利用一元线性回归模型研究收入对消费的影响
- 格式:ppt
- 大小:813.00 KB
- 文档页数:24
研究城镇居民可支配收入与人均消费性支出的关系一、研究的目的本案例分析根据1985年~2014 年城镇居民人均可支配收入和人均消费性支出的基本数据,应用一元线性回归分析的方法研究了城镇居民人均可支配收入和人均消费性支出之间数量关系的基本规律,并在预测2016年人均消费性支出的发展趋势。
从理论上说,居民人均消费性支出应随着人均可支配收入的增长而提高。
随着消费更新换代的节奏加快,消费日益多样化,从追求物质消费向追求精神消费和服务消费转变。
因此,政府在制定当前的宏观经济政策时,考虑通过增加居民收入来鼓励消费,以保持经济的稳定增长。
二、模型设定20089636.2412380.40200910694.7913627.65201011809.8714769.94201112432.2216015.58201214336.8717699.30201315527.9719732.86201416857.5121574.72为分析1985—2014年城镇人均可支配收入(X)和人均消费性支出(Y)的关系,作下图所示的散点图。
图1 城镇人均可支配收入和人均消费性支出的散点图从散点图可以看出城镇人均可支配收入(X)和人均消费性支出(Y)大体呈现为线性关系,为分析中国城镇人均消费性支出随城镇人均可支配收入变动的数量规律性,可以建立如下简单线性回归模型:Y=β+βX+ui12i三、估计参数一.T检验Eviews 的回归结果如下表所示:表2 回归结果① 参数估计和检验的结果写为:^184.59590.780645i i Y X =+(41.10880)(0.004281) t =(4.490423) (182.3403)2R =0.999159 2R (修正值)=0.999129 F =33247.99 n=30 ② 回归系数的区间估计[α=5% 2t α(n-2)=2.048 ]^^2222222ˆˆˆˆ[()()]1P t SE t SE ααβββββα-≤≤+=- =P (0.780645— 2.048*0.0042812β≤≤0.780645+2.048*0.004281)=P (0.7719 2β≤≤0.7894) =95%二异方差检验三序列相关性检验四、模型检验1、 经济意义检验所估计的参数β1= 184.5959,β2=0.780645,说明城镇人均可支配收入每增加一元,可导致人均消费性支出提高0.780645元。
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
BA i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
DA ()()()ii12i X X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii 122iX Y -nXY ˆX -nX β∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆii i Y X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
B A i i ˆˆ0Y Y 0σ∑=时,(-)= B 2iiˆˆ0Y Yσ∑=时,(-)=0 C i i ˆˆ0Y Y σ∑=时,(-)为最小D2i i ˆˆ0Y Y σ∑=时,(-)为最小7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是__________。
DA ()()()i i 12iX X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
居民消费的影响因素分析摘要:近几年来,中国经济迅速发展。
投资、出口、消费形成了拉动经济发展的“三架马车”,居民消费直接影响到我国国民经济的运行以及整个经济的发展。
通过建立计量模型,运用计量分析方法对影响城镇居民消费支出的各因素进行相关分析,找出其中关键影响因素,以为本地政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石关键词:居民消费、人均可支配收入、居民储蓄、消费价格指数一问题的提出1978年以前,国内由于人才匮乏,资源短缺,观念保守等原因延误了国家的发展机遇。
1978年改革开放以来,随着国家经济实力的增强,随着教育事业的跨越发展,国家对不同阶段、不同领域、不同地域的经济社会发展大量采用科学、定量、求实的预测、指导方法,摒弃太多的人为影响,所作出的决策越来越切合实际,而效果亦愈来愈好;而这其中,计量分析方法功不可没。
所以国家制定并实施了一系列相关财政及货币政策来刺激消费,增加居民投资的作用,但是居民存款额依然居高不下,居民消费虽有增长却不能支撑整个国民经济的发展。
不管从宏观还是微观来分析,我国居民最终消费支出都直接影响到我国的国民经济运行及整个经济的发展,所以对我国居民最终消费支出的问题进行研究是必不可少的,而且十分重要。
我们可以运用研究的结果来分析现状并制定正确的应对方针。
消费是经济活动的起点和归宿,也是推动经济增长的重要因素。
二理论综述对决定消费的主要因素,国外学术界有两种主要不同的理论观点:一种是凯恩斯主义消费函数,强调现期消费主要取决于现期收入,随着可支配收入增加,消费也增加。
这种消费理论主要强调的是用收入来解释消费,也叫绝对收入假说。
他指出,在其他条件不变的条件下,消费者是完全理性的人,消费者的主要经济行为是储蓄和消费,而且消费将随着收入的增减而增减,但消费的变化幅度小于收入的变化幅度,再则,边际消费倾向小于平均消费倾向,边际消费倾向变化率为负值,即随着收入的增加,用于消费的指出占收入的比重减小,边际消费倾向是递减的,他指出的是消费增长与收入增长之间是一种非比例关系。
一元线性回归模型一. 单项选择题 1、 变量之间的关系可以分为两大类 __________ o A A 函数关系与相关关系 B 线性相关关系和非线性相关关系 C 正相关关系和负相关关系 D 简单相关关系和复杂相关关系 2、 相关关系是指 __________ o D A 变量间的非独立关系 B 变量间的因果关系 C 变量间的函数关系 D 变咼间不确左性的依存关系 3、 进行相关分析时的两个变屋 __________ ° A A 都是随机变量 B 都不是随机变量 C 一个是随机变量,一个不是随机变量 D 随机的或非随机都可以 4、 表示x 和y 之间真实线性关系的是 ____________ ° CA Y t =P.+p {X tB E (Z )= 0(〉+ 0疋C X=0()+0K+“,D Y^p^p.X,5、 参数0的估计量p 具备有效性是指 ____________ . B A var (y^)=0 B var (fl )为最小 C (p —0)=0D (直一0)为最小6、 对于Yi=B°+B\Xi 七冲 以&表示估计标准误差,P 表示回归值,则 __________________ E 时込(Y 厂丫)=0 吐 0 时,工(丫一丫)2=0 Q0时,工(Y 厂刃为最小 Q0时,工(乂一 丫)2为最小7、设样本回归模型为Y 严则普通最小二乘法确泄的鸟的公式中,错误 的是件2心$$_吃兀丫迄%艺Y, P\ b,28、对于以&表示估计标准误差小表示相关系数,则有 9、产量(X,台)与单位产品成本(Y,元/台)之间的回归方程为9=356 —1.5X,这 说明 o DBA B C D_______ 。
DA S(X,-X )(Y-Y )1Z(x.-x)2詰吃XjYj 》X 送Yj A &=0 时, B *0 时, C &=0 时,D &=0 时, r=l r=-l r=0r=l 或 r=-lA 产量每增加一台,单位产品成本增加356元B 产量每增加一台,单位产品成本减少1・5元C 产量每增加一台,单位产品成本平均增加356元D 产量每增加一台,单位产品成本平均减少1・5元10、 在总体回归直线E (Y) =A J +AX 中,几表示 _______________ 。
第1篇一、引言线性回归分析是统计学中一种常用的数据分析方法,主要用于研究两个或多个变量之间的线性关系。
本文以某城市房价数据为例,通过线性回归模型对房价的影响因素进行分析,以期为房地产市场的决策提供数据支持。
二、数据来源与处理1. 数据来源本文所采用的数据来源于某城市房地产交易中心,包括该城市2010年至2020年的房价、建筑面积、交通便利度、配套设施、环境质量等指标。
2. 数据处理(1)数据清洗:对原始数据进行清洗,去除缺失值、异常值等。
(2)数据转换:对部分指标进行转换,如交通便利度、配套设施、环境质量等指标采用五分制评分。
(3)变量选择:根据研究目的,选取建筑面积、交通便利度、配套设施、环境质量等指标作为自变量,房价作为因变量。
三、线性回归模型构建1. 模型假设(1)因变量与自变量之间存在线性关系;(2)自变量之间不存在多重共线性;(3)误差项服从正态分布。
2. 模型建立(1)选择合适的线性回归模型:根据研究目的和数据特点,采用多元线性回归模型。
(2)计算回归系数:使用最小二乘法计算回归系数。
(3)检验模型:对模型进行显著性检验、方差分析等。
四、结果分析1. 模型检验(1)显著性检验:F检验结果为0.000,P值小于0.05,说明模型整体显著。
(2)回归系数检验:t检验结果显示,所有自变量的回归系数均显著,符合模型假设。
2. 模型结果(1)回归系数:建筑面积、交通便利度、配套设施、环境质量的回归系数分别为0.345、0.456、0.678、0.523,说明这些因素对房价有显著的正向影响。
(2)R²:模型的R²为0.876,说明模型可以解释约87.6%的房价变异。
3. 影响因素分析(1)建筑面积:建筑面积对房价的影响最大,说明在房价构成中,建筑面积所占的比重较大。
(2)交通便利度:交通便利度对房价的影响较大,说明在购房时,消费者对交通便利性的需求较高。
(3)配套设施:配套设施对房价的影响较大,说明在购房时,消费者对生活配套设施的需求较高。
第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。
一元线性回归模型案例分析一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。
为了研究全国居民消费水平及其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。
居民消费水平影响因素的计量分析一、本文概述随着经济的快速发展和居民收入的稳步提高,我国居民的消费水平也在不断提升。
消费作为推动经济增长的三驾马车之一,其重要性不言而喻。
然而,居民消费水平受到多种因素的影响,包括经济、社会、文化等多个方面。
为了更好地理解这些因素如何影响居民消费,本文将从计量经济学的角度出发,对居民消费水平的影响因素进行深入分析。
本文首先将对居民消费水平的定义和衡量标准进行明确,为后续研究提供清晰的概念框架。
接着,通过收集相关统计数据,运用计量经济学模型,对影响居民消费水平的主要因素进行实证分析。
这些因素包括但不限于居民收入、物价水平、就业状况、教育程度、社会保障等。
通过模型估计和结果分析,本文旨在揭示各因素对居民消费水平的具体影响程度和方向。
本文还将关注不同地区和不同收入群体之间的消费差异,探讨造成这些差异的原因,并提出相应的政策建议。
本文将总结研究成果,指出研究的局限性和未来研究方向,以期为后续研究提供参考和借鉴。
通过本文的研究,我们期望能够更全面地认识居民消费水平的影响因素,为政府制定促进消费的政策提供科学依据。
二、居民消费水平的相关理论居民消费水平是指居民在一定时期内,对商品和服务的消费数量和质量的综合体现,是衡量一个国家或地区经济发展水平和生活质量的重要指标。
居民消费水平受到多种因素的影响,包括经济、社会、文化、政策等多个方面。
本文将从相关理论的角度,对影响居民消费水平的因素进行深入探讨。
消费函数理论是分析居民消费行为的重要基础。
根据凯恩斯消费函数理论,居民消费主要取决于其收入水平和消费倾向。
随着收入的增加,居民消费也会相应增加,但消费增加的比例可能小于收入增加的比例,即存在边际消费倾向递减的现象。
杜森贝利提出的相对收入假说和莫迪利安尼的生命周期假说也强调了居民消费行为的社会和心理因素,如居民消费可能受到周围人群消费水平和自身过去消费水平的影响,同时会考虑整个生命周期的收入和支出来安排消费。
一元线性模型论文----关于在校大学生月收入与支出组员:刘强、农蕙儆、姜波、蓝海涛、黄琦轩、刘婷班级:2013级国际经济与贸易班指导老师:毛锦凰分工:小组讨论确定课题(6人)摘要&关键字&问题的提出(6人)资料搜集(刘婷、黄琦轩)模型设定(刘婷、农蕙儆)参数估计(黄琦轩、蓝海涛)经济意义检验(6人)统计检验(刘强、姜波、农蕙儆)模型应用(姜波、蓝海涛)参考文献(刘强、姜波)目录研究背景 (3)研究意义 (3)提出问题 (3)研究方法 (4)模型设定 (5)基本原理 (5)理论模型来源 (6)数据收集 (7)散点图 (9)理论模型形式 (10)参数估计 (10)经济意义分析 (11)拟合优度和统计检验 (12)参考文献 (30)一元线性模型论文----关于在校大学生月收入与支出摘要:国民收入和国民支出,是反映一国的生产力水平和消费水平高低的重要指标。
国民收入,是指物质生产部门劳动者在一定的时期内所创造的价值;国民消费,是指利用社会产品来满足人们需要的过程。
平衡的国民收入和国民支出,对一国的发展起着非常重要的作用。
在凯恩斯理论的学习中认识到,随着收入的增加,支出也会增加。
随着改革开放以来,我国的城乡居民的收入水平在不断的提高,消费水平也随之上升。
但是在社会的不同阶段和不同的社会群体中存在着不同的收入水平和消费水平。
本文通过在了解大学生每月生活费收入和支出的基础上,运用计量经济学的方法,通过EViews软件建立模型来分析它们之间存在的数量关系,从中得出结论,找出其中的问题,并对此问题提出解决方案,以及对此未来的发展做出了相关预测。
着重研究了大学生每月的收入对支出消费的影响及其影响程度,以及二者之间的关系,并在此基础上,对未来大学生的在校收入支出的发展情况做出了相关预测。
关键字:最小二乘法;拟合优度:T检验;假设检验研究背景大学生的收入水平在很大程度上受家庭和环境的影响。
对于大学生的收入来说,绝大部分是通过父母的给予来获得,也有部分是通过课余兼职和勤工俭学来获得。
用Eviews软件建立一元线性回归模型并进行相关检验的实验报告1.数据表1列出了某年中国部分省市城镇居民每个家庭平均全年可支配收入X与消费性支出Y 的统计数据。
2.建立模型应用EViews软件,以表1的数据可绘出可支配收入X与消费性支出Y的散点图(图2-1)。
从该三点图可以看出,随着可支配收入的增加,消费性支出也在增加,大致程线性关系。
据此,我们可以建立一元线性回归模型:Y=β0+β1·X+μ图2-1对模型作普通最小二乘法估计,在Eviews软件下,OLS的估计结果如图(2-2)所示。
Dependent Variable: YMethod: Least SquaresDate: 12/07/11 Time: 21:00Sample: 1 20Included observations: 20Variable Coefficient Std. Error t-Statistic Prob.X 0.755368 0.023274 32.45486 0.0000C 271.1197 159.3800 1.701090 0.1061R-squared 0.983198 Mean dependent var 5199.515Adjusted R-squared 0.982265 S.D. dependent var 1625.275S.E. of regression 216.4435 Akaike info criterion 13.68718Sum squared resid 843260.4 Schwarz criterion 13.78675Log likelihood -134.8718 Hannan-Quinn criter. 13.70661F-statistic 1053.318 Durbin-Watson stat 1.302512Prob(F-statistic) 0.000000图2-2OLS估计结果为^Y=271.12+0.76X(1.70) (32.45)R2=0.9832 D.W. =1.3025 F=1053.3183.模型检验从回归估计的结果看,模型拟合较好。
⼀元线性回归模型案例第⼆章⼀元线性回归模型案例⼀、中国居民⼈均消费模型从总体上考察中国居民收⼊与消费⽀出的关系。
表2.1给出了1990年不变价格测算的中国⼈均国内⽣产总值(GDPP)与以居民消费价格指数(1990年为100)所见的⼈均居民消费⽀出(CONSP)两组数据。
1) 建⽴模型,并分析结果。
输出结果为:对应的模型表达式为:201.1070.3862CONSP GDPP =+(13.51) (53.47) 20.9927,2859.23,0.55R F DW ===从回归估计的结果可以看出,拟合度较好,截距项和斜率项系数均通过了t 检验。
中国⼈均消费增加10000元,GDP 增加3862元。
⼆、线性回归模型估计表2.2给出⿊龙江省伊春林区1999年16个林业局的年⽊材采伐量和相应伐⽊剩余物数据。
利⽤该数据(1)画散点图;(2)进⾏OLS 回归;(3)预测。
表2.2 年剩余物y 和年⽊材采伐量x 数据(1)画散点图先输⼊横轴变量名,再输⼊纵轴变量名得散点图(2)OLS估计弹出⽅程设定对话框得到输出结果如图:由输出结果可以看出,对应的回归表达式为:0.76290.4043t t yx =-+ (-0.625) (12.11)20.9129,146.7166, 1.48R F DW === (3)x=20条件下模型的样本外预测⽅法⾸先修改⼯作⽂件范围将⼯作⽂件范围从1—16改为1—17确定后将⼯作⽂件的范围改为包括17个观测值,然后修改样本范围将样本范围从1—16改为1—17打开x的数据⽂件,利⽤Edit+/-给x的第17个观测值赋值为20将Forecast sample选择区把预测范围从1—17改为17—17,即只预测x=20时的y的值。
由上图可以知道,当x=20时,y的预测值是7.32,yf的分布标准差是2.145。
三、表2.3列出了中国1978—2000年的参政收⼊Y和国内⽣产总值GDP的统计资料。
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
BA i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
DA ()()()ii12i X X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii 122iX Y -nXY ˆX -nX β∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
科学实验报告范文实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。
以下是我整理的实验报告范文,欢迎大家参阅。
第1篇:一元线性回归模型实验报告一、实验内容:利用一元线性回归模型研究我国经济水平对消费的影响1、实验目的:掌握一元线性回归方程的建立和基本的经济检验和统计检验2、实验要求:(1)对原始指标变量数据作价格因子的剔除处理;(2)对回归模型做出经济上的解释;(3)独立完成实验建模和实验报告。
二、实验报告----中国年人均消费与经济水平之间的关系1、问题的提出居民的消费在社会经济发展中具有重要的作用,合理适度的消费可以有利的促进经济的平稳健康的增长。
要充分发挥消费对经济的拉动作用,关键问题是如何保证居民的消费水平。
根据宏观经济学理论,一国的GDP扣除掉折旧和税收就是居民的可支配的收入了,而居民的收入主要用于两个方面:一是储蓄,二是消费。
如果人均GDP增加,那么居民的可支配收入也会增加,这样居民用于消费的应该也会增加。
本次实验通过运用中国年人均消费与经济水平(用人均GDP这个指标来表示)数据,建立模型研究人均消费和经济水平之间的关系。
西方消费经济学者们认为,收入是影响消费者消费的主要因素,消费是需求的函数。
消费经济学有关收入与消费的关系即消费函数理论有:(1)凯恩斯的绝对收入理论。
该理论认为消费主要取决于消费者的净收入,边际消费倾向小于平均消费倾向。
并且进一步假定,人们的现期消费,取决于他们现期收入的绝对量。
(2)杜森贝利的相对收入消费理论。
该理论认为消费者会受自己过去的消费习惯以及周围消费水准来决定消费,从而消费是相对的决定的。
这些理论都强调了收入对消费的影响。
除此之外,还有其他一些因素也会对消费行为产生影响。
(1)利率。
一般情况下,提高利率会刺激储蓄,从而减少消费。
但在现实中利率对储蓄的影响要视其对储蓄的替代效应和收入效应而定,具体问题具体分析。
(2)价格指数。
价格的变动可以使得实际收入发生变化,从而改变消费。