信号与噪声_第二章精讲
- 格式:ppt
- 大小:3.88 MB
- 文档页数:75
第2章信号与噪声分析知识点及层次1. 确知信号时-频域分析(1) 现代通信系统周期信号的傅氏级数表示和非周期信号的傅氏积分。
(2) 几个简单且常用的傅氏变换对及其互易性。
(3) 信号与系统特征-卷积相关-维钠-辛钦定理。
2. 随机过程统计特征(1) 二维随机变量统计特征。
(2) 广义平稳特征、自相关函数与功率谱特点。
(3) 高斯过程的统计特征。
3. 高斯型白噪声统计特征(1) 理想白噪声及限带高斯白噪声特征。
(2) 窄带高斯白噪声主要统计特征。
以上三个层次是一个层层深入的数学系统,最终旨在解决信号、系统及噪声性能分析,是全书各章的基本理论基础,也是系统分析的最主要的数学方法。
2.1信号与系统表示法2.1.1通信系统常用信号类型通信系统所指的信号在不加声明时,一般指随时间变化的信号。
通常主要涉及以下几种不同类型的信号:1.周期与非周期信号周期信号满足下列条件:全部时域(2-1) ——的周期,是满足(2-1)式条件的最小时段。
因此,该也可表示为:(2-2) ——是在一个周期内的波形(形状)。
若对于某一信号,不存在能满足式(2-1)的任何大小的值,则不为周期信号(如随机信号)。
从确知信号的角度出发,非周期信号一般多为有限持续时间的特定时间波形。
2.确知和随机信号确知信号的特征是:无论是过去、现在和未来的任何时间,其取值总是唯一确定的。
如一个正弦波形,当幅度、角频和初相均为确定值时,它就属于确知信号,因此它是一个完全确定的时间函数。
随机信号是指其全部或一个参量具有随机性的时间信号,亦即信号的某一个或更多参量具有不确定取值,因此在它未发生之前或未对它具体测量之前,这种取值是不可预测的。
如上述正弦波中某一参量(比如相位)在其可能取值范围内没有固定值的情况,可将其表示为:(2-3) 其中和为确定值,可能是在(0,2π)内的随机取值。
3.能量与功率信号在我们常用的电子通信系统中,信号以电压或电流(变化)值表示,它在电阻上的瞬时功率为:或(2-4) 功率正比于信号幅度的平方。
信号与噪声作者:(美)西尔弗经济预测中不可避免地会存在偏见如果你想进行经济预测,最好的选择就是查看平均预测或群体预测,而不是求助于某个经济学家。
我对“调查”的研究显示,群体预测总是比个体预测更准确,在预测GDP增长、失业率和通货膨胀这三个方面,群体预测比个体预测的准确率分别高出20%、10%和30%。
通过研究许多领域的预测结果,人们发现几乎所有的群体预测都优于个体预测。
然而,虽说群体预测优于个体预测这一观念已成为重要的经验性规律,可是当预测与事实有很大的出入时,这一观念有时就会成为蹩脚的借口。
群体预测是由个体预测组成的,如果个体预测的质量提高了,群体预测的质量也会提高。
另外,在现实生活中,经济群体预测的质量也很差劲儿,所以还有很大的提升空间。
大多数经济学家作预测时,会在一定程度上依赖自己的判断,而不是依据统计模型输出的信息进行预测。
考虑到数据是那么杂乱,这种做法或许是有益的。
波士顿联储前副总裁斯蒂芬?K?麦克内斯曾经进行过一项研究,他发现根据统计学预测方法对人为的判断进行调整会使预测的准确率提高约15%。
20世纪七八十年代计算机开始广泛使用时,人们普遍认为统计模型能够“解决”经济预测问题。
但是,改进的技术无法掩盖对经济领域理论认识的缺乏,只会让经济学家更加快速、更加煞费苦心地将噪声误认为是信号。
看似前景不错的预测模型在某些方面一败涂地,最后惨遭淘汰。
在其他领域,比如那一时期的地震预测,也会遭遇这样的状况。
援引某个人为判断也会带来潜在的偏见。
人们在进行预测时,会倾向于使预测满足自己的经济动机或政治信仰。
人们或许太过自负,即使事实和环境要求他做出改变,他也不愿对自己的预测进行修正。
哈祖斯告诉我:“我认为人们绝对有这样的倾向,急切地希望事情能按照自己希望的方式发展下去。
”是否有经济学家更擅长把握这种权衡的度?预测出上一次经济衰退的经济学家是不是也可以预测出下一次经济衰退?这个问题有一个非常有趣的答案。
信号与噪声分析确知信号分析1、周期信号的傅里叶级数任何一个周期为T 的周期信号)(t f ,只要满足狄里赫利条件,则可展开为傅里叶级数0()jn tnn f t F eω∞=-∞=∑ (2-1)式中,⎰--=2/2/0)(1T T t jn n dt e t f T F ω (0,1, 2.3,,n =±±±);000a c F ==; 2nj n n c F e ϕ-=(称为复振幅);*2nj n n n c F e F ϕ-==(是n F 的共轭)。
一般地,n F 是一个复数,由n F 确定周期信号)(t f 的第n 次谐波分量的幅度,它与频率之间的关系图形称为信号的幅度频谱。
由于它不连续,仅存在于0ω的整数倍处,故这种频谱是离散谱。
许多情况下,利用信号的频谱进行分析比较直观方便。
2、非周期信号的傅里叶变换ωωπωd e F t f t j ⎰∞∞-=)(21)( (2-2)⎰∞∞--=dt et f F tj ωω)()( (2-3)式(2-2)和式(2-3)分别称为傅里叶正变换和傅里叶反变换,两式称为)(t f 傅里叶变换对,表示为)()(ωF t f ⇔ 信号的傅里叶变换具有一些重要的特性,灵活运用这些特性可较快地求出许多复杂信号的频谱密度函数,或从谱密度函数中求出原信号,因此掌握这些特性是非常有益的。
其中较为重要且经常用到的一些性质和傅里叶变换对见附录二。
3、卷积与相关函数 (1)、卷积设有函数)(1t f 和)(2t f ,称积分⎰∞∞--τττd t f f )()(21为)(1t f 和)(2t f 的卷积,常用)()(21t f t f *表示,即121221()()()()()()f t f t f f t d f f t d ττττττ∞-∞∞-∞*=-=-⎰⎰(2-4)时域卷积定理:令)()(11ωF t f ⇔,)()(22ωF t f ⇔,则有)()()()(2121ωωF F t f t f ⇔* (2-5) 频域卷积定理:令)()(11ωF t f ⇔,)()(22ωF t f ⇔,则有[])()(21)()(2121ωωπF F t f t f *⇔(2-6) (2)、相关函数信号之间的相关程度,通常采用相关函数来表征,它是衡量信号之间关联或相似程度的一个函数。
第 2 章信号与噪声分析 2.1 通信常用信号和系统响应 2.2 信号频谱分析概述 2.3 随机变量的统计特性 2.4 随机过程返回主目录通信过程是有用信号通过通信系统的过程,且在通信系统各点常常伴随有噪声的加入及此加入噪声在系统中的传输。
由此看来,分析与研究通信系统,总离不开对信号和噪声的分析。
实际的信号通常是随机的,加之通信系统中毡榇嬖诘脑肷 际撬婊 模 远运婊 藕诺姆治鍪欠浅V匾 摹?从统计数学的观点看,随机信号和噪声统称为随机过程。
因此,统计数学中有关随机过程的理论可以运用到随机信号和噪声的分析中来。
本章将在先修课程的基础上,首先介绍通信系统常用信号并对确知信号的分析作必要的复习巩固,然后在复习概率论基本概念的基础上,讨论随机信号和噪声的数学模型——随机过程。
2.1 通信常用信号和系统响应 2.1.1常用信号由语音、图像、数码等形成的电信号,其形式可以是多种多样的,从不同的角度进行分类可以得出各种不同的名称。
但是从信号数学分析的角度来说,通常采用下面的几种分类。
⑴数字信号与模拟信号⑵确知信号与随机信号⑶周期信号与非周期信号⑷能量信号与功率信号在通信过程中,信号的变换和传输是由系统完成的。
系统是指包括有若干元件或若干部件的设备。
系统有大有小,大到由很多部件组成的完整系统,小到由具体几个电路组成的部件。
信号在系统中的变换和传输可用图2.1表示,图中假设输入信号为x(t),通过系统后得到的输出响应为y(t)。
从数学的观点来看,和之间存在着如下的函数关系:y(t)=f[x(t)] 图2.1 系统示意图 2.1.2系统响应⑴线性系统与非线性系统一个系统如果是线性的,那么叠加原理一定适用。
对于线性系统而言,一个激励的存在并不影响另一个激励的响应。
⑵时不变与时变系统时不变系统也称恒参系统,时变系统也称变参(随参)系统。
2.2信号频谱分析概述我们知道,信号可以分为确知信号和随机信号。
对于确知信号,频谱分析是研究它的有效工具;对于随机信号,则要用统计的方法来分析。