《蒙特卡罗模拟》PPT课件
- 格式:ppt
- 大小:3.44 MB
- 文档页数:25
系列一蒙特卡洛随机模拟实验目的:学会用计算机随机模拟方法来解决随机性问题蒙特卡洛模拟法简介蒙特卡洛(Monte Carlo)方法是一种应用随机数来进行计算机摸拟的方法。
此方法对研究对象进行随机抽样,通过对样本值的观察统计,求得所研究系统的某些参数。
作为随机模拟方法,起源可追溯到18世纪下半叶蒲峰实验。
蒙特卡洛模拟法的应用领域蒙特卡洛模拟法的应用领域主要有:1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。
2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。
蒙特卡洛模拟法求解步骤应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。
解题步骤如下:1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。
通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。
3.根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。
4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。
5.统计分析模拟试验结果,给出问题的概率解以及解的精度估计。
在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。
一.预备知识:1.随机数的产生提示:均匀分布U(0, 1)的随机数可由C语言或Matlab自动产生,在此基础上可产生其他分布的随机数.2.逆变换法:设随机变量U服从(0, 1)上的均匀分布,则X = F-'(U)的分布函数为F(x)步骤:(1)产生U(0J)的随机数U;②计算X = F-1(U),则X服从F(x)分布.问题:练习用此方法产生常见分布随机数例如“指数分布,均匀分布U(a,b) ”.还有其它哪种常见分布的随机数可用此方法方便产生?3.产生离散分布随机数己知离散随机变量X的概率分布:P(X = x k) = I\, (K = 1,2…),产生随机变量X的随机数可采用如下算法:a)将区间[0.1]依次分为长度为Pi, p?,・• •的小区间L,L,・• •;b)产生[0, 1]均匀分布随机数R,若Rclk则令X = x k,重复(b),即得离散随机变量X的随机数序列.问题:(1)下表给出了离散分布X的概率分布表,试产生100个随机数(2)用此方法给出100个二项分布B(20, 0.1)的随机数及10个泊松分布P(l)的随机数.4.正态分布的抽样提示:设U],U2是独立同分布的U(0Q变量,令X] =(-21nU])”2 cos(2^u2)X2 = (-21nU1)1/2 sin(2MJ2)则X.与X,独立,均服从标准正态分布.步骤:(1)由U(0J)独立抽取Ui=g=U2(2)用(*)式计算^,X2.用此方法可同时产生两个标准正忐分布的随机数问题:有关随机数产生方法很多,查阅相关材料进行系统总结.二.随机决策问题1.某小贩每天以一元的价格购进一种鲜花,卖出价为b元/束,当天卖不出去的花全部损失,顾客一天内对花的需求量是随机变量,服从泊松分布,P(X = k)=e-4—,k=0, 1, 2,...,, 其中常数;I由多口销传量的平均值来估计,问小贩每天应购进多少束鲜花?(准则:期望收入,(①最局)问题:(1)在给定b = 1.25, 2=50的值后,画出目标函数S(u)连线散点图,观察单调性,给出最优决策U*:。