第七章 统计热力学自测题及答案
- 格式:doc
- 大小:44.50 KB
- 文档页数:3
热学第七章课后习题答案热学是物理学中的重要分支,研究的是热现象和热能转化。
在热学的学习过程中,课后习题是巩固知识和检验理解的重要途径。
本文将为大家提供热学第七章课后习题的答案,并结合相关理论进行解析,帮助读者更好地理解和掌握热学知识。
1. 问题:一个物体的质量是10kg,温度为20℃,求它的内能。
答案:内能可以通过公式Q = mcΔT来计算,其中Q表示内能,m表示物体的质量,c表示物体的比热容,ΔT表示温度的变化。
根据题目中的条件,我们可以得知温度变化ΔT = 20℃-0℃=20℃,物体的比热容c可以通过查表得到,假设为c = 4.18J/(g·℃)。
将这些数据代入公式中,可以得到内能Q = 10kg × 4.18J/(g·℃) × 20℃ = 836J。
2. 问题:一个物体的内能为500J,质量为2kg,求它的温度变化。
答案:根据上一题的公式Q = mcΔT,可以得到温度变化ΔT = Q/(mc)。
将题目中的数据代入公式中,可以得到ΔT = 500J/(2kg × 4.18J/(g·℃)) = 59.81℃。
因此,物体的温度变化为59.81℃。
3. 问题:一个物体的质量为5kg,温度由20℃升高到50℃,求它的内能变化。
答案:内能变化可以通过公式ΔQ = mcΔT来计算,其中ΔQ表示内能变化。
根据题目中的条件,我们可以得到温度变化ΔT = 50℃-20℃=30℃,物体的比热容c可以通过查表得到,假设为c =4.18J/(g·℃)。
将这些数据代入公式中,可以得到内能变化ΔQ= 5kg × 4.18J/(g·℃) × 30℃ = 627J。
因此,物体的内能变化为627J。
4. 问题:一个物体的质量为2kg,内能为300J,求它的温度。
答案:根据上一题的公式ΔQ = mcΔT,可以得到温度变化ΔT = ΔQ/(mc)。
第七章统计热力学基础一、选择题1、统计热力学主要研究()。
(A) 平衡体系(B)单个粒子的行为案(C) 非平衡体系(D) 耗散结构2、能量零点的不同选择,在下面诸结论中哪一种说法是错误的:( )(A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值(C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值3、最低能量零点选择不同,对哪些热力学函数值无影响:( )(A) U (B) S (C) G (D) H4、统计热力学研究的主要对象是:()(A) 微观粒子的各种变化规律(B) 宏观体系的各种性质(C) 微观粒子的运动规律(D) 宏观系统的平衡性质5、对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:()(A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理6、以0到9这十个数字组成不重复的三位数共有()(A) 648个(B) 720个(C) 504个(D) 495个7、各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:()(A) t > r > v > e(B) t < r < v < e(C) e > v > t > r(D) v > e > t > r8、在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:()(A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系(C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系9、对于定域子体系分布X所拥有的微观状态t x为:()(A) (B)(C) (D)10、当体系的U,N,V确定后,则:()(A) 每个粒子的能级 1, 2, ....., i一定,但简并度g1, g2, ....., g i及总微观状态数 不确定。
第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212z y x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++=π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 lll a U ε∑=是系统的内能。
上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
注:(4)式只适用于粒子仅有平移运动的情形。
如果粒子还有其他的自由度,式(4)中的U 仅指平动内能。
7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222zy x n n n Lc cp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n nn n n n Lczy x++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
统计热力学自测试题单选题第1题:(2分)对于玻尔兹曼分布定律的说法:① n是第i能级i上的粒子分布数。
② 随着能级升高,增大,n总是减少的。
③ 它只适用于可区分i的独立粒子体系。
④ 它适用于任何的大量粒子体系;其中正确的是:可供选择答案:1.①③2.③④3.①②4.②④第2题:(2分)经典粒子的零点能标度选择不同时, 必定影响:可供选择答案:1.配分函数的值2.粒子的分布规律3.系统的微观状态数4.各个能级上粒子的分布数5.各个量子态上粒子的分布数第3题:(2分)四个不可别粒子, 可分布在同一能级的两个不同量子态上, 其分布方式数为:可供选择答案:1.42.53.64.7同一分子中, 下列能量关系中正确的是可供选择答案:1.2.3.4.第5题:(2分)核运动配分函数对其无贡献的热力学函数是:可供选择答案:1.U,H2.G, A3.G,S4.S,H第6题:(2分)在相同的温度和压力下,摩尔平动熵最大的气体是:可供选择答案:1.NO2.C3H63.CO24.N25.CH3—CH3统计热力学研究的主要对象是:可供选择答案:1.微观粒子的各种变化规律2.宏观系统的各种性质3.宏观系统的平衡性质4.微观粒子的运动规律5.系统的宏观性质与微观结构的关系第8题:(2分)对于一个子数、体积和能量确定的系统,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:可供选择答案:1.玻耳兹曼分布2.分子运动论3.能量均分原理4.等几率假定5.统计学原理第9题:(2分)下列哪个体系不具有玻尔兹曼-麦克斯韦统计特点:可供选择答案:1.第一个可能的微观状态以相同的几率出现2.各能级的各量子态上分配的粒子数,受保里不相容原理的限制。
3.体系由独立可别的粒子组成,。
4.宏观状态参量N、U、V为定值的封闭体系。
对于近独立非定域粒子体系,在经典极限下能级分布D所拥有的微观状态数t为:可供选择答案:1.2.3.4.第11题:(2分)某双原子分子AB取振动基态能量为零,在T时的振动配分函数为1.02,则粒子分布在ν=0的基态上的分布数应为:可供选择答案:1.1.022.03.14.1/1.02第12题:(2分)能级的能量在最低能级时指定为零,此时配分函数以表示,如指定最低能级能量值为,此时配分函数以()表示,下列何者正确:可供选择答案:1.2.3.4.则5.选取或只影响熵及热容,不影响其它热力学函数。
热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。
1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质时间改变,其所处的为热力学平衡态。
2.系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。
3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有是独立的。
4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是。
5.欲描述非平衡系统的状态,需要将系统分成假设干个小局部,使每小局部具有小,但微观上又包含大量粒子,那么每小局部都可视为。
6.描述热力学系统平衡态的独立参量和之间关系的方程式叫物态方程,其一般表达式为。
7.均匀物质系统的独立参量有个,而过程方程独立参量只有个。
8.定压膨胀系数的意义是在不变的条件下系统体积随的相对变化。
9.定容压力系数的意义是在不变条件下系统的压强随的相对变化。
10.等温压缩系数的意义是在不变条件下系统的体积随的相对变化。
11.循环关系的表达式为。
12.在无摩擦准静态过程中存在着几种不同形式的功,那么系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。
13.W Q U U A B +=-,其中W 是 作的功。
14.⎰=+=0W Q dU ,-W 是作的功,且-W 等于 。
15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q 〔1、2均为热力学平衡态,L 1、L 2为准静态过程〕。
16.第一类永动机是指 的永动机。
17.能是 函数,能的改变决定于和。
18.焓是函数,在等压过程中,焓的变化等于 的热量。
19.理想气体能 温度有关,而与体积 。
20.理想气体的焓温度的函数与 无关。
21.热力学第二定律指明了一切与热现象有关的实际过程进展的。
22.为了判断不可逆过程自发进展的方向只须研究和的相互关系就够了。
23.一般工作于两个一定温度热源之间的热机效率不大于。
第七章 统计热力学基础自测题I.选择题1、下列各系统中属于独立子系统的是(d )。
(a )绝对零度的晶体 (b )理想液体混合物 (c )纯气体 (d )理想气体混合物2、有6个独立的定位粒子,分布在3个能级能量为 ε0,ε1,ε2上,能级非简并,各能级上的分布数一次为N 0=3,N 1=2,N 2=1。
则此种分布的微观状态数在下列表达式中错误的是(a )。
(a )321631P P P (b)321631C C C(c )6(321)!!!!(d )6313(63)2(32)1(11)!!!!-!!-!!-!3、在分子配分函数的表达式中与压力有关的是(b )。
(a )电子运动的配分函数 (b )平动配分函数 (c )转动配分函数 (d )振动配分函数4、某双原子分子AB 取振动基态能量为零,在温度T 时的振动配分函数为2.0,则粒子分布在基态上的分布分数N 0/N 应为(d )。
(a )2.0 (b )0 (c )1 (d )1/25、NH 3分子的平动、转动、振动自由度分别为(d )。
(a )3, 2, 7 (b )3, 2, 6 (c )3, 3, 7 (d )3, 3, 66、双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为(b )。
(a )0 (b )1 (c )<0 (d )>07、忽略CO 和N 2振动运动对熵的贡献差别。
N 2和CO 的摩尔熵的大小关系为(a )。
(a )m m 2(CO)(N )S S > (b )m m 2(CO)(N )S S < (c )m m 2(CO)(N )S S = (d )不确定 8、一个体积为V ,粒子质量为m 的离域子系统,其最低平动能级和其相邻能级间隔为(b )。
(a )2238h mV(b )22338h mV(c )22348h mV(d )22398h mVⅡ.填空题1、 已知CO 的转动惯量I =1.45⨯10-26,k =1.38⨯10-23J ⋅K -1, ,h =6.626⨯10-34J ⋅s,,则CO 的转动特征温度r Θ为_2.78K _。
统计热力学基础一、选择题1. 下面有关统计热力学的描述,正确的是:( )A. 统计热力学研究的是大量分子的微观平衡体系B. 统计热力学研究的是大量分子的宏观平衡体系C. 统计热力学是热力学的理论基础D. 统计热力学和热力学是相互独立互不相关的两门学科 B2.在研究N、V、U有确定值的粒子体系的统计分布时,令∑ni = N,∑niεi= U,这是因为所研究的体系是:( )A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的C. 体系是孤立的,粒子是独立的D. 体系是封闭的,粒子是相依的 C3.假定某种分子的许可能级是 0、ε、2ε和 3ε,简并度分别为 1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( )A. 40B. 24C. 20D. 28 A4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数 N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式C. 忽略了粒子之间的相互作用D. 应用拉氏待定乘因子法 A5.对于玻尔兹曼分布定律ni =(N/q)·gi·exp( -εi/kT)的说法:(1) n i是第i 能级上的粒子分布数; (2) 随着能级升高,εi 增大,ni总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C6.对于分布在某一能级εi 上的粒子数ni,下列说法中正确是:( )A. ni 与能级的简并度无关 B. εi值越小,ni值就越大C. ni 称为一种分布 D.任何分布的ni都可以用波尔兹曼分布公式求出 B7. 15.在已知温度T时,某种粒子的能级εj = 2εi,简并度gi= 2gj,则εj和εi上分布的粒子数之比为:( )A. 0.5exp(εj /2kT) B. 2exp(- εj/2kT)C. 0.5exp( -εj /kT) D. 2exp( 2εj/kT) C8. I2的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( )A. 306 KB. 443 KC. 760 KD. 556 K B9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( )A. S、G、F、Cv B. U、H、P、CvC. G、F、H、UD. S、U、H、G B10. 分子运动的振动特征温度Θv是物质的重要性质之一,下列正确的说法是:( )A.Θv越高,表示温度越高B.Θv越高,表示分子振动能越小C. Θv越高,表示分子处于激发态的百分数越小D. Θv越高,表示分子处于基态的百分数越小 C11.下列几种运动中哪些运动对热力学函数G与A贡献是不同的: ( )A. 转动运动B. 电子运动C. 振动运动D. 平动运动 D12.三维平动子的平动能为εt= 7h2 /(4mV2/3 ),能级的简并度为:( )A. 1B. 3C. 6D. 2 C13.O2 的转动惯量J = 19.3×10 -47 kg·m2,则O2的转动特征温度是:( )A. 10 KB. 5 KC. 2.07 KD. 8 K C14. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数:( )A. 不变B. 增多C. 减少D. 不能确定 C15.在相同条件下,对于 He 与 Ne 单原子分子,近似认为它们的电子配分函数相同且等于1,则He 与Ne 单原子分子的摩尔熵是:( )A. Sm (He) > Sm(Ne) B. Sm(He) = Sm(Ne)C. Sm (He) < S m(Ne)D. 以上答案均不成立 C二、填空题1.某双原子分子 AB 取振动基态能量为零,在 T 时的振动配分函数为 1.02,则粒子分布在 v = 0 的基态上的分布数 N/N 应为 1/1.022.已知CO的转动惯量 I=1.45×10-26 kg·m2,则CO 的转动特征温度为: 2.78K3. 双原子分子以平衡位置为能量零点,其振动的零点能等于0.5hv4. 双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为 15. 2molCO2的转动能 Ur为 2RT6. NH3分子的平动自由度为转动自由度为振动自由度为 3 ,3 ,6 7. 300K 时,分布在 J=1 转动能级上的分子数是 J=0 能级上的 3exp(-0.1)倍,则分子转动特征温度是15K8. H2O 分子气体在室温下振动运动时 Cv,m的贡献可以忽略不计。
第七章自测题
一、选择题
1.下列各系统中属于独立子系统的是( )。
(A) 绝对零度的晶体
(B) 理想液体混合物 (C) 纯气体 (D) 理想气体混合物
2.有6个独立的定位粒子,分布在3个能级能量为ε0,ε1,ε2上,能
级非简并,各能级上的分布数依次为N 0=3,N 1=2,N 2=1。
则此种分
布的微观状态数在下列表达式中错误的是( )。
(A) 112336P P P
(B) 112336C C C (C) )!1!2!3(!6 (D) )!
11(!1!1)!23(!2!3)!36(!3!6--- 3.在分子配分函数的表达式中与压力有关的是( )。
(A) 电子运动的配分函数 (B) 平动配分函数
(C) 转动平动配分函数 (D) 振动平动配分函数
4.某双原子分子AB 取振动基态能量为零,在温度T 时的振动配分函
数为2.0,则粒子分布在基态上的分布分数N 0/ N 应为( )。
(A) 2.0 (B) 0
(C) 1 (D) 1/2
5.双原子分子在温度很低时且选取振动基态能量为零,则振动配分
函数值为( )。
(A) 0 (B) 1
(C) < 0 (D) > 0
6.忽略CO 和N 2的振动运动对熵的贡献差别。
CO 和N 2的摩尔熵的
大小关系为( )。
(A) S m (CO) > S m (N 2) (B) S m (CO) < S m (N 2)
(C) S m (CO) = S m (N 2) (D) 不确定
7.一个体积为,粒子质量为的离域子系统,其最低平动能级和其相邻能级间隔为( )。
(A) 3/228m V h (B) 3/2283m V
h (C) 3/2284m V h (D) 3/2289m V
h
二、填空题
1.已知CO 的转动惯量I =1.45×10-46 kg ∙m 2,k =1.38×10-23 J ∙K -1,h = 6.626×10-34 J ∙s ,则CO 的转动特征温度Θr 为 。
2.已知N 2的振动频率v =6.98⨯1013 s -1,N 2理想气体分子在25℃时处于v =1和v =0能级上粒子数之比N v=1/ N v=0= 。
3.1mol 理想气体,在298K 时,已知其分子的配分函数为1.6,假定ε0 = 0,g 0 =1,则处于基态的分子数为 。
4.已知I 2(g)的基态振动波数σ = 21420m -1,k =1.38×10-23 J ∙K -1,h =
6.626×10-34 J ∙s ,c =3×108 m ∙s -1,则I 2的振动特征温度Θv 为 。
5.300K 时,当分布在J =1转动能级上的分子数是J =0能级上的3e -0.1倍时,其分子的转动特征温度为 。
6.CO 晶体的标准摩尔残余熵θm S (残余)= 。
参考答案:
一、dabdbab
二、
1.2.78K
2.1.31×10-5
3.3.76×1023 4.308.5K
5.15K
6.5.76J·K-1·mol-1;。