《正弦定理》教案
- 格式:doc
- 大小:154.54 KB
- 文档页数:5
正弦定理教案一、教学目标1.理解正弦定理的概念,掌握计算正弦定理的方法。
2.能够判断已知条件能否求解三角形的某个角或某个边。
3.能够运用正弦定理解决相关的实际问题。
二、教学重点1.正弦定理的公式和应用。
2.正弦定理与其他三角函数定理的关系。
三、教学难点1.运用正弦定理求解实际问题。
2.能够判断已知条件能否求解三角形的某个角或某个边。
四、教学内容1. 正弦定理的概念正弦定理是解决三角形中一个角和它所对的边以及另外两边之间的关系的定理。
在任意三角形ABC中,有如下公式成立:$a/\\sin A = b/\\sin B = c/\\sin C$其中,a,b,c分别为三角形的三条边,A,B,C分别为对应的三个内角。
2. 正弦定理的公式在上述公式中,如果已知三角形的两边和其中一个对角,则可以根据正弦定理求出第三边的长度。
也可以根据已知的三角形的三条边,利用正弦定理求出三个内角的大小。
3. 正弦定理的应用3.1. 求解三角形的边长已知三角形的两边和其中一个角,可以利用正弦定理求出第三边的长度。
具体地,设三角形ABC中,已知AB = 8cm,AC = 9cm,∠BAC = 30°,求BC的长度。
解:根据正弦定理的公式,有$BC/\\sin 30°=9/\\sin 150°$化简得,BC=18因此,BC的长度为18cm。
3.2. 求解三角形的角度已知三角形的三条边,可以根据正弦定理求出三个内角的大小。
具体地,设三角形ABC中,已知AB = 8cm,BC = 10cm,AC = 12cm,求∠A,∠B和∠C的大小。
解:根据正弦定理的公式,有$a/\\sin A = b/\\sin B = c/\\sin C$代入已知条件,得到:$8/\\sin A = 10/\\sin B = 12/\\sin C$化简得到:$\\sin A = 8/10=0.8, \\sin B=10/12=0.83, \\sin C=8/12=0.67$利用反正弦函数,可以求得:$\\angle A=\\arcsin{0.8}\\approx53.1°$$\\angle B=\\arcsin{0.83}\\approx60.4°$$\\angle C=\\arcsin{0.67}\\approx66.5°$因此,$\\angle A\\approx53.1°$,$\\angle B\\approx60.4°$和$\\angleC\\approx66.5°$。
《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。
3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。
从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。
培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教法与学法分析本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。
在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。
教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。
正弦定理教案职中
一、教学目标
1. 理解正弦定理的概念和公式
2. 能够运用正弦定理解决实际问题
3. 培养学生的逻辑思维和数学推理能力
二、教学重点和难点
1. 重点:正弦定理的概念和公式
2. 难点:运用正弦定理解决实际问题的能力
三、教学内容
1. 正弦定理的概念和公式
2. 正弦定理的证明
3. 正弦定理在三角形中的应用
四、教学过程
1. 导入:通过一个实际问题引入正弦定理的概念,激发学生的学习兴趣
2. 讲解:介绍正弦定理的定义和公式,并进行相关的证明,让学生理解其原理和推导过程
3. 练习:设计一些相关的练习题,让学生通过计算和推理来巩固所学内容
4. 拓展:引导学生思考正弦定理在实际问题中的应用,培养他们的数学建模能力
5. 总结:对本节课所学内容进行总结,并强调正弦定理的重要性和实际应用价值
五、教学手段
1. 多媒体课件:用于展示相关的图形和计算过程
2. 板书:整理和归纳相关的公式和推理过程
3. 实物模型:通过三角形模型让学生直观地理解正弦定理的原理
4. 计算工具:让学生通过计算工具进行实际计算和验证
六、教学评价
1. 课堂练习:通过课堂练习来检验学生对正弦定理的掌握程度
2. 作业布置:设计相关的作业题目,让学生在课后进行巩固和拓展
3. 学习反馈:及时对学生的学习情况进行反馈和指导,帮助他们更好地掌握正弦定理的应用
七、教学反思
1. 对本节课的教学效果进行总结和评估
2. 总结学生的学习情况和问题反馈,为下一节课的教学提供参考
3. 不断完善教学内容和方法,提高教学效果。
《正弦定理》教案一、教学目标:1.知识与技能:通过创设问题情境,引导学生发现正弦定理,并推证正弦 定理。
会初步运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
2.过程与方法:引导学生从已有的知识出发,共同探究在任意三角形中,边 与其对角正弦的比值之间的关系,培养学生通过观察,猜想,由特殊到一般归纳得出结论的能力和化未知为已知的解决问题的能力。
3.情感、态度与价值观:面向全体学生,创造平等的教学氛围,通过学生 之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
二、教学重点与难点:1.重点:正弦定理的探索发现及其初步应用。
2.难点:①正弦定理的证明;②了解已知两边和其中一边的对角解三角形时,解的情况不唯一。
三、教学过程: ㈠ 创设情境:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?1671年两个法国天文学家首次测出了地月之间的距离大约为385400km ,你们想知道他们当时是怎样测出这个距离的吗?学习了本章《解三角形》的内容之后,这个问题就会迎刃而解。
㈡ 新课学习:⒈提出问题:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角关系的准确量化的表示呢? ⒉解决问题:回忆直角三角形中的边角关系: 根据正弦函数的定义有:CBAcbasin ,sin a bA B c c ==,sinC=1。
经过学生思考、交流、讨论得出:sin sin sin a b c A B C==,问题1:这个结论在任意三角形中还成立吗?(引导学生首先分为两种情况,锐角三角形和钝角三角形,然后按照化未知为已知的思路,构造直角三角形完成证明。
)①当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得 sin sin abAB =,同理可得 sin sin cbC B =,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.②当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
正 弦 定 理 (教案)【教学目标】1.理解正弦定理的多种推导方法和推导过程,会初步应用正弦定理解斜三角形.2.通过应用练习,实现学生提高分析问题、解决问题的能力的目的. 【重点】理解正弦定理的及应用. 【难点】正弦定理的熟练变形运用. 一.【先学学案】1. 在任意三角形中有大边对大角,小边对小角的边角关系.我们如何得到边与角的准确量化表示呢?(1) 在RT ABC ∆中,C ∠是最大的角,所对的斜边c 是最大的边,依据正弦函数定义得:.sin sin sin a b cc A B C=== (2)在锐角ABC ∆中,设边AB 上的高是CD ,根据三角函数定义得:.sin sin sin a b cA B C== (3)在钝角ABC ∆中,C ∠是最大的角,所对的斜边c 是最大的边,过点A作AE 垂直于BC 交BC 于E 点,sin sin()AE AB B AC C π==-,即sin sin c bC B=;同理可得:sin sin a bC B=,故.sin sin sin a b c A B C ==2. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等, 即A asin =Bb sin =Cc sin了解以下几种方法帮助大家开拓一下眼界! 法一:(等积法)在任意斜△ABC 当中, S △ABC =A bc B ac C ab sin 21sin 21sin 21==.两边同除以abc 21即得:A asin =Bb sin =Cc sin .法二:(外接圆法)如图所示,∠A=∠D,∴==R CD 2DaA a sin sin =. 同理Bbsin =2R ,Cc sin =2R .可将正弦定理推广为:A asin =Bb sin =Ccsin =2R (R 为△ABC 外接圆半径). 法三:(向量法)过A 作单位向量j 垂直于AC , 由AB =AC +CB.两边同乘以单位向量j 得 j •(AC +CB )=j •AB . 则j •AC +j •CB =j •AB .a bcOB CAD∴|j |•|AC |cos90︒+|j |•|CB |cos(90︒-C)=| j |•|AB |cos(90︒-A) . ∴A c C a sin sin = . ∴A asin =Cc sin .同理,若过C 作j垂直于CB得:Cc sin =Bb sin ∴A asin =Bb sin =Cc sin .3. 定理及其变形 :(1)sinA:sinB:sinC=__::a b c ____; (2)A asin =Bb sin =Cc sin =CB A cb a sin sin sin ++++= 2R ;a=__2sin R A ____,;b=_2sin R B _____ ;c=_2sin R C ______; sinA=__2a R_____;sinB=___2b R_____;sinC=____2c R____.4.反思和回馈:观察公式结构特点,思考正弦定理可以解决的问题类型:(1)_已知两角和任意一边,求其他两边和一角; (2)已知两边和其中一边的对角,求其他的边和两角. 5.时解和中,已知在A b a ABC ,∆三角形的情况: 有三种,我们分情况给予讨论 (1) 当A 为锐角 (2) 当A 为直角或钝角也可利用正弦定理sin B=aA b sin 进行讨论:如果sin B>l ,则问题无解; 如果sin B=l ,则问题有一解;如果求出sin B<l ,则可得B 的两个值,但要通过“三角形内角和定理’’或“大边对大角” 等三角形有关性质进行判断. 【基础练习】 1.在△ABC 中,k CcB b A a ===sin sin sin ,则k 为( A ).()A 2R ()B R ()C 4R ()DR 21 (R为△ABC 外接圆半径)2.在ABC ∆中,已知008,60,75a B C ===,则b 等于( C ).()A42 ()B 43 ()C 46 ()D 32.33.(2008年北京) 已知ABC ∆中, 02,3,60a b B ===,则A 等于( C ).()A 0135 ()B 090 ()C045()D 030.4. 在△ABC 中,sinA >sinB 则角 A ,B 的大小关系为: A>B .5. 在ABC ∆中,a:b:c=1:3:5,CA B A sin sin sin sin 2+-的值为___16-__.二.【典型例题】例1 已知在,0.32,8.81,9.4200===∆B A c ABC 中,解三角形.【审题要领】已知两角A,B ,据三角形内角和求得第三角C ,即知两角和任意一边,由正弦定理求解三角形. 解:根据三角形内角和定理,002.66180=--=B A C .根据正弦定理, )(1.800.32sin 8.81sin 9.42sin sin 00cm A B a b ≈==. 根据正弦定理,)(1.740.32sin 2.66sin 9.42sin sin 0cm A C a c ≈==. 【方法总结】已知两角和任意一边,求解三角形时,注意结合三角形的内角和定理求出已知边的对角;应用正弦定理时注意边与角的对应性.【变式练习】已知在B b a C A c ABC 和求中,,,30,45,1000===∆ 解:根据三角形内角和定理,00105180=--=C A B . 根据正弦定理, ))(26(530sin 105sin 10sin sin 00cm C B c b +===. 根据正弦定理,)(21030sin 45sin 10sin sin 0cm C A c a ===. 例2 (1)在C A a c B b ABC ,,1,60,30和求中,已知===∆(2)C B b a A c ABC ,,2,45,60和求中,===∆【审题要领】已知两边和其中一边的对角,由正弦定理先求对角,再求第三角.解:(1)根据正弦定理,,21360sin 1sin sin 0===b B c CB C b c <∴< .300=∴C根据三角形内角和定理,0090180=--=B C A . (2) 根据正弦定理,,23245sin 6sin sin 0===aAc C 060=∴>∴>C B C b c 或0120=C .当060=C 时,根据三角形内角和定理,;7518000=--=A C B当0120=C 时,根据三角形内角和定理,.1518000=--=A C B 【方法总结】应用正弦定理时注意边与角的对应性;注意由C sin 求角C 时,讨论角C 为锐角或钝角的情况.【变式训练】在,28,40,200cm b A cm a ABC ===∆中,解三角形(角度精确到01). 解:根据正弦定理,.8999.02040sin 28sin sin 0≈==a A b B因为,180000<<B 所以,640≈B 或.1160≈B(1)当064≈B 时,076180=--=B A C ,)cm (3040sin 76sin 20sin sin 0≈==A C a c . (2)当0116≈B 时,024180=--=B A C ,).cm (1340sin 24sin 20sin sin 0≈==A C a c 例3 不解三角形,判断下列三角形解的个数. (l)a=5,b=4 ,A= 120 (2)a =9,b=l0,A=60(3)c=50,b=72,C= 135【审题要领】已知两边及其中一边的对角的三角形不一定确定,在上述例题中通过求解可以判定解的个数,还可以通过“三角形内角和定理’’或“大边对大角等三角形有关性 质进行判断,也可利用数形结合的办法不求解就能判定三角形解的个数.解:(1)因为A= 120是钝角,且a=5>b=4 , 所以此三角形只有一解. (2)b a A b A b <<∴<==sin ,97535sin ,由图可知该三角形有两解.(3)因为C=135,c=50 <b=72,所以如下图知此三角形无解.【方法总结】时解和中,已知在AbaABC,∆三角形的情况:有三种,我们分情况给予讨论(3)当A为锐角(4)当A为直角或钝角也可利用正弦定理sin B=a Ab sin进行讨论:如果sin B>l,则问题无解;如果sin B=l,则问题有一解;如果求出sinB<l,则可得B的两个值,但要通过“三角形内角和定理’’或“大边对大角”等三角形有关性质进行判断.例4 已知△ABC中,bsin B=csin c,且试判断三角形的形状.【审题要领】从正弦定理的形式可以看出定理能进行边与角的转化,这里条件中有角也有边,转化为相同的形式便于进一步探究.解:根据正弦定理将C B A 222sin sin sin +=可化为222c b a +=, 由勾股定理逆定理得△ABC 为直角三角形,且.900=∠A又因为,sin sin C Bc b =所以bsin B=csin c 可化为,b c c b =即c b c b ==即,22,故该三角形为等腰直角三角形.【方法总结】三角形的形状常有等腰、等边、直角等特殊的三角形,判定中将角化为边或将边化为角是常用的思路. 例4 已知△ABC 的面积为1,tanB=21,tanC=-2,求△ABC 的边长以及△ABC 外接圆的面积.【审题要领】从正弦定理的形式可以看出定理反映了三角形的边与对角的正弦的比值的关系,这里给出角B,C 的正切,利用同角的基本关系式进行转化. 解:.552cos ,55sin ,20,21tan ==∴<∠<=B B B B π 又.55cos ,552sin ,2,2tan -==∴<∠<-=C C C C ππ.53sin cos cos sin )sin(sin =+=+=∴C B C B C B A.53sin sin ,sin sin b B A b a B b A a ==∴=,15525321sin 212=••==∴∆b C ab S ABC 解得,315=b 于是.3=a又由正弦定理知:,3152sin sin ==A C a c 外接圆的直径.635,335sin 2=∴==R A a R 故△ABC 外接圆的面积为.12252ππ==R S【方法总结】学习本节时要综合运用同角三角函数关系式,正弦定理和三角形的面积公式进行计算,加强知识间的联系. 三.【小试身手】 (一)选择题:1.在△ABC 中,下列等式中总能成立的是 ( D ) . (A )acos C= ccos A (B )bsinC= csin A (C )absin C=bcsin B (D )aslnC=csin A . 2.在△ABC 中,已知a=18,b=20,A= 150,则这个三角形解的情况是 ( C ) .(A )有一个解 (B )有两个解 (C )无解 (D )不能确定3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A= 60,a=3,b=1,则c 等于(B ) .(A ) 1 (B ) 2 (C )3-1(D ) 3.4.在△ABC 中,已知(b+c):(c+a ):(a+b) = 4:5:6,则 sin A :sin B :sin C 等于 ( B ) .(A ) 6:5:4 (B ) 7:5:3 (C ) 3:5:7 (D ) 4:5:6.(二)、填空题 5.在△ABC 中,A=45,B= 60,则ba ba +-=______562-_ .6.在△ABC 中,a=x ,b=2,B= 45 ,若三角形有两解,则x 的取值范围为__222<<x __.7.在△ABC 中,已知a ,b ,c 分别为内角A 、B 、C 的对边,若b=2a ,B=A+ 60,则A=__33__.(三)、解答题8. 在C a b B A cm c ABC ,,56,34,2000和求中,===∆解:根据三角形内角和定理,0090180=--=B A C . 根据正弦定理, )(56sin 2090sin 56sin 20sin sin 00cm C B c b ===. 根据正弦定理,)(34sin 2090sin 34sin 20sin sin 00cm C A c a ===. 9.在△ABC 中,若a=23,A= 30,讨论当b 为何值时(或在什么范围内),三角形有一解,有两解或无解?解:由上图知:当,30sin ,sin b a b b a A b <<<< 即该三角形有两解, 故3432<<b 时,该三角形有两解.当,sin b a a A b >=或该三角形有一解,故32034<<=b b 或时,该三角形有两解.当,sin a A b >即,34>b 该三角形有两解.10.已知方程2x 一(bcos A)x+acos B=0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为两内角,试判定这个三角形的形状.解:设方程的两根为,,21x x 由韦达定理得,cos ,cos 2121B b x x A b x x ==+ 由题意得,cos cos B a A b =由正弦定理得,cos sin 2cos sin 2B A R A B R = 在△ABC 中,,,0,0ππππ<-<-<<<<B A B A,0=-∴B A 故△ABC 为等腰三角形. 1.(2007年北京)△ABC中,若,1,150,31tan 0===BC C A ,则=AB 210.2.(2007年全国)在△ABC 中,已知内角3π=A ,边32=BC ,设内角,x B =,周长为.y (1)求函数)(x f y =的解析式和定义域;(2)求)(x f y =的最大值.解:(1) △ABC 的内角和π=++C B A , 由3π=A ,0,0>>C B 得320π<<B . 应用正弦定理得,sin 4sin sin x B A BC AC =•= ).32sin(4sin sin x C A BC AB -=•=π 因为,BC AB AC y ++= 所以)320(32)32sin(4sin 4ππ<<+-+=x x x y .(2)因为32)32sin(4sin 4+-+=x x y π),6566(32)6sin(34ππππ<+<+-=x x 所以,当26ππ=+x ,即3π=x 时,取得最大值.36四.小结本节课我们是从实际问题出发,通过观察、实验,归纳等思维方法,最后发现了正弦定理,并从不同的角度证明了它。
《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。
2. 让学生掌握正弦定理的数学表达式。
3. 让学生了解正弦定理的应用场景。
教学内容:1. 引入正弦定理的背景和意义。
2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。
3. 解释正弦定理的证明过程。
教学活动:1. 通过实际例子引入正弦定理的概念。
2. 引导学生推导正弦定理的数学表达式。
3. 让学生进行小组讨论,探索正弦定理的应用场景。
练习题:1. 解释正弦定理的概念。
2. 给出一个三角形,让学生计算其各边的比例。
章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在三角形中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。
2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。
练习题:1. 使用正弦定理计算一个三角形的面积。
2. 给出一个实际问题,让学生应用正弦定理解决问题。
章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。
2. 让学生掌握正弦定理的证明方法。
教学内容:1. 介绍正弦定理的证明过程。
2. 解释正弦定理的证明方法。
教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。
2. 让学生进行小组讨论,理解正弦定理的证明方法。
练习题:1. 解释正弦定理的证明过程。
2. 给出一个三角形,让学生使用正弦定理进行证明。
章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在实际问题中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。
正弦定理教案1一、教学目标1.知识目标:(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;(2)简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题2.能力目标:通过对定理的探究,培养学生发现数学规律的思维方法与能力;通过对定理的证明和应用,培养学生独立解决问题的能力和体会分类讨论和数形结合的思想方法.3.情感目标:(1)通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识;(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值,不断提高自身的文化修养.二、学习重点、难点学习重点:1.正弦定理的推导. 2.正弦定理的运用学习难点:1.正弦定理的推导. 2.正弦定理的运用.三、学法与教法学法:开展“动脑想、严格证、多交流、勤设问”的研讨式学习方法。
教法:运用“发现问题—自主探究—尝试指导—合作交流”的教学模式。
突出:①动——师生互动、共同探索;②导——教师指导、循序渐进。
(1)新课引入——提出问题, 激发学生的求知欲。
(2)掌握正弦定理的推导证明——分类讨论,数形结合,动脑思考,由特殊到一般,组织学生自主探索,获得正弦定理及证明过程。
(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识。
(4)巩固练习——深化对正弦定理的理解。
教学用具:电脑、多媒体、黑板等。
四、教学过程五、评价分析这堂课由实际问题出发,引导学生探索研究三角形中边角关系,展示了一个完整的数学探究过程。
提出问题、发现规律、推到证明,定理应用,让学生经历了知识再发现的过程,促进了个性化学习。
在教学过程中,使学生体会认识事物由特殊到一般,再由一般到特殊的规律,体会分类讨论、转化与化归的数学思想方法,并提高运用所学知识解决实际问题的能力。
通过学习和运用,进一步使学生体会数学的科学价值、应用价值,进而领会数学的人文价值、美学价值,不断提高自身的文化素养。
《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。
3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。
从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。
培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教法与学法分析本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。
在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。
教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。
高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的学问特别重要。
学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。
(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。
力量目标:探究正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。
教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。
学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。
让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。
正弦定理教案正弦定理教案「篇一」教学目标:1.让学生从已有的几何知识出发,通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
教学准备:制作多媒体,学生准备计算器,直尺,量角器。
教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习,对科技楼熟悉吗?生:当然熟悉。
师:那大家知道科技楼有多高吗?学生不知道。
激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗?学生思考片刻,教师引导。
生1:在楼的旁边取一个观测点C,再用一个标杆,利用三角形相似。
师:方法可行吗?生2:B点位置在楼内不确定,故BC长度无法测量,一次测量不行。
师:你有什么想法?生2:可以再取一个观测点D。
师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?生2:向前或向后师:好,模型如图(2):我们设正弦定理教学设计,正弦定理教学设计 ,CD=10,那么我们能计算出AB吗?生3:由正弦定理教学设计求出AB。
师:很好,我们可否换个角度,在正弦定理教学设计中,能求出AD,也就求出了AB。
《正弦定理》教案(精选5篇)《正弦定理》篇1通过正弦定理让我们更容易的了解数学,正弦定理的教学内容有哪些呢?以下是小编为大家整理的关于《正弦定理》教案,给大家作为参考,欢迎阅读!一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性.2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。
初中正弦定理教案教学目标:1. 理解并掌握正弦的概念及学会运用正弦的概念或定义表求解相关题目。
2. 掌握正弦定理的证明及应用。
3. 培养学生的空间想象、推理论证能力和独立思考的能力。
教学重点:1. 正弦的概念及运用。
2. 正弦定理的证明。
教学难点:1. 正弦定理的证明。
2. 正弦定理在解三角形中的应用。
教学过程:一、导入(5分钟)1. 复习直角三角形的边角关系,引导学生得出正弦的概念。
2. 提问:是否所有的三角形都存在类似的边角关系呢?二、新课讲解(15分钟)1. 引导学生猜测任意三角形都存在边角关系,并引入正弦定理的概念。
2. 讲解正弦定理的证明过程,重点解释正弦定理的推导过程。
3. 举例说明正弦定理的应用,如解三角形边角问题。
三、课堂练习(10分钟)1. 让学生独立完成课本上的练习题,巩固对正弦定理的理解。
2. 引导学生思考正弦定理在实际问题中的应用。
四、拓展与应用(10分钟)1. 引导学生思考:如何利用正弦定理解决更复杂的问题?2. 举例讲解正弦定理在实际问题中的应用,如测量地球表面某点的海拔。
五、总结与反思(5分钟)1. 让学生总结本节课所学的内容,巩固记忆。
2. 引导学生反思:如何更好地运用正弦定理解决实际问题?教学评价:1. 课后作业:让学生完成课后练习题,检验对正弦定理的理解和掌握程度。
2. 课堂表现:观察学生在课堂上的参与程度、思考能力和合作交流能力。
教学反思:本节课通过引导学生思考和练习,让学生掌握正弦定理的概念和应用。
在教学过程中,要注意以下几点:1. 讲解正弦定理的证明过程时要清晰易懂,避免学生产生困惑。
2. 举例说明正弦定理的应用时要多样化,激发学生的兴趣。
3. 注重培养学生的空间想象和推理论证能力,提高学生的独立思考能力。
教学延伸:为进一步提高学生的数学素养,可以引导学生深入研究正弦定理的证明方法和应用领域,如在物理学、工程学等领域中的应用。
同时,可以引导学生探索其他三角函数的性质和定理,提高学生的数学思维能力。
一、教学目标1. 让学生理解正弦定理的定义和意义。
2. 让学生掌握正弦定理的推导过程。
3. 让学生能够运用正弦定理解决实际问题。
二、教学重点与难点1. 教学重点:正弦定理的定义、推导过程和应用。
2. 教学难点:正弦定理在实际问题中的应用。
三、教学方法1. 采用问题驱动法,引导学生思考和探索正弦定理的推导过程。
2. 通过实际例题,让学生掌握正弦定理的应用方法。
3. 利用多媒体辅助教学,直观展示正弦定理的应用场景。
四、教学内容1. 正弦定理的定义与推导正弦定理是指在一个三角形中,各边的长度与其对角的正弦值成正比。
具体来说,对于一个三角形ABC,有:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形ABC的边长,A、B、C分别表示三角形ABC 的对角。
2. 正弦定理的应用(1)求解三角形的边长:已知三角形的两个角和其中一个角的正弦值,求解第三边的边长。
(2)求解三角形的角度:已知三角形的两边和它们夹角的正弦值,求解第三个角的大小。
(3)求解三角形的面积:已知三角形的两边和它们夹角的正弦值,求解三角形的面积。
五、教学过程1. 引入新课:通过展示三角形模型,引导学生思考三角形中边长和角度的关系。
2. 讲解正弦定理的定义与推导:引导学生回顾正弦函数的定义,结合三角形的特点,推导出正弦定理。
3. 例题讲解:挑选一些典型的例题,讲解如何运用正弦定理解决问题。
4. 练习与讨论:让学生分组讨论,互相解答疑问,巩固正弦定理的应用。
5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
六、教学评价1. 课堂问答:检查学生对正弦定理的理解和掌握程度。
2. 练习题:布置一些有关正弦定理的应用题,检验学生运用知识解决问题的能力。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力。
七、教学反思1. 教师需要反思教学过程中的优点和不足,如教学方法、课堂组织等。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
关于正弦定理数学教案5篇关于正弦定理数学教案5篇本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识。
下面给大家分享正弦定理数学教案,欢迎阅读!正弦定理数学教案【篇1】一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。
在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。
它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。
因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。
即指导学生掌握“观察——猜想——证明——应用”这一思维方法。
学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。
1.1。
1 正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程:一、复习引入:1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?2.在ABC ∆中,角A 、B 、C 的正弦对边分别是c b a ,,,你能发现它们之间有什么关系吗? 结论★: 。
二、讲授新课:探究一:在直角三角形中,你能发现三边和三边所对角的正弦的关系吗?直角三角形中的正弦定理: sin A =c a sin B =c bsin C =1 即c =sin sin sin a b c A B C==. 探究二:能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a b A B =。
同理,sin sin a cA C=(思考如何作高?),从而sin sin sin a b cA B C==。
探究三:你能用其他方法证明吗?1. 证明一:(等积法)在任意斜△ABC 当中S △ABC =111sin sin sin 222ab C ac B bc A ==。
两边同除以12abc 即得:sin a A =sin bB =sin c C。
2.证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a aCD R A D===, 同理sin bB=2R ,sin c C =2R 。
3.证明三:(向量法)过A 作单位向量j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得…。
.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R[理解定理] 1公式的变形:C R c B R b A R a sin 2,sin 2,sin 2)1(===C B A c b a sin :sin :sin ::)3(=,2sin ,2sin ,2sin )2(Rc C R b B R a A ===Bb Cc C c A a B b A a sin sin ,sin sin ,sin sin )4(===2.正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
《正弦定理》教学方案一、教学目标掌握正弦定理的概念及其推导过程。
能够运用正弦定理解决三角形相关问题。
培养学生的逻辑推理能力和数学应用能力。
二、教学重难点重点:正弦定理的推导及其应用。
难点:正弦定理在不同三角形类型中的灵活应用。
三、教学准备教师准备:教学课件(含例题、练习题)、三角板、量角器、黑板、粉笔。
学生准备:笔记本、笔、草稿纸。
四、教学过程(一)导入新课提问引导:同学们,我们之前学过三角形的边长和角度之间的关系,你还记得有哪些吗?学生回顾三角形的性质,如三角形的内角和为180°等。
引出课题:今天我们要学习一个新的定理,它可以帮助我们更深入地了解三角形的边长和角度之间的关系,那就是正弦定理。
(二)新课讲解正弦定理的概念讲解定义:在任意三角形ABC中,边a、b、c分别对应角A、B、C,则有a/sinA = b/sinB = c/sinC = 2R,其中R为三角形的外接圆半径。
推导过程:通过构造三角形的外接圆,利用圆的性质进行推导。
正弦定理的应用例题讲解:例题1:在△ABC中,已知a = 5,b = 7,A = 30°,求角B。
解析:根据正弦定理,我们有a/sinA = b/sinB,代入已知数值,解得sinB = (b * sinA) / a,进一步求得角B。
例题2:在△ABC中,已知a = 3,c = 4,B = 60°,求边b的长度。
解析:同样利用正弦定理,我们有a/sinA = b/sinB = c/sinC,由于已知B的度数,我们可以先求出sinB的值,然后通过等式求解b。
(三)学生互动环节分组讨论:学生分组讨论正弦定理的推导过程及其应用,并尝试解决一些简单的例题。
实战演练:教师给出几个三角形的边长和角度信息,要求学生运用正弦定理求出未知量,并请几名学生上台展示解题过程。
互动提问:鼓励学生提问,针对学生在正弦定理应用过程中遇到的难题进行解答。
(四)巩固练习练习题:练习1:在△ABC中,已知a = 8,b = 10,A = 45°,求B。
《正弦定理》教案(含答案)第一章:正弦定理的引入1.1 实物的直观引入利用直角三角形和平行四边形模型,引导学生直观感受正弦定理的概念。
让学生通过观察和实验,发现正弦定理在几何图形中的普遍性。
1.2 数学定义与公式给出正弦定理的数学表达式:a/sinA = b/sinB = c/sinC,其中a, b, c分别为三角形的边长,A, B, C分别为对应的角度。
解释正弦定理的内涵,让学生理解各个参数之间的关系。
1.3 例题讲解选择具有代表性的例题,讲解正弦定理的应用方法。
引导学生通过正弦定理解决问题,培养学生的解题能力。
第二章:正弦定理的应用2.1 三角形内角和定理的推导利用正弦定理推导三角形内角和定理:A + B + C = 180°。
解释推导过程,让学生理解正弦定理与三角形内角和定理之间的关系。
2.2 三角形形状的判断利用正弦定理判断三角形的形状(直角三角形、锐角三角形、钝角三角形)。
引导学生通过正弦定理判断给定三角形的形状。
2.3 实际问题应用选择与生活实际相关的问题,引导学生利用正弦定理解决问题。
培养学生的实际问题解决能力,提高学生对正弦定理的应用意识。
第三章:正弦定理在测量中的运用3.1 角度测量讲解利用正弦定理进行角度测量的方法。
引导学生通过正弦定理进行角度测量,提高学生的实际操作能力。
3.2 距离测量讲解利用正弦定理进行距离测量的方法。
引导学生通过正弦定理进行距离测量,提高学生的实际操作能力。
3.3 实际测量案例提供实际测量案例,让学生利用正弦定理进行测量。
培养学生的实际测量能力,提高学生对正弦定理在测量中应用的理解。
第四章:正弦定理在三角函数中的应用4.1 三角函数的定义与关系讲解正弦定理与三角函数之间的关系。
引导学生理解正弦定理在三角函数中的应用。
4.2 三角函数图像的绘制利用正弦定理绘制三角函数图像。
培养学生的图像绘制能力,提高学生对正弦定理在三角函数中应用的理解。
4.3 三角函数问题的解决利用正弦定理解决三角函数问题。
《6.4.3.2正弦定理》一、学习目标1.了解正弦定理的推导过程,掌握正弦定理及其基本应用;2.能用正弦定理解三角形,并能判断三角形的形状.3.能利用正、余弦定理解决综合问题.二、知识思维导图三、导学指导与检测导学导学检测及课堂展示阅读相关材料完成相应练习知识点一正弦定理asin A=bsin B=csin C=2R知识点二正弦定理的变形公式①a=b sin Asin B=c sin Asin C,b==,c==;②a=2R sin A,b=,c=;③sin A=a2R,sin B=,sin C=;④a:b:c=sin A:sin B:sin C. 其中,R为△ABC外接圆的半径.类型一已知两角和任意一边解三角形[例1]在△ABC中,c=10,A=45°,C=30°求a,b和B.类型二已知两边及一边的对角解三角形[例2] 在△ABC中,已知c=6,A=45°,a=2,解三角形.类型三正弦定理三角形面积公式S=12absinC=12acsinB=12bcsinA[例3] △ABC 的内角A ,B ,C 的对边分别为a,b,c ,若b=6,a=2c ,B=3π,求△ABC 的面积.类型四 利用正弦定理判断三角形的形状 [例4] 在△ABC 中,若(a -c cos B )sin B =(b -c cos A )·sin A ,判断△ABC 的形状.四、巩固诊断1.在△ABC 中,若A =60°,B =45°,BC =32,则AC =( )A .4 3B .23 C. 3D.322.在△ABC 中,若A :B :C =2:3:7,则a :b 等于( )A .1:2B .2:3C .1:2D .1:3 3.在锐角三角形ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于 .4.三角形ABC 的三内角A 、B 、C 所对的边长分别是a ,b ,c .若(a +b )(sin B -sin A )=(3a +c )sin C ,则角B 的大小为 .5.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.6.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小; (2)若sin B +sin C =3,试判断△ABC 的形状.。
1.1.1正弦定理一、教学目标1.通过对三角形边角关系的探索,共同探究在任意三角形中对应的边、角之间的关系,由特殊到一般归纳出正弦定理;2.借助几何画板,引导学生通过观察,实验,猜想,验证,并探索证明正弦定理的方法; 3.结合例1,组织学生采用正弦定理解决三角形边角关系的程序性知识,并归纳运用正弦定理解决解斜三角形的两类基本问题;4.借助例2,尝试用正弦定理解决一些简单的三角形问题,提升解决问题的能力,体会方法与策略。
二、教学重点与难点重点:通过对三角形边角关系的的探索,引导学生通过观察,实验,猜想,验证,并探索证明正弦定理的方法,并能用正弦定理解决简单的问题; 难点:正弦定理的猜想提出过程,以及证明过程。
三、教学过程1.创设情境,提出问题。
问题:西湖隧道于2003年10月竣工通车,是杭州一道别致景观,建于著名的风景名胜西湖之下,北起环城西路与教场路交叉口,南出口接南山路。
西湖隧道全长1260米。
规划建设过程中,勘测队想要初步得到所建隧道AB 的长度,先测量了一段沿湖的路段BC ,用角度勘测仪测出ACB ∠和ABC ∠,那么他们将如何计算出隧道AB 的长度的长度? 从实际问题抽象出数学模型:已知ABC ∆,00105,30,1838=∠=∠=ABC ACB m BC ,求AB 的长。
分析:只要知道三角形对边对角的关系,问题就解决了。
提出问题:在三角形中,对应的边、角之间存在怎样的关系?【设计意图】数学源于现实,从身边的实际问题出发,抽象、提取数学问题,激发学生学习的兴趣,培养学生从实际问题抽象出数学模型的能力。
2.探索猜想,引入课题。
回忆:三角形的边角有怎样的关系? 三角形三个内角之和为0180;大边对大角,小边对小角; ……引入课题:三角形中对应的边、角之间究竟存在怎样的关系,我们能否用数学式准确表示出来?先试着猜想一下!AB C【设计意图】借助学生熟悉的旧知,从“大边对大角,小边对小角”入手,引导学生合理猜想对应边、角之间的准确的量化关系,进而引出本课课题。
《正弦定理》教学设计
复习回顾复习旧知(5min)
1、师生问好
2、学生分8组坐好,组长清点
人数
3、复习回顾。
问题展示
自由
抢答
问题一
巩固旧知,为新
知学习作铺垫。
新课导入问题导入(1min)
古埃及时代,尼罗河经常泛
滥,古埃及人为了研究尼罗河水
运行的规律,准备测量各种数
据.当尼罗河涨水时,古埃及人
想测量某处河面的宽度(如图),
如果古埃及人通过测量得到了
AB的长度,∠BAC,∠ABC的大小,
那么就可以求解出河面的宽度
CD,古埃及人是如何利用这些数
据计算的呢?
板书课题
思考
跃跃
预试
调动学生学习
兴趣,为探究新
知作铺垫
新知探究一(一)、定理探究
1、探究定理(15min)
(1)、探究:在直角三角形中,
sinA=
c
a
⇒c= ,
sinB=
c
b
⇒c= 。
则
C
c
c
B
b
A
a
sin
sin
sin
=
=
=成立。
(2)、探究:对于锐角三角形,上述
关系式是否仍然成立呢?
在Rt△ABD中,sinB=
c
AD
,则
AD= ,
在Rt△ACD中,sinA=
b
AD
,则
AD=
所以,A
b
B
a sin
sin=,
即,
B
b
A
a
sin
sin
=,
引导
提问
板书:
探究
过程
分组
讨论
组组
抢答
培养学生分析
问题能力
新知探究一同理,可得,
C
c
B
b
sin
sin
=。
因此,
对于锐角三角形,上述关系式仍然成
立。
(3)、探究:当△ABC为钝角三角形
时,上述关系式是否仍然成立呢?请
你说明理由。
结论:正弦定理;在一个三角形中,
各边和它所对角的正弦的比相等,
即
sin sin sin
a b c
A B C
==
2、定理拓展(10min)
提出
问题
引导
学生
提出
问题
分组
探究
问题二
得出
结论
分组
讨论
问题三
培养学生主动探
究,发展创造性思
维能力.
进一步培养学
生自主探究能
力
扩展学生知识
新知探求二(二)、定理应用
1 、例题讲解(16min)
例1﹑(已知两角及一边解三角形)
课本例1
例2﹑(已知两边及一边的对角解三
角形)
课本例2
例3﹑(已知两边及一边的对角解三
角形)
课本例3
分析
讲解
板书
解题
过程
观察
思考
加深定理的
应用。