(1)16.1二次根式1-导学案
- 格式:doc
- 大小:321.50 KB
- 文档页数:2
16.1二次根式(第一课时)学习目标1.了解二次根式的概念,能判断一个式子是不是二次根式.2.掌握二次根式有意义的条件.3.掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a 学习重点和难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a .一.预习内容(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
二.数学概念及性质1.式子a 表示什么意义?2.什么叫做二次根式?3.式子)0(0≥≥a a 的意义是什么?4.)0()(2≥=a a a 的意义是什么?5.如何确定一个二次根式有无意义?三.自主学习自学课本第2页例前的内容,完成下面的问题:1.试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34,5-,)0(3≥a a,12+x2.计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31(2)3(4根据计算结果,你能得出结论: ,其中0≥a ,)0()(2≥=a a a 的意义是 。
3. 当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 , 才有意义。
四.例题讲解1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 :x 取何值时,下列各二次根式有意义?①43-x ②223x + ③ 2、(1)若33a a ---有意义,则a 的值为___________.(2)若 在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数五.总结反思1.说说你的收获2.你还有什么问题?六.能力提高 1.(1)在式子xx +-121中,x 的取值范围是____________. (2)已知42-x +y x +2=0,则x-y = ____________.(3)已知y =x -3+23--x ,则x y = _____________。
16.1 二次根式教案第一课时二次根式的概念教学目标知识与技能 1 理解二次根式的概念2a≥0)的意义求被开方数中字母的取值范围.过程与方法从具体实例中建立二次根式模型,探索二次根式被开方数中字母的取植范围情感态度与价值观经历观察比较总结和应用等数学活动,体验发现的快乐教学重难点关键1a≥0)的式子叫做二次根式的概念;2.a≥0)的意义求被开方数中字母的取值范围教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以,.问题2:由勾股定理得问题3:由方差的概念得.二、探索新知,都是一些正数的算术平方根.像这样一些正数的算术平a≥0)•的式子叫做二次根式,”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0老师点评:有意义的条件例1.下列式子,哪些是二次根式,、1xx>0)、、、1x y+x≥0,y•≥0).分析”;第二,被开方数是正数或0.x>0)、x≥0,y≥0);不是二、1x、1x y+.例2.当x是多少时,2-x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以x-2≥0,2-x•才能有意义.解:由x-2≥0,得:x≥2当x≥2时,2-x在实数范围内有意义.三、巩固练习教材练习1、2、3.四、应用拓展例3.当x11x+在实数范围内有意义?分析11x+在实数范围内有意义,必须同时满足0和11x+中的x+1≠0.解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-3 2由②得:x≠-1当x≥-32且x≠-111x+在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2)+=0,求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.七板书设计一、选择题1.下列式子中,是二次根式的是()A. B C.x 2.下列式子中,不是二次根式的是()A B.1 x3.已知一个正方形的面积是5,那么它的边长是() A.5 B C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x+x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且=b+4,求a、b的值.16..1 二次根式教案教学内容 1.a ≥0)是一个非负数;2.2=a (a ≥0). 教学目标知识与技能a ≥02=a (a ≥0),并利用它们进行计算和化简.过程与方法 经历探索二次根式的性质的过程,培养学生从简单到复杂从一般到特殊的思 维过程情感 态度与价值观 通过学生自主探索合作交流体会学习数学的乐趣 教学重难点关键1a ≥0)是一个非负数;2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•用探究的方2=a (a ≥0). 教学过程一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0老师点评(略). 二、探究新知 议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______;2=_______;2=______;2=_______;)2=______;)2=_______;)2=_______.是4的算术平方根,是一个平方等于4)2=4.同理可得:)2=2,2=9,)2=3,)2=13,)2=72,)2=0,所以例1计算1.(5.1)2 2.(2 3.24.(2)2分析:我们可以直接利用(2=a (a ≥0)的结论解题.解:(5.1)2 =1.5,(2 =22·2=22×5=20,2=56,(2)2=22724=.三、巩固练习计算下列各式的值:2)2 (4)2)2()2 22-四、应用拓展例2 计算1.2(x ≥0) 2.2 3.24. 2 分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的4题都可以2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥02+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3 五、归纳小结本节课应掌握:1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2) P97.七板书设计第二课时作业设计一、选择题1个数是().A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是(). A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(2=________.2_______数.三、综合提高题1.计算(1)2(2)-)2(3)(12)2(4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x(x≥0)3=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-516.1 二次根式教案第三课时教学内容a(a≥0)教学目标知识与技能(a≥0),(a≥0)并利用它进行计算和化简.过程与方法经历探索二次根式的性质的过程,培养学生分类的数学思想情感态度与价值观通过学生自主探索合作交流体会学习数学的乐趣及发散思维能力教学重难点关键1a(a≥0).2.难点:探究结论.3.关键:讲清a≥0a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:;=________=_______.(老师点评):根据算术平方根的意义,我们可以得到:110=23=37.例1化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2(3(4三、巩固练习教材P7练习2.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?(学生讨论)分析:(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0时,,即使a>a所以a不存在;当a<0,,即使-a>a,a<0综上,a<0例3当x>2分析:(略) 五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业板书设计第三课时作业设计一、选择题1的值是().A.0 B.23C.423D.以上都不对2.a≥0,比较它们的结果,下面四个选项中正确的是().AC.-二、填空题1.=________.2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│+。
§16.1.1《二次根式》导学案【学习目标】1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
【学习重点】二次根式有意义的条件. 【学习过程】【活动一】知识链接(5分钟)这些知识你还记得吗(先独立完成1分钟,后同桌互查1分钟。
) 1、如果对于任意数x ,有x 2= a ,那么x 叫a 的________, 记为______,其中 a 是x 的______;所以a 一定是_______数。
2、如果对于一个正数x ,有x 2 = a ,那么x 叫a 的________, 记为______,其中 a 仍是x 的______;所以a 一定是_______数。
3、正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
4的算术平方根为2,用式子表示为 =__________;【活动二】自主交流 探究新知(25分钟)1、二次根式定义的学习:(12分钟)完成P2—思考中的内容,阅读例1以上的内容,尝试完成下面的问题:1) 思考:如何判定一个式子是否是二次根式2 3,16-,34 ,12+x3)已知一个正方形的面积是5,那么它的边长是 。
4)下列各式一定是二次根式的是( )A 、12+xB 、12-xC 、1--xD 、x 总结:二次根式应满足的条件: 。
2、 二次根式有意义的条件的学习:(13分钟)自学课本P--2页例1后,模仿例题的解答过程合作完成练习 :1)x 取何值时,下列各二次根式有意义①43-x ③x--2140)a ≥2)(1a 的值为___________.(2在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数总结:二次根式有意义的条件是:【活动三】课内小结 (学生归纳总结) (3分钟) 1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
八年级数学下册 16.1 二次根式导学案1(新版)新人教版1、知道二次根式的概念。
2、知道二次根号下被开方数是非负数,并会加以应用。
【定向导学互动展示当堂反馈】课堂元素自学合学展学学法指导(内容学法成果。
时间)互动策略(内容形式时间)展示方案(内容方式时间)概念认知例题导析(学习内容)认真自研教材P2-3完成下列自研探究:旧知链接 :1、a的算是平方根的定义2、填空:(1)面积为3的正方形的边长为,面积为s的正方形的边长为。
(2)等腰直角三角形的面积为7平方厘米,则它的腰长为。
(3)一个物体从高处自由落下,落到地面的时间t(s)与开始下落的高度h(m)满足关系式h=1/2gt2,用含h和g的关系式表示t为。
3、我们把形如的式子叫做二次根式,称为二次根号。
4、判断题:下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、、(x≥0,y ≥0)、5、例2、当x是多少时,在实数范围内有意义?解:由得:。
当时,在实数范围内有意义、小对子交流分享准备询问对子的问题:。
;互助组:4人冲刺挑战旧知链接2共同体:8人在学科组长的带领下:•做好展示任务分工,完成版面设计,做好展示前的预演。
展示方案提示:展示单元一:二次根式判定,运用。
应用探究例1:判定下列代数式中哪些一定是二次根式:,,,,,(x≦0),,例2:已知:再实数范围内有意义,求X的取植范围。
(2)当x是多少时,+在实数范围内有意义?(3)当 X是怎样的实数时有意义,()2 呢?展示方案二利用“(a≥0)”解决具体问题3要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
应用探究例3:已知y=++5,求的值、梳理小结查学课本3页练习1,2第2页思考题评学(回家25分钟)日清三层级能力提升达标题自评:师评:基础题:1、当x 时,在实数范围内有意义。
2、计算:。
3、已知a=,则代数式的值是。
4、若+=0,求a2004+b2004的值。
八年级数学下册 16.1 二次根式导学案(新
版)新人教版
16、1二次根式学习目标
1、理解二次根式的概念,并利用(a≥0)的意义解答具体题目
2、提出问题,根据问题给出概念,应用概念解决实际问题、重点形如(a≥0)的式子叫做二次根式的概念难点利用
“(a≥0)”解决具体问题、预习引导活动
4、思考下列问题:①的运算结果是3,是不是二次根式?3是不是?②定义中为什么要加≥0?若a<0,表示什么?有无意义?③当 a=0时,表示什么?结果是什么?当 a>0时,表示什么?可不可能为负数?(≥0)是什么样的数呢?
问题导学课本思考
1、当x是怎样的实数时,下列二次根式有意义?
,,课本思考2:当x是怎样的实数时,,有意义?
1、若,则x和m的取值范围是x_____;m______、
2、已知,求的值各是多少?活动
5、完成课本探究1活动
6、对中的运算顺序、运算结果进行分析,归纳出:一个非负数先开方再平方,结果不变、练习:课本例2活动
7、完成课本探究2活动
8、对中的运算顺序、运算结果进行分析,归纳出:一个非负数先平方再开方,结果不变;一个负数先平方再开方结果为相反数、练习:课本例3补充练习:
1、化简:,;
2、直角三角形的三边分别为a,b,c,其中c为斜边,则式子-与式子有什么关系?当堂检测作业P5习题
1、2
3、4板书设计知识与方法的建构教师学生反思小结。
16.1二次根式〔1〕 学案学习目标:1.了解二次根式的意义;2.会判断二次根式,能求简单的二次根式中字母的取值范围。
学习重点:二次根式的概念及意义。
学习难点:二次根式的判断与字母取值范围确实定。
学习过程:一、温故互查1.什么叫平方根?2.什么叫算数平方根?3.〔算数〕平方根的性质平方根式是二、设问导读 感受新知阅读课本,完成以下问题在课本思考框的问题中,结果分别是 ,结果都分别是表示65,S ,2,5h 的 . 我们知道:一个正数有两个平方根,它们 ;0的平方根是 ;在实数范围内, 数没有平方根。
因此,开平方时,被开方数只能是 .【归纳】一般地,我们把形如〔a≥0〕的式子叫做 ,“〞称为 .【注意】二次根式应满足两个条件:1.形式..上必须是a 的形式; .三、自我检测例1.当x 是怎样的实数时,2 x 在实数范围内有意义?例2.当a<0时,a 有意义吗?【归纳】a 的双重非负性:1. a≥0 ; 2.四、稳固训练1.、1x x>0〕、、、1x y+〔x≥0,y ≥0〕.2.当x 是多少时,x 35-在实数范围内有意义?【课本练习】 1、2五、拓展提升1.当x 是怎样的实数时,以下各式在实数范围内有意义?〔1〕48-+x x 〔2〕2x 〔3〕3x2.〔1〕,求x y的值.〔2=0,求a 2021+b 2021的值.六、小结评价1.请你说说对二次根式的认识?〔口述给组长〕2.小组对你这节课表现进展评价:〔较好;好;一般;差;较差〕组长:。
16.1二次根式导学学案教学目标:(1) 了解二次根式的概念。
(2) 掌握二次根式的基本性质。
(3) 在学生原有知识的基础上,经历知识产生的过程,探索新知识;(4) 体会用类比的思想研究二次根式,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.(5) 教学中为学生创造大量的操作.思考和交流的机会,关注学生思考问题的过程,鼓励学生在探索规律的过程中从多个角度进行考虑,品尝成功的喜悦,激发学生应用数学的热情,培养学生主动探索,敢于实践,善于发现的科学精神以及合作精神,树立创新意识。
教学重点:教学难点:教学过程:一.情景创设1.回顾:什么叫平方根? 什么叫算术平方根?2.思考(1)面积为3的正方形边长面积为S正方形边长为。
(2)一个物体做自由落体运动,落地时间t,和高度h满足关h= t25,如果用含h的式子表示t,t=(3)圆的面积为S,则圆的半径是 .(4)正方形的面积为3b,则边长为 .3.对上面(1)~(4)题的结果,你能发现它们有什么共同的特征吗? 3、前面我们学习了平方根和算术平方根的意义,引进了一个新的记号 a ,现在请同学们思考并回答下面两个问题:1. a 表示什么?2.a需要满足什么条件?为什么?教师与学生共同归纳:二.新课讲解1、问题: ( a )2(a≥0)等于什么?说说你的理由并举例验证。
2、判断:(1)0=(0 )2对不对?(2)-5=(-5 )2对不对?教师与学生共同归纳:3、二次根式概念 形如 a (a ≥0)的式子叫做二次根式.【说明】 二次根式必须具备以下特点;(1) ; (2) 。
学生举出二次根式的几个例子 判断-5 , a (a<0).3a .-a (a<o)是不是二次根式三、例题与练习例1.要使式子x -1 有意义,字母x 的取值必须满足什么条件? (思考:若将式子x -1 改为1-x ,则字母x 的取值必须满足什么条件?)练习:a 取何值时,下列二次根式有意义. (1)1+a (3) a 101- (2) a211- (4)2)1(-a例2:计算:(1)2)3(; (2)2)32(; (3) 2)(b a + (a+b ≥0)练习.(1)=2)32( (2)2)32(教师与学生共同归纳:练习:计算:(1)=4 (2)=-2)5.1( (3)=-2)1(x (x≥1)练习:P8 1,2四、引导学生总结:1、 2、 3、五、作业:P5习题16.1 1题六、教学反思。
16.1 二次根式 1课时导学案-人教版八年级数学下册一、知识回顾在前面的学习中,我们学习了根式的概念和性质,了解了根式的化简、加减乘除等基本运算法则。
本节课我们将学习二次根式的相关知识。
请回顾以下问题:1.什么是根式?2.根式有哪几种运算法则?3.如何对根式进行化简操作?二、学习目标1.理解二次根式的概念;2.掌握二次根式的化简;3.能够利用二次根式的化简规律进行计算。
三、学习内容1. 二次根式的定义在代数中,我们把形如√a(a≥0)的式子称为二次根式,其中a称为被开方数,√称为二次根号。
2. 二次根式的化简对于二次根式的化简,我们可以利用一些化简规律来简化表达式。
(1)同底合并如果两个二次根式的底数相同,那么可以将它们合并为一个二次根式。
例如:√2 + √2 = 2√2(2)相乘化简如果二次根式与非二次根式相乘,可以移动根号进行化简。
例如:2√2 * 3 = 6√2(3)理数根号化简对于能整除被开方数的完全平方数,可以进行化简。
例如:√36 = 63. 二次根式的运算(1)加减运算相同底数的二次根式可以进行加减运算。
例如:√3 + √5 = √3 + √5(2)乘法运算二次根式的乘法运算仍然适用分配律。
例如:(√2 + √3)* (√2 + √3) = √2 * √2 + √2 * √3 + √2 * √3 + √3 * √3 = 2 + 2√6 + 3 = 5 + 2√6(3)除法运算对于二次根式的除法,可以利用有理化分母的方法进行运算。
例如:√6 / √2 = (√6 / √2) * (√2 / √2) = √12 / 2 = 2√24. 二次根式的化简综合运用将以上所学知识综合运用,化简以下二次根式:(1)3√6 + 2√8(2)√12 * √27(3)(√5 + √3)* (√5 - √3)(4)(√3 + √7)/ (√3 - √7)四、学习总结本节课我们学习了二次根式的概念和性质,掌握了二次根式的化简和运算法则。
16.1 《 二次根式(1)》导学案课型: 上课时间: 课时: 学习内容:二次根式的概念及其运用学习目标:1a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题. 学习过程一、自主学习(一)复习回顾:(1)已知a x =2,那么a 是x 的______;x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)课前预习 学生学习课本知识1、2页(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ;(3)圆的面积为S ,则圆的半径是 ;(4)正方形的面积为3-b ,则边长为 。
思考:这些式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?1x x>0)1x y+x ≥0,y •≥0).解:二次根式有: ;不是二次根式的有: 。
2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a4必须满足 , a才有意义。
试一试:当x在实数范围内有意义?解:由得:。
当时,在实数范围内有意义.二、学生小组交流解疑,教师点拨、拓展例3.当x11x+在实数范围内有意义?例4(1)已知,求xy的值(2)若,求a2004+b2004的值.三、巩固练习教材P 3 练习1、2.课本5页练习1四、课堂检测(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?x 1 x(2)、填空题1.形如________的式子叫做二次根式.2.面积为5的正方形的边长为________.(3)、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.3.x有()个.A.0 B.1 C.2 D.无数4.已知a、b=b+4,求a、b的值.。
二次根式1.二次根式的概念(1)一般地,我们把形如a(a≥0)的式子叫做二次根式.(2)对于a(a≥0)的讨论应注意下面的问题:①二次根号“”的根指数是2,二次根号下的a叫被开方数,被开方数可以是数字,也可以是整式、分式等.②式子a只有在条件a≥0时才叫二次根式.即a≥0是a为二次根式的前提条件.式子-2就不是二次根式,但式子(-2)2是二次根式.③a(a≥0)实际上就是非负数a的算术平方根,既可表示开方运算,也可表示运算的结果.④4是二次根式,虽然4=2,但2不是二次根式.因此二次根式指的是某种式子的“外在形态”.二次根式有两个要素:一是含有二次根号“”;二是被开方数可以不只是数字,但必须是非负的,否则无意义.【例1-1】当a为实数时,下列各式中哪些是二次根式?a+10,|a|,a2,a2-1,a2+1,(a-1)2.分析:因为a为实数,而|a|≥0,a2≥0,a2+1>0,(a-1)2≥0,所以|a|,a2,a2+1,(a-1)2是二次根式.因为a是实数时,并不能保证a+10,a2-1是非负数,即a+10,a2-1可能是负数.如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0,因此,a+10,a2-1不是二次根式.解:|a|,a2,a2+1,(a-1)2是二次根式.【例1-2】x是怎样的实数时,式子x-3在实数X围内有意义?分析:问题实质上是问当x是怎样的实数时,x-3是非负数,式子x-3有意义.解:由二次根式的定义可知被开方式x-3≥0,即x≥3,就是说当x≥3时,式子x-3在实数X围内有意义.2.二次根式的性质(1)a(a≥0)是一个非.负数..a(a≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥0(a≥0),我们把这个性质叫做二次根式的非负性.【例2-1】若a+3+(b-2)2=0,则a b的值是__________.解析:由题意可知a+3=0,(b-2)2=0,所以a+3=0,b-2=0,则a=-3,ba b=(-3)2=9.答案:9(2)(a)2=a(a≥0)由于a(a≥0)是一个非负数,表示非负数a的算术平方根,因此通过算术平方根的定义,将非负数a的算术平方根平方,就等于它本身,即(a)2=a(a≥0).【例2-2】化简:①(23)2=__________;②(x-3)2(x≥3)=__________.解析:①直接利用公式(a )2=a (a ≥0),可得(23)2=23;②因为x ≥3,所以x -3≥0,所以由公式(a )2=a (a ≥0),可得(x -3)2=x -3(x ≥3).答案:①23②x -3(3)a2=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).由算术平方根的定义,可得a2=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).a 2=a (a ≥0)表示非负数a 的平方的算术平方根等于a .【例2-3】计算:(1)(-1.5)2;(2)(a -3)2(a <3);(3)(2x -3)2(x <32).a (a ≥0).(1)(a )2=a 的前提条件是a ≥0;而a 2=|a |中的a 为一切实数.(2)a (a ≥0),|a |,a 2是三个重要的非负数,即a (a ≥0)≥0,|a |≥0,a 2≥0,在解题时应用较多.(3)a 2=(a )2成立的条件是a ≥0,否则不成立.(4)(a )2=a (a ≥0)可以逆用,即任意的一个非负数都可以写成它的算术平方根的平方形式.(5)在利用a 2进行化简时,要先得出|a |,再根据绝对值的性质进行化简,一定要弄清被开方数的底数是正还是负,这是容易出错的地方.3.求二次根式中被开方数字母的取值X 围由二次根式的意义可知,a 的取值X 围是:a 当a ≥0时,a 有意义,是二次根式;当a <0时,a 无意义,不是二次根式.(1)确定形如a 的式子中的被开方数中的字母取值X 围时,可根据式子a 有意义或无意义的条件,列出不等式,然后解不等式即可.(2)当被开方数是分式时,同时要求分母不等于零.求解此类问题抓住一点,就是由二次根式的定义a (a ≥0)得被开方数必须是非负数,即把问题转化为解不等式.【例3】当字母取何值时,下列各式为二次根式.(1)a 2+b 2;(2)-3x ;(3)12x ;(4)-32-x.分析:必须保证被开方数是非负数,以上式子才是二次根式,当分母上有未知数时,分母不能为0,根据这些要求列不等式解答即可.解:(1)因为a ,b 为任意实数时,都有a 2+b 2≥0,所以当a ,b 为任意实数时,a 2+b 2是二次根式.(2)-3x ≥0,x ≤0,即当x ≤0时,-3x 是二次根式.(3)12x≥0,且x ≠0,所以x >0. 当x >0时,12x是二次根式. (4)-32-x≥0,故x -2≥0且x -2≠0,所以x >2. 当x >2时,-32-x是二次根式. 4.二次根式非负性的应用(1)在实数X 围内,我们知道式子a (a ≥0)表示非负数a 的算术平方根,它具有双重非负性:①a ≥0;②a ≥0.运用这两个简单的非负性,再结合非负数的简单性质“若几个非负数的和等于0,则这几个非负数都等于0”可以解决一些算术平方根问题.巧记要点:二次根式,内外一致;即二次根式根号下和根号外一致为非负数. (2)到目前为止,我们已经学过三类具有非负性的代数式:①|a |≥0;②a 2≥0;③a ≥0(a ≥0).【例4-1】已知x ,y 都是实数,且满足y =5-x +x -5+3,求x +y 的值. 分析:式子中有两个二次根式,它们的被开方数都应该是非负数,由此可得关于x 的不等式组.解:由题意知⎩⎪⎨⎪⎧ 5-x ≥0,x -5≥0,∴⎩⎪⎨⎪⎧x ≤5,x ≥5,∴x =5. 当x =5时,y =5-5+5-5+3=3.∴x +y =5+3=8.两个算术平方根,当被开方数互为相反数时,只有它们同时为零,这两个式子才能都有意义.【例4-2】已知x ,y 为实数,且y =12+8x -1+1-8x ,则x ∶y =__________.解析:因为y 为实数,所以隐含着两个算术平方根都有意义,即被开方数均为非负数.实际上,若a 和-a 都有意义,则a ⎩⎪⎨⎪⎧8x -1≥0,1-8x ≥0.解得x =18,于是y =12+0+0=12.故x ∶y =1∶4.答案:1∶4,5.式子(a )2的意义和运用二次根式的一个性质是:(a )2=a (a ≥0).因为2=(2)2,35=(35)2,所以上面的性质又可以写成:a =(a )2(a ≥0).可见,利用这个式子我们可以把任何一个非负数写成一个数的平方的形式.二次根式中的23表示2×3,这与带分数212表示2+12是不一样的,因此,以后遇到32×3应写成323,而不能写成1123.【例5-1】计算:(1)(23)2;(2)(-212)2;(3)(-5×3)2. 解:(1)(23)2=22×(3)2=12.(2)(-212)2=(-2)2×(12)2=2.(3)(-5×3)2=(-1)2×(5×3)2=15.【例5-2】把多项式n 5-6n 3+9n 在实数X 围内分解因式.分析:按照因式分解的一般步骤,先对多项式n 5-6n 3+9n 提取公因式,得n (n 4-6n2+9),再利用完全平方公式分解,得n (n 2-3)2,要求在实数X 围内分解,所以可以将3写成(3)2,再运用平方差公式进行因式分解.解:n 5-6n 3+9n =n (n 4-6n 2+9)=n (n 2-3)2=n (n +3)2(n -3)2.6.二次根式与相反数和绝对值的综合应用(1)二次根式具有非负性,一个数的绝对值,完全平方数也是一个非负数,因此可以把这几者结合出题.(2)绝对值、算术平方根、完全平方数为非负数,即:|a |≥0,b ≥0(b ≥0),c 2≥0.非负数有一个重要的性质,即若干个非负数的和等于零,那么每一个非负数分别为零.即:|a |+b =0⇒a =0,b =0;|a |+c 2=0⇒a =0,c =0; b +c 2=0⇒b =0,c =0;|a |+b +c 2=0⇒a =0, b =0,c =0.【例6-1】若|a -b +1|与a +2b +4互为相反数,则(a +b )2 011=______. 解析:|a -b +1|与a +2b +4互为相反数, ∴|a -b +1|+a +2b +4=0. 而|a -b +1|≥0,a +2b +4≥0, ∴⎩⎪⎨⎪⎧ a -b +1=0,a +2b +4=0.∴⎩⎪⎨⎪⎧a =-2,b =-1. ∴(a +b )2 011=(-2-1)2 011=(-3)2 011=-32 011.答案:-32 011【例6-2】若a 2+b -2=4a -4,求ab 的值.分析:通过变形将等式转化为两个非负数的和等于零的形式,即(a -2)2+b -2=0,由二次根式的性质可知b -2≥0,由完全平方数的意义可知(a -2)2≥0,而它们的和为零,则a -2=0,b -2=0,从而可求出a ,b 的值.解:由a 2+b -2=4a -4,得a 2-4a +4+b -2=0,即(a -2)2+b -2=0.∵(a -2)2≥0,b -2≥0且(a -2)2+b -2=0, ∴a -2=0,b -2=0,解得a =2,b =2. ∴ab =2,即ab 的值为2.7.二次根式(a )2=a (a ≥0)与a 2=|a |的区别、运用(a )2=a (a ≥0)与a 2=|a |是二次根式的两个极为重要的性质,是正确地进行二次根式化简、运算的重要依据.(1)正确理解(a )2与a 2的意义学习了二次根式的定义以后,我们知道a ≥0(a ≥0),即a 是一个非负数,a 是非负数a 的算术平方根,那么(a )2就是非负数a 的算术平方根的平方,但只有当a ≥0时,a 才能有意义.对于a 2,则表示a 2的算术平方根,由于a 2中的被开方数是一个完全平方式,所以a 无论取什么值,a 2总是非负数,即a 2总是有意义的.(2)(a )2与a 2的区别和联系区别:①表示的意义不同.(a )2表示非负实数a 的算术平方根的平方;a 2表示实数a 的平方的算术平方根.②运算的顺序不同.(a )2是先求非负实数a 的算术平方根,然后再进行平方运算;而a 2则是先某某数a 的平方,再求a 2的算术平方根.③取值X 围不同.在(a )2中,a 只能取非负实数,即a ≥0;而在a 2中,a 可以取一切实数.④写法不同.在(a )2中,幂指数2在根号的外面;而在a 2中,幂指数2在根号的里面.⑤结果不同.(a )2=a (a ≥0),而a 2=⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).联系:①在运算时,都有平方和开平方的运算. ②两式运算的结果都是非负数,即(a )2≥0,a 2≥0.③仅当a ≥0时,有(a )2=a 2.如果先做二次根式运算,后做平方运算,只有一种可能;如果先做平方运算,再做二次根式运算,答案需分情况讨论.___________________________________________________________________________ ___________________________________________________________________________________________________________________________________________________ _____________________________________________________________________【例7-1】已知x <2,则化简x 2-4x +4的结果是( ). A .x -2B .x +2C .-x -2D .2-x解析:x 2-4x +4=(x -2)2=(2-x )2,因为x <2,2-x >0,所以x 2-4x +4=2-x .答案:D【例7-2】化简1-6x +9x 2-(2x -1)2得( ). A .-5x B .2-5x C .x D .-x【例7-3】若m 满足关系式3x +5y -2-m +2x +3y -m =x -199+y ·199-x -y ,试确定m 的值.分析:挖掘题目中隐含的算术平方根的两个非负性,并在解题过程中有机地配合应用,是解决本题的关键.解:由算术平方根的被开方数的非负性,得 ⎩⎪⎨⎪⎧ x -199+y ≥0,199-x -y ≥0,即⎩⎪⎨⎪⎧x +y ≥199,x +y ≤199.∴x +y =199. ∴x -199+y ·199-x -y =0. ∴3x +5y -2-m +2x +3y -m =0.再由算术平方根的非负性及两个非负数的和为零,得⎩⎪⎨⎪⎧ 3x +5y -2-m =0,2x +3y -m =0.①②由①-②,得x +2y =2.解方程组⎩⎪⎨⎪⎧ x +y =199,x +2y =2,得⎩⎪⎨⎪⎧x =396,y =-197. ∴m =2x +3y =2×396+3×(-197)=201.点拨:(1)运用二次根式的定义得出:x ≥a 且x ≤a ,故有x =a ,这是由不等关系推出相等关系的一种十分有效的方法,在前面的解题中已用到.(2)由⎩⎪⎨⎪⎧a ≥0,b ≥0,a +b =0推出a =b =0,这也是求一个方程中含有多个未知数的有效方法之。
图①图②
倍,面积为6m2,则它的宽为_____m.(2)二次根式的双重非负性:二次根式的被开方数为________数,二次根式的值为_________数.
【变式题】当x是怎样的实数时,下列各式在实数范围内有意义?
方法总结
:被开方数是多项式时,需要对组成多项式的项进行恰当分组凑成含完全平方的形式,再进行分析讨论.
1.下列各式)1
x≥( )
A.3个
B.4个
C.5个
D.6个
2.(1)x的取值范围是___________;
(2)若式子
1
2
x
+
-
在实数范围内有意义,则x的取值范围是___________.
探究点2:二次根式的双重非负性
问题1:当x
问题2a的取值范围是什么?它本身的取值范围又是什么?
要点归纳:二次根式的实质是表示一个非负数(或式)的算术平方根.对于任意一个二次根1)a为被开方数,为保证其有意义,可知a____0;
(2
例3 若2
2(4)0
a c
--=,求a-b+c的值.
方法总结:多个非负数的和为零,则可得每个非负数均为零.初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.
例4 已知y8
+,求3x+2y的算术平方根.
【变式题】已知a,b为等腰三角形的两条边长,且a,b
满足4 b=,
求此三角形的周长.
已知|3x-y-1|和x+4y的平方根.
1.下列式子中,不属于二次根式的是()
D
A.B.
2.()
A.x>2
B.x≥2
C.x<2
D.x≤2
3.当x=____取最小值,其最小值为______.。