 2-8n +16=0,求m 、n 的值.解:∵m 2-2mn +2n 2-8n +16=0,∴(m 2-2mn +n 2)+(n 2-8n +16)=0∴(m -n )2+(n -4)2=0,∴(m -n )2=0,(n -4)2=0,∴n =4,m =4. 根据你的观察,探究下面的问题:(1)已知01210622=++++b b ab a ,求b a -的值;(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足01164222=+--+b a b a ,求△ABC 的周长;(3)已知54,22=--=+z z xy y x ,求xyz 的值.26.(本题满分12分)现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图1所示,其中一块三角板的直角边AC ⊥数轴,AC 的中点过数轴原点O ,AC =6,斜边AB 交数轴于点G ,点G 对应数轴上的数是3;另一块三角板的直角边AE 交数轴于点F ,斜边AD 交数轴于点H .(1)如果点H 对应的数轴上的数是-1,点F 对应的数轴上的数是-3,则△AGH 的面积是 ,△AHF 的面积是 ;(2)如图2,设∠AHF 的平分线和∠AGH 的平分线交于点M ,若∠M =26°,求∠HAO 的大小;(3)如图2,设∠AHF 的平分线和∠AGH 的平分线交于点M ,设∠EFH 的平分线和∠FOC 的平分线交于点N ,设∠HAO=x °(0<x<60) ,试探索∠N +∠M 的和是否为定值,若不是,请说明理由;若是定值,请直接写出此值.第26题图姜堰区2019~2019学年度第二学期期中测试七年级数学试题参考答案一、精心选一选BDAADC二、细心填一填7. 7102.1-⨯8. 109. 4010. 06011. 08812. 1613. 114. 415. 13616. 10或6三、耐心解一解17.(1)-11 (2)45a18. (1)xy y 482-- (2)16222-++y xy x 19. (1))12)((+-x b a (2)22)()(y x y x -+ 20. (1)⎩⎨⎧-==13y x (2)⎪⎩⎪⎨⎧==521y x 21.(1)略(2)522. 玉兰树和松柏数分别为20、30棵23. (1)⎩⎨⎧=-=21y x (2)24.(1)ab a b a b 4)()(22=--+(2)1025.(1)4(2)7(3)-226.(1) 6 、 3 (2)07 (3)和为定值,05.97。
2018-2019学年江苏省泰州市姜堰市七年级(下)期中数学试卷一、选择题(每小题3分,共18分)1.(3分)如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是()A.B. C.D.2.(3分)下列每组数分别是三根木棒的长度,能用它们搭成三角形的是()A.2cm,2cm,4cm B.3cm,9cm,5cmC.5cm,12cm,13cm D.6cm,10cm,4cm3.(3分)下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a24.(3分)若a<b,则下列各式一定成立的是()C.a﹣1<b﹣1 D.3a>3bA.a+3>b+3 B.5.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.x4﹣16=(x2+4)(x2﹣4)D.10x2﹣5x=5x(2x﹣1)6.(3分)已知方程组和有相同的解,则a,b的值为()A.B.C.D.二、填空题(每空3分,共30分)7.(3分)3﹣2=.8.(3分)将0.00000034用科学记数法表示应为.9.(6分)一个多边形的内角和等于1080°,这个多边形是边形.10.(3分)若a m=2,a n=3,则a m﹣n的值为.11.(3分)如果是方程6x+by=32的解,则b=.12.(3分)若x2+mx﹣15=(x+3)(x+n),则mn的值为.13.(3分)计算:(﹣3)2017×()2018=.14.(3分)若a+b=3,ab=2,则a2+b2=.15.(3分)已知关于x的不等式(m﹣2)x>2m﹣4的解集为x<2,则m的取值范围是.16.(3分)已知方程组的解是,则关于x、y的方程组的解是三、解答题(本大题共102分)17.(10分)(1)计算:(﹣)﹣2+(π﹣2)0﹣|﹣3|;(2)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.18.(10分)把下列各式因式分解:(1)x2﹣9(2)a3b﹣2a2b2+ab319.(10分)解方程组:(1)(2)20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)﹣>21.(10分)(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.23.(8分)观察下列各式:1×5+4=32…………①3×7+4=52…………②5×9+4=72…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25.(12分)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.26.(14分)已知关于x、y的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若(4x+2)2y=1,直接写出k的值;(4)若k≤1,设m=2x﹣3y,且m为正整数,求m的值.2018-2019学年江苏省泰州市姜堰市七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)如图所示的图案是一些汽车的车标,可以看做由“基本图案”经过平移得到的是()A.B. C.D.【解答】解:观察图形可知,图案D可以看作由“基本图案”经过平移得到.故选:D.2.(3分)下列每组数分别是三根木棒的长度,能用它们搭成三角形的是()A.2cm,2cm,4cm B.3cm,9cm,5cmC.5cm,12cm,13cm D.6cm,10cm,4cm【解答】解:A、2+2=4,故以这三根木棒不能构成三角形,不符合题意;B、3+5<9,故以这三根木棒不能构成三角形,不符合题意;C、5+12>13,故以这三根木棒可以构成三角形,符合题意;D、6+4=10,故以这三根木棒不能构成三角形,不符合题意.故选:C.3.(3分)下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a2【解答】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.4.(3分)若a<b,则下列各式一定成立的是()C.a﹣1<b﹣1 D.3a>3bA.a+3>b+3 B.【解答】解:由a<b,得到a+3<b+3,<,a﹣1<b﹣1,3a<3b,故选:C.5.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.x4﹣16=(x2+4)(x2﹣4)D.10x2﹣5x=5x(2x﹣1)【解答】解:根据因式分解的定义可知:D选项为因式分解,故选:D.6.(3分)已知方程组和有相同的解,则a,b的值为()A.B.C.D.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D.二、填空题(每空3分,共30分)7.(3分)3﹣2=.【解答】解:原式==.故答案为:.8.(3分)将0.00000034用科学记数法表示应为 3.4×10﹣7.【解答】解:0.00000034=3.4×10﹣7,故答案为:3.4×10﹣7.9.(6分)一个多边形的内角和等于1080°,这个多边形是8边形.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.10.(3分)若a m=2,a n=3,则a m﹣n的值为.【解答】解:a m﹣n=a m÷a n=2÷3=,故答案为:.11.(3分)如果是方程6x+by=32的解,则b=7.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.12.(3分)若x2+mx﹣15=(x+3)(x+n),则mn的值为10.【解答】解:由x2+mx﹣15=(x+3)(x+n)=x2+(3+n)x+3n,比较系数,得m=3+n,﹣15=3n,解得m=﹣2,n=﹣5,∴mn=(﹣2)×(﹣5)=10.13.(3分)计算:(﹣3)2017×()2018=﹣.【解答】解:(﹣3)2017×()2018=(﹣3×)2017×=﹣.故答案为:﹣.14.(3分)若a+b=3,ab=2,则a2+b2=5.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=5.故答案为:5.15.(3分)已知关于x的不等式(m﹣2)x>2m﹣4的解集为x<2,则m的取值范围是m<2.【解答】解:不等式(m﹣2)x>2m﹣4的解集为x<2,∴m﹣2<0,m<2,故答案为:m<2.16.(3分)已知方程组的解是,则关于x、y的方程组的解是【解答】解:∵方程组的解是,∴,把∴代入,得,整理,得①﹣②,得(a1﹣a2)x=4(a1﹣a2),∴x=4.把x=4代入①,得4a1﹣2y=4a1+4所以y=﹣2∴原方程组的解为故答案为:三、解答题(本大题共102分)17.(10分)(1)计算:(﹣)﹣2+(π﹣2)0﹣|﹣3|;(2)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.【解答】解:(1)原式=4+1﹣3=2;(2)原式=x2+6xy+9y2﹣(x2﹣9y2)=x2+6xy+9y2﹣x2+9y2=6xy+18y2,当x=3、y=﹣2时,原式=6×3×(﹣2)+18×(﹣2)2=﹣36+72=36.18.(10分)把下列各式因式分解:(1)x2﹣9(2)a3b﹣2a2b2+ab3【解答】解:(1)原式=(x+3)(x﹣3);(2)原式=ab(a2﹣2ab+b2)=ab(a﹣b)2.19.(10分)解方程组:(1)(2)【解答】解:(1),①﹣②得:3y=﹣4,解得:y=﹣,①+②×2得:3x=11,解得:x=,则方程组的解为;(2)方程组整理得:,①×2﹣②得:x=﹣2,把x=﹣2代入①得:y=6,则方程组的解为.20.(10分)解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)﹣>【解答】(本题满分(10分),每小题5分)解:(1)2(x+1)>3x﹣4,2x+2>3x﹣4,2x﹣3x>﹣4﹣2,﹣x>﹣6,x<6,在数轴上表示为:(2)﹣>,去分母得:3(x﹣1)﹣(4x﹣3)>2,去括号得:3x﹣3﹣4x+3>2,合并同类项得:﹣x>2,系数化为1得:x<﹣2.21.(10分)(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.【解答】解:(1)∵2x•43﹣x•81+x=32,∴2x•(22)3﹣x•(23)1+x=25,2x•26﹣2x•23+3x=25,2x+6﹣2x+3+3x=25,即22x+9=25,则2x+9=5,解得:x=﹣2;(2)原式=3x2+x﹣3x﹣1﹣(x2+4x+4)+5=3x2+x﹣3x﹣1﹣x2﹣4x﹣4+5=2x2﹣6x,∵x2﹣3x﹣1=0,∴x2﹣3x=1,则原式=2(x2﹣3x)=2.22.(8分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.【解答】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=110°,∴∠FDE=70°,∵DF平分∠BDE,∴∠FDB=70°,∵DF∥AC,∴∠C=∠FDB=70°23.(8分)观察下列各式:1×5+4=32…………①3×7+4=52…………②5×9+4=72…………③……探索以上式子的规律:(1)试写出第6个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.【解答】解:(1)第6个等式为11×15+4=132;(2)由题意知(2n﹣1)(2n+3)+4=(2n+1)2,理由:左边=4n2+6n﹣2n﹣3+4=4n2+4n+1=(2n+1)2=右边,∴(2n﹣1)(2n+3)+4=(2n+1)2.24.(10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?【解答】解:设该商品每件的定价为x元,进价为y元,由题意得:,解得:.答:该商品每件的定价为55元,进价为20元.25.(12分)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.【解答】解:(1)∵x2﹣2xy+2y2﹣2y+1=0∴x2﹣2xy+y2+y2﹣2y+1=0∴(x﹣y)2+(y﹣1)2=0∴x﹣y=0,y﹣1=0,∴x=1,y=1,∴x+2y=3;(2)∵a2+5b2﹣4ab﹣2b+1=0∴a2+4b2﹣4ab+b2﹣2b+1=0∴(a﹣2b)2+(b﹣1)2=0∴a﹣2b=0,b﹣1=0∴a=2,b=1;(3))∵m=n+4,∴n(n+4)+t2﹣8t+20=0∴n2+4n+4+t2﹣8t+16=0∴(n+2)2+(t﹣4)2=0∴n+2=0,t﹣4=0∴n=﹣2,t=4∴m=n+4=2∴n2m﹣t=(﹣2)0=1.26.(14分)已知关于x、y的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若(4x+2)2y=1,直接写出k的值;(4)若k≤1,设m=2x﹣3y,且m为正整数,求m的值.【解答】解:(1)②+①,得4x=2k﹣1,即x=;②﹣①,得2y=﹣4k+3即y=所以原方程组的解为(2)方程组的解x、y满足x+y>5,所以+>5,整理得﹣6k>15,所以k<﹣;(3)由于a0=1(a≠0),(4x+2)2y=1,所以2y=0,即2×=0解得:k=;因为1n=1,(4x+2)2y=1,所以4x+2=1即4×+2=1解,得k=0.所以当k=0或时,(4x+2)2y=1.(4)m=2x﹣3y=2×﹣3×=7k﹣5由于m为正整数,所以m>0即7k﹣5>0,k>所以<k≤1当k=时,m=7k﹣5=1;当k=1时,m=7k﹣5=2.答:m的值为1或2.。
第二学期期中考试 初一年级数学试卷一、选择题(每小题2分,共30分) 1、 计算327的结果是( )A. 33±B. 33C. ± 3D. 32、 如图,四个图形中的∠1和∠2,不是同位角的是( )A. B. C. D.3、 在平面直角坐标系中,点(﹣1,m 2+1)一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4、 在下面各数中无理数的个数有( )﹣3.14,722,0.1010010001……,+1.99,3π-。
A. 1个B. 2个C. 3个D. 4个5、 如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°,则∠A 等于( )A. 35°B. 40°C. 45°D. 50° 6、 下列说法正确的是( )A. ﹣5是25的平方根B. 25的平方根是﹣5C. ﹣5是 (﹣5)2的算术平方根D. ±5是(﹣5)2的算术平方根7、 若方程组⎩⎨⎧=-+=+6)1(1434y k kx y x 的解中x 与y 的值相等,则k 为( )A. 4B. 3C. 2D. 18、 线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点D (1,2)的对应点B 的坐标为( ) A. (2,9) B. (5,3) C. (﹣4,﹣1) D. (﹣9,﹣4) 9、 在实数范围内,下列判断正确的是( )A. 若n m = ,则m =nB. 若22b a >,则a >b C. 若22)(b a =,则a =bD. 若33b a =,则a =b10、在平面直角坐标系中,若A 点坐标为(﹣3,3),B 点坐标为(2,0),则△ABO 的面积为( )A. 15B. 7.5C. 6D. 311、如图所示,下列条件中,不能..判断l 1∥l 2的是( ) A. ∠1=∠3 B. ∠2=∠3 C. ∠4=∠5 D. ∠2+∠4=180° 12、有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④同一平面内,垂直于同一条直线的两条直线互相平行。
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.计算a6÷a2的结果是( )A.a3 B.a4 C.a8 D.a122.二元一次方程2x+y=11的非负整数解有( )A.1个 B.2个 C.6个 D.无数个3.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A、C两点之间 B.E、G两点之间C.B、F两点之间 D.G、H两点之间4.方程3x+2y=1和2x=y+3的公共解是( )A. B. C. D.5.若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式、如在代数式a+b+c中,把a和b互相替换,得b+a+c;把a和c互相替换,得c+b+a;把b和c…;a+b+c 就是完全对称式、下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a其中为完全对称式的是( )A.①② B.②③ C.①③ D.①②③6.已知方程组的解满足x+y=3,则k的值为( )A.10 B.8 C.2 D.﹣87.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是( )A. B.C .D .8.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片的小正方形卡片((a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣15,则小正方形卡片的面积是( )A .10B .8C .2D .5二、填空题(每题3分,共30分)9.某细胞的直径约为0.0000102米,用科学记数法表示为 米. 10.计算:1012﹣992= .11.若(a ﹣2)x |a |﹣1+3y =1是二元一次方程,则a = .12.已知(m +n )2=7,(m ﹣n )2=3,则m 2+n 2= .13.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2= °.14.设A =(x ﹣3)(x ﹣7),B =(x ﹣2)(x ﹣8),则A 、B 的大小关系为 .15.如图,面积为3cm 2的△ABC 纸片沿BC 方向平移至△DEF 的位置,平移的距离是BC 长的2倍,则△ABC 纸片扫过的面积为 .16.如果4x 2﹣mxy +9y 2是一个完全平方式,则m =.17.如果方程组的解中x 与y 的值相等,那么a 的值是 .18.对于正整数m ,若m =pq (p ≥q >0,且p ,q 为整数),当p ﹣q 最小时,则称pq 为m 的“最佳分解”,并规定f (m )=(如:12的分解有12×1,6×2,4×3,其中,4×3为12的最佳分解,则f (12)=).关于f (m )有下列判断:①f (27)=3;②f (13)=;③f (2018)=;④f (2)=f (32);⑤若m 是一个完全平方数,则f (m )=1.其中,正确判断的序号是 . 三、解答题(共96分) 19.(8分)计算(1)(3.14﹣π)0+(﹣4)2﹣()﹣1(2)(x ﹣3)2﹣(x +2)(x ﹣2)20.(8分)因式分解 (1)a 2﹣25 (2)xy 2﹣4xy +4x 21.(8分)解方程组 (1) (2)22.(8分)先化简再求值:4(a +2)2﹣7(a +3)(a ﹣3)+3(a ﹣1)2,其中a 是最小的正整数. 23.(8分)如图,EG ⊥BC 与点G ,∠BFG =∠DAC ,AD 平分∠BAC ,试判断AD 与BC 的位置关系,并说明理由.24.(8分)小明和小丽同解一个二元一次方程组,小明正确解得,小丽因抄错了c ,解得.已知小丽除抄错c 外没有发生其他错误,求a +b +c 的值.25.(12分)拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2.(1)则图③可以解释为等式: .(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a 2+7ab +2b 2,并通过拼图对多项式3a 2+7ab +2b 2因式分解:3a 2+7ab +2b 2= . (3)如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的两边长(x >y ),结合图案,指出以下关系式:(1)xy =;(2)x +y =m ;(3)x 2﹣y 2=m •n ;(4)x 2+y 2=其中正确的关系式的个数有( ) A .1个 B .2个 C .3个 D .4个. 26.(12分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn +2n 2﹣6n +9=0,求m 和n 的值. ∵m 2+2mn +2n 2﹣6n +9=0∴m 2+2mn +n 2+n 2﹣6n +9=0∴(m +n )2+(n ﹣3)2=0∴m +n =0,n ﹣3=0∴m =﹣3,n =3 根据你的观察,探究下面的问题:(1)若x 2+4x +4+y 2﹣8y +16=0,求的值.(2)试说明不论x ,y 取什么有理数时,多项式x 2+y 2﹣2x +2y +3的值总是正数.(3)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=10a +8b ﹣41,且c 比a 、b 都大,求c 的取值范围.27.(12分)某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省线的租车方案,并求出最少租金.28.(12分)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= °;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD 交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减计算即可. 【解答】解:a6÷a2=a6﹣2=a4.故选:B.【点评】本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.2.【分析】最小的非负整数为0,把x=0,x=1,x=2,x=3…依次代入二元一次方程2x+y=11,求y值,直至y为负数,从而得到答案.【解答】解:最小的非负整数为0,当x=0时,0+y=11,解得:y=11,当x=1时,2+y=11,解得:y=9,当x=2时,4+y=11,解得:y=7,当x=3时,6+y=11,解得:y=5,当x=4时,8+y=11,解得:y=3,当x=5时,10+y=11,解得:y=1,当x=6时,12+y=11,解得:y=﹣1(不合题意,舍去)即当x≥6时,不合题意,即二元一次方程2x+y=11的非负整数解有6个,故选:C.【点评】本题考查解二元一次方程,正确掌握代入法是解题的关键.3.【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释. 【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.【分析】组成方程组求解即可.【解答】解:解方程组得,故选:D.【点评】本题主要考查了二元一次方程的解,解题的关键是正确求出方程组的解.5.【分析】由于将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式,由于将代数式中的任意两个字母互相替换,代数式不变,根据这个定义分别将①②③进行替换,看它们都有没有改变,由此即可确定是否完全对称式. 【解答】解:①∵(a﹣b)2=(b﹣a)2,∴①是完全对称式;②ab+bc+ca中把a和b互相替换得ab+bc+ca,∴②是完全对称式;③a2b+b2c+c2a中把a和b互相替换得b2a+a2c+c2b,和原来不相等,∴不是完全对称式;故①②正确.故选:A.【点评】此题是一个阅读材料题,考查了完全平方公式,难点在于读懂题意,然后才能正确利用题意解决问题.6.【分析】理解清楚题意,运用三元一次方程组的知识,解出K的数值.【解答】解:由题意可得,2×①﹣②得y=k﹣,②﹣③得x=﹣2,代入③得y=5,则k﹣=5,解得k=8.故选:B.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【分析】此题中的等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙.【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故选:A.【点评】此题是追及问题.注意:无论是哪一个等量关系中,总是甲跑的路程=乙跑的路程. 8.【分析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,根据整式是混合运算法则计算即可.【解答】解:图3中的阴影部分的面积为:(a﹣b)2,图2中的阴影部分的面积为:(2b﹣a)2,由题意得,(a﹣b)2﹣(2b﹣a)2=2ab﹣15,整理得,b2=5,则小正方形卡片的面积是5,故选:D.【点评】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键. 二、填空题(每题3分,共30分)9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000102=1.02×10﹣5,故答案为:1.02×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【分析】直接利用平方差公式分解因式进而计算得出即可.【解答】解:1012﹣992=(101+99)×(101﹣99)=400.故答案为:400.【点评】此题主要考查了平方差公式的应用,熟练掌握平方差公式是解题关键.11.【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0. 【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵(m+n)2=m2+n2+2mn=7①,(m﹣n)2=m2+n2﹣2mn=3②,∴①+②得:2(m2+n2)=10,则m2+n2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.13.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.14.【分析】根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案. 【解答】解:∵A=(x﹣3)(x﹣7)=x2﹣10x+21,B=(x﹣2)(x﹣8)=x2﹣10x+16, ∴A﹣B=x2﹣10x+21﹣(x2﹣10x+16)=5>0,∴A>B,故答案为:A>B.【点评】本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.15.【分析】根据平移的性质可以知道四边形ACED 的面积是三个△ABC 的面积,△ABC 纸片扫过的面积为四边形ABDF 的面积=5个△ABC 的面积; 【解答】解:∵平移的距离是边BC 长的两倍, ∴BC =CE =EF ,∴四边形ACED 的面积是三个△ABC 的面积; ∴△ABC 纸片扫过的面积=S四边形ABFD=5×3=15cm 2,【点评】【点评】考查了平移的性质,考查了平移的性质,考查了平移的性质,本题的关键是得出四边形本题的关键是得出四边形ACED 的面积是三个△ABC 的面积.然后根据已知条件计算.16.【分析】这里首末两项是2x 和3y 这两个数的平方,那么中间一项为加上或减去2x 和3y 积的2倍.【解答】解:∵4x 2﹣mxy +9y 2是一个完全平方式, ∴﹣mxy =±2×2x ×3y , ∴m =±12.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 17.【分析】把y =x 代入方程组求出a 的值即可. 【解答】解:把y =x 代入方程组得:,解得:,则a 的值是3, 故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.【分析】先分解因数,进而找出最佳分解,即可得出结论. 【解答】解:①∵27的分解有27×1,9×3, ∴9×3为27的最佳分解,则f (12)==,故说法①错误;②∵13的分解有13×1,∴13×1为13的最佳分解,则f (13)=,故说法②正确;③∵2018的分解有2018×1,1009×2,∴1009×2为2018的最佳分解,则f (2018)=,故说法③错误;④∵2的分解有2×1,∴2×1为2的最佳分解,则f (2)=,∵32的分解有32×1,16×2,8×4,∴8×4为32的最佳分解,则f (22)==,∴f (2)=f (32),故说法④正确;⑤∵m 是一个完全平方数,设m =n 2(m >0),∴n ×n 为m 的最佳分解,则f (m )==1,故说法⑤正确,∴正确判断的序号为②④⑤,故答案为②④⑤.【点评】此题主要考查了新定义,分解因数,完全平方数的特点,能正确分解因数是解本题的关键.三、解答题(共96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(1)原式=1+16﹣2=15;(2)原式=x 2﹣6x +9﹣x 2+4=﹣6x +13.【点评】此题考查了平方差公式,完全平方公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【分析】(1)两项考虑平方差公式;(2)提取公因式x后,再用完全平方公式.【解答】解:(1)原式=(a+5)(a﹣5);(2)原式=x(y2﹣4y+4)=x(y﹣2)2.【点评】本题考查了因式分解的平方差公式和完全平方公式.题目比较简单,掌握公式是关键.21.【分析】(1)用代入法求解方程组比较简便;(2)变形2x+y=1,可用代入法求解,亦可①×2﹣②用加减法求解.【解答】解:(1),把②代入①,得2(1﹣y)+4y=5,解得,y=,把y=代入②,得x=1﹣=﹣.∴原方程组的解为.(2)由①,得y=1﹣2x③,把③代入②,得5x+2(1﹣2x)=3,解得x=1把x=1代入③,得y=1﹣2×1=﹣1.所以原方程组的解为.【点评】本题考查的是二元一次方程组的解法,题目相对简单,掌握代入、加减消元法是解决本题的关键.22.【分析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.【解答】解:原式=4(a2+4a+4)﹣7(a2﹣9)+3(a2﹣2a+1)=4a 2+16a +16﹣7a 2+63+3a 2﹣6a +3=10a +82,最小的正整数是1,则a =1,原式=10+82=92,.【点评】此题考查整式的混合运算,注意先利用公式计算,再进一步代入求得数值即可. 23.【分析】根据角平分线的定义可得∠BAD =∠DAC ,从而可得∠BFG =∠BAD ,再根据同位角相等,两直线平行可得EG ∥AD ,然后根据EG ⊥BC 即可证明AD ⊥BC .【解答】解:AD ⊥BC .理由如下:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFG =∠DAC ,∴∠BFG =∠BAD ,∴EG ∥AD ,∴∠EGC =∠ADC ,又∵EG ⊥BC ,∴∠EGC =90°,∴∠ADC =90°,∴AD ⊥BC .【点评】本题考查了平行线的判定与角平分线的定义,找出相等的角是解题的关键. 24.【分析】因为小明的解正确,所以可以代入任何一个方程,代入①可求c 的值,代入②得a ﹣b =2;因为小丽抄错了c ,因此可以代入②中,得a ﹣3b =1,建立方程组,可以得出a 、b 的值,从而求出结论.【解答】解:将代入cx ﹣3y =﹣2①得,c +3=﹣2,c =﹣5, 将代入ax +by =2②得,a ﹣b =2③, 将代入②得,2a ﹣6b =2,a ﹣3b =1④,将③,④联立,, 解之得,所以.【点评】本题考查了二元一次方程组的解,要求方程组的字母系数,通常采用代入法,将正确的解代入即可.25.【分析】(1)看图即可得出所求的式子;(2)画出的矩形边长分别为(3a+b)和(a+2b)即可;(3)根据图中每个图形的面积之间的关系即可判断出正确的有几个.【解答】解:(1)由分析知:图③所表示的等式为:(2a+b)(a+2b)=2a2+5ab+2b2;(2)示意图如下3a2+7ab+2b2=(3a+b)(a+2b);(3)D.【点评】此题考查利用图形面积研究因式分解,同时也加深了对多项式乘多项式的理解. 26.【分析】(1)已知等式利用完全平方公式整理配方后,求出x与y的值,即可求出所求;(2)原式配方变形后,利用非负数的性质判断即可;(3)已知等式利用完全平方公式配方后,利用非负数的性质求出a与b的值,即可求出c的范围.【解答】解:(1)已知等式整理得:(x+2)2+(y﹣4)2=0,可得x+2=0,y﹣4=0,解得:x=﹣2,y=4,则原式=﹣2;(2)∵(x﹣1)2≥0,(y+1)2≥0,∴原式=(x﹣1)2+(y+1)2+1≥1>0,则不论x,y取什么有理数时,多项式x2+y2﹣2x+2y+3的值总是正数;(3)已知等式整理得:(a﹣5)2+(b﹣4)2=0,可得a﹣5=0,b﹣4=0,解得:a=5,b=4,则c的范围是5<c<9.【点评】此题考查了配方法的应用,非负数的性质:偶次幂,以及三角形三边关系,熟练掌握完全平方公式是解本题的关键.27.【分析】(1)设每辆小客车能坐x人,每辆大客车能坐y人,根据题意可得等量关系:3辆小客车座的人数+1辆大客车座的人数=105人;1辆小客车座的人数+2辆大客车座的人数=110人,根据等量关系列出方程组,再解即可;(2)①根据题意可得小客车m辆运的人数+大客车n辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金150元,大客车每辆租金250元分别计算出租金即可.【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,据题意:,解得:,答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:150×20=3000(元),方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出二元一次方程或方程组.28.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得 t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点评】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.。
第1页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………江苏省泰兴市2018-2019年七年级下学期数学期中考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 六 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共6题)( )A .B .C .D .2. 下列各式从左到右的变形,是因式分解的是( ) A.B.C.D .3. 下列命题中,是假命题的是( )A . 两直线平行,则同位角相等B . 同旁内角互补,则两直线平行C . 三角形内角和为180°D . 三角形一个外角大于任何一个内角 4. 若,,则的值为( )A . 12B . 8C . 5D . 3 5. 若的乘积中不含 项,则p 的值为( ) A . 3 B . -3 C . 3 D . 无法确定答案第2页,总19页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………6. 已知关于 方程组 的解满足 ,则m 的值为( )A . 10B . 8C . 7D . 6第Ⅱ卷 主观题第Ⅱ卷的注释评卷人得分一、填空题(共10题)1. 命题“对顶角相等”的逆命题是2. 计算.3. 八边形的外角和为 .4. 写出一个解为 的二元一次方程组: .5. 已知三角形的三边长均为偶数,其中两边长分别为2和8,则第三边长为 .6. 关于x 、y 的方程是二元一次方程,则a = .7. 如图,CE⊥AF ,垂足为E ,CE 与BF 相交于点D ,⊥F =45°,⊥DBC =105°,则⊥C= .8. 若 (其中m 、n 为常数),则m 的值是 .9. 如图,⊥ABC 的中线BD 、CE 相交于点O ,OF⊥BC ,且AB =5cm ,BC =4cm ,AC = cm ,OF =2cm ,则四边形ADOE 的面积是 .第3页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………10. 如图⊥ABC 中,将边BC 沿虚线翻折,若⊥1+⊥2=102°,则⊥A 的度数是 .评卷人 得分二、计算题(共3题)11. 计算: (1)(2) (3)(用简便方法)12. 把下列各式因式分解:(1) (2)13. 解方程组:(1)(2)答案第4页,总19页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分三、解答题(共3题)14. 解方程组 时,一马虎的学生把 写错而得 ,而正确的解是 ,求的值.15. 如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,⊥1=63°,⊥2=63°,且⊥C =⊥D .求证:⊥A=⊥F .16. 某校准备组织七年级400名学生参加夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若学校计划租用小客车a 辆,大客车b 辆,一次送完,且恰好每辆车都坐满 ①请写出a 、b 满足的关系式 .②若小客车每辆租金2000元,大客车每辆租金3800元,请你设计出最省钱的租车方案. 评卷人得分四、作图题(共1题)17. 如图,⊥ABC 的顶点都在方格纸的格点上,将⊥ABC 先向下平移3格,再向右平移2格,得到⊥A′B′C′;第5页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)①请在图中画出平移后的⊥A′B′C′; ② 在图中画出⊥ABC 的高BD ,并标出垂足D ;(2)若连接AA′,BB′,则这两条线段之间的关系是 . 评卷人 得分五、综合题(共3题)18. 已知 ,(1)求2A -B 的值,其中 , ;(2)试比较代数式A 、B 的大小. 19. 观察下列各式:…………① …………② …………③……探索以上式子的规律:(1)试写出第5个等式;答案第6页,总19页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)试写出第n 个等式(用含n 的式子表示),并用你所学的知识说明第n 个等式成立. 20.中,三个内角的平分线交于点O ,过点O 作,交边AB 于点D .(1)如图1,①若⊥ABC=40°,则⊥AOC= ,⊥ADO= ; ②猜想⊥AOC 与⊥ADO 的关系,并说明你的理由 。
2019年春学期七年级数学期中测试题
(考试时间:150分钟 满分:150分)
一.选择题(每题3分,共18分)
1.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7×10﹣
3 B .7×10﹣
3 C .7×10﹣
4 D .7×10﹣
5
2.下列计算正确的是( )
A .a 2•a 3=a 6
B .2a +3b =5ab
C .a 8÷a 2=a 6
D .(a 2b )2=a 4b 3.下列分解因式正确的是( ) A .﹣ma ﹣m =﹣m (a ﹣1)
B .a 2﹣1=(a ﹣1)2
C .a 2﹣6a +9=(a ﹣3)2
D .a 2+2a +4=(a +2)2
4.一个多边形的内角和是外角和的2倍,这个多边形的边数为( ) A .5
B .6
C .7
D .8
5.如图,在△ABC 中,∠ACB =90°,CD ∥A B ,∠ACD =40°,则∠B 的度数为( ) A .40° B .50° C .60° D .70° 6.二元一次方程组22 1.
x y x y +=⎧⎨
-=⎩,
的解是( )
A .0,2x y =⎧⎨
=⎩; B .1,1x y =⎧⎨=⎩; C .-1,-1x y =⎧⎨=⎩; D .2,
0.
x y =⎧⎨=⎩
二.填空题(每题3分,共30分)
7.计算:1
13-⎛⎫
- ⎪⎝⎭
= .
8. 计算:()()242x x +-= .
9. 在方程728x y -=中,用含x 的代数式表示y 为:y = .
10. 如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为 cm . 11.如图,将面积为5的△ABC 沿BC 方向平移至△DEF 的位置,平移的距
离是边BC 长的两倍,那么图中的四边形ACED 的面积为 . 12.人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表
示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.飞机发动机的声音强度是130分贝,则飞机发动机的声音强度是说话声
音强度的 倍.
13.已知:()()2
2
3522x x x a x b -+=-+-+,则a b += .
14.若实数m ,n 满足2
1
201704
m m n -+
++=,则20m n -- = . 15.已知a ﹣b =1,则a 2﹣b 2﹣2b 的值为
.
第11题图
第5题图
16.如图,在△ABC 中E 是BC 的中点,点D 是AC 的中点,四边形CDFE 的面积为7,则△ABC 的面积= . 三.解答题(共102分) 17.(本题满分8分)计算:
(1)()0
42
3
12423-⎛⎫
⨯+--- ⎪⎝⎭
.
(2)(x ﹣1)2﹣x (x ﹣3)+(x +2)(x ﹣2).
18.(本题满分8分)把下列各式进行因式分解: (1)()()36x a b y b a --- (2)(
)()2
2
2
1x x
x +-+
19. (本题满分8分)解方程组
(1)212316.x y x y -=⎧⎨+=⎩, (2)272
2 5.
3x
y y x ⎧+=⎪⎪⎨⎪+=⎪⎩
,
20.(本题满分10分)
在正方形网格中,每个小正方形的边长均为1个单位 长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移, 使点A 平移到点D ,点E 、F 分别是B 、C 的对应点. (1)请画出平移后的△DEF ,并求△DEF 的面积= , (2)在AB 上找一点M ,使CM 平分△ABC 的面积;
21.(本题满分10分)
在△ABC 中,∠ABC =∠ACB ,BD 是AC 边上的高,且∠ABD =15°,求∠ACB 的度数。
22.(本题满分10分)
如图,AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线。
(1)判断∠AOB 与∠COD 有怎样的数量关系,为什么? (2)若∠AOD =∠BOC ,AB 、CD 有怎样的位置关系,为什么?
23.(本题满分10分)
先化简,再求值:(x ﹣2y )2﹣(x ﹣y )(x +y )﹣2y 2,
其中2
()8x a =,4y
a =。
24.(本题满分12分)
第22题图
第16题图
已知:25;2
x m m y =+⎧⎪-⎨=⎪⎩,
(1)用x 的代数式表示y ;
(2)如果x 、y 为自然数,那么x 、y 的值分别为多少? (3)如果x 、y 为整数,求(2)4x y -⋅的值。
25.(本题满分12分) (1)填空
()()()10213233323332333 2.
-=⨯-=⨯-=⨯,, (2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立。
(3)计算:2
2017
33+3++…。
26.(本题满分14分)
两个边长分别为a 、b 、c 的直角三角形和一个两条直角边都是c 的直角三角形拼成图1。
探索发现:试用不同的方法计算图1的面积,你能发现a 、b 、c 间有什么数量关系? 尝试应用:如图2,在直角三角形ABC 中,∠ACB =90°,三边分别为a 、b 、c , ①若b -a =2,c =10,求此三角形的周长及面积。
②若b =12,a 、c 均为整数,试求出所有满足条件的a 、c 的值。
注意:所有答案必须写在答题纸上。
第14
题图
图1
a
b
图2
b
七下期中数学参考答案
一.选择题
1.C ;2.C ;3.C ;4.B ;5.B ;6.B ; 二.填空题
7.-3;8.2
28x -;9.2
87-=
x y ;10.23;11.15;12.8
10;13.4;14.3;15.1;16.21;
三.解答题17.(1)1,(2)2
3x x +-;18.(1)()()32a b x y -+,(2)()
()3
11x x +-;19.
(1)5
2
x y =⎧⎨=⎩;
(2)2
3
x y =⎧⎨
=⎩;20.(1)7;(2)略;21.52.5°或37.5°;
22.(1)∠AOB+∠COD=180°,(2)AB ∥CD ;23.0;24.(1)72x y -=
,(2)13x y =⎧⎨=⎩,32x y =⎧⎨=⎩,5
1
x y =⎧⎨=⎩,70
x y =⎧⎨
=⎩;(3)-128;25.(1)0、1、2,(2)11
3332n n n ---=⨯, (3)2018332
-;26.发现 222
a b c +=,应用①24、24,②a =35,c =37;a =16,c =20; a =5,c =13;a =9,
c =15;。