第四章_汽车外形设计与空气动力学
- 格式:pptx
- 大小:17.71 MB
- 文档页数:102
汽车造型设计基础---空气动力学综合作业(试卷)轿车的空气动力学姓 名: 孟浩班级学号: T 1013-12课任教师: 李楚琳时 间: 2013年 07月 04日序号 项目内容 分值 得分 1 是否紧扣题目 30 2 论文的结构安排是否合理 15 3 论证是否严谨可靠 25 4 文法、修辞水平等 10 5 论文是否有新意 15 6 论文的的格式与打印效果 5 评阅人 总计 100摘要:汽车空气动力学主要是应用流体力学的知识,研究汽车行驶时,即与空气产生相对运动时,汽车周围的空气流动情况和空气对汽车的作用力(称为空气动力),以及汽车的各种外部形状对空气流动和空气动力的影响。
所以,深入了解空气动力学对汽车造型设计汽车有很大的帮助。
关键词:汽车;空气动力学;汽车造型设计一.汽车空气动力学概述空气动力学是流体力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。
它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。
空气动力学特性直接影响汽车的经济性、动力性、操纵稳定性和乘坐舒适性等。
为改进汽车性能,汽车工业界投人大量人力、物力和财力研究汽车内外的空气流动及其相关的各种现象。
风洞试验是汽车空气动力学研究的传统而又有效的方法,但风洞建设投资大,试验周期长。
随着计算机和计算技术的迅速发展而蓬勃兴起的数值仿真方法为汽车空气动力学的研究开辟了新的途径。
近年来,汽车空气动力学数值仿真发展迅速,数值仿真在汽车流场研究中的重要性不断增加,应用范围不断扩大。
下面从不同方面阐述汽车空气动力学的发展情况。
二.汽车空气动力学的发展国外的汽车空气动力学研究可以追朔到本世纪的20-30年代,但直到7O年代以觑,还没有比较完整系统的研究。
此学科在近3O年中得到了较大发展。
7O年代以来,国外陆续发表了汽车空气动力学方面的研究成果、研究报告和专著,研究手段普遍采用航空试验用的风洞对汽车空气动力特性进行研究,研究的重点主要是空气动力的特性以及它们对汽车性能的影响。
车辆外形设计的原理车辆外形设计是汽车工程领域中一个综合性的工程和艺术领域。
外形设计不仅仅涉及到视觉美感,还需要考虑到车辆的空气动力学、流体力学、工程性能以及品牌识别等多个方面。
以下是一些车辆外形设计的原理和考虑因素:1.空气动力学和流体力学:车辆外形对空气动力学性能的影响是重要的考虑因素。
设计师需要考虑车辆在高速行驶时的空气阻力、升力和气流分离等问题,以确保车辆在空气动力学方面表现良好。
2.美感和品牌识别:外形设计是汽车品牌的象征,因此需要在视觉上体现品牌的独特性和标志性元素。
设计师需要注意线条、曲面、车灯、进气格栅等细节,以创造独特而易于识别的外观。
3.人机工程学:外形设计需要考虑驾驶员和乘客的舒适性和便利性。
车身的形状和车窗的设计需要满足人体工程学的原理,确保良好的视野和舒适的乘坐体验。
4.材料选择:外形设计还涉及到车身材料的选择。
不同的材料具有不同的重量、强度和成本特性。
设计师需要在满足安全性和性能要求的前提下,考虑材料的可塑性和制造成本。
5.功能性和实用性:外形设计需要考虑车辆的功能和实用性。
例如,车辆的后备箱设计需要考虑到载物空间,车门的开启方式需要方便驾驶员和乘客的上下车操作。
6.趋势和市场需求:外形设计需要紧跟市场趋势和消费者需求。
时尚、环保、节能等因素可能会影响设计方向。
设计师需要了解消费者的偏好和市场动态,以确保设计符合市场趋势。
7.生产和制造可行性:设计师需要考虑车辆外形设计的生产和制造可行性。
设计要符合工艺流程,且能够在大规模生产中保持一致性和高质量。
总体而言,车辆外形设计是一个综合性的过程,需要综合考虑多个因素,以达到美观、实用、安全和经济的综合性能。
同时,设计师需要不断创新,适应市场和技术的发展。
主动式车身空气动力学主动式车身空气动力学导语:在现代汽车设计中,车身空气动力学起着至关重要的作用。
通过优化车辆外形和流体力学特性,可以显著提高汽车的性能和燃油经济性。
在这篇文章中,我们将深入探讨主动式车身空气动力学,它是一种通过调整车辆外部构造和系统,以主动干预车辆的气动性能的技术。
一、主动式车身空气动力学的基础1. 什么是车身空气动力学?车身空气动力学是研究车辆在运动中与周围空气之间相互作用的科学。
它关注的是车辆的气动性能,包括阻力、升力和空气动力学稳定性等方面。
通过改善车辆的气动性能,可以降低阻力、提高操控稳定性和燃油经济性。
2. 传统的车身空气动力学解决方案传统的车身空气动力学解决方案主要依靠优化车辆外形和减小风阻。
采用的方法包括流线型外形设计、车身下压力设计和减小气流扰动等。
然而,这些方法在不同条件下效果有限,且难以灵活应对不同的车辆状态和驾驶条件。
二、主动式车身空气动力学技术的概念1. 主动式车身空气动力学的定义主动式车身空气动力学是一种通过采用智能控制系统和传感器来实时检测和调整车辆的气动性能的技术。
它可以根据车辆的状况和行驶环境,主动地改变车辆的外形和气动特性,以提高性能和燃油经济性。
2. 主动式车身空气动力学的应用主动式车身空气动力学技术可以被应用于各种类型的汽车,如赛车、豪华车和电动汽车等。
通过采用智能系统和传感器,它可以实现多种功能,如自动调节车身高度、调整空气动力学外形和控制车辆稳定性等。
三、主动式车身空气动力学技术的优势和挑战1. 优势:- 提高性能和操控稳定性:通过根据不同的驾驶模式和车辆状态,调整车辆的外形和气动特性,主动式车身空气动力学技术可以显著提高汽车的性能和操控稳定性。
- 提高燃油经济性:优化车辆的气动性能可以降低阻力,减少能量损失,从而提高燃油经济性。
- 增强安全性:通过主动调整车辆的外形和空气动力学特性,可以提高车辆的稳定性和抗风性能,增强行驶安全性。
2. 挑战:- 技术复杂性:主动式车身空气动力学技术涉及复杂的智能控制系统和传感器,需要高度的工程设计和集成。
汽车车身外形设计中的空气动力学性能优化近年来,汽车行业逐渐意识到汽车车身外形对空气动力学性能的重要性。
优化汽车车身外形可以降低车辆的空气阻力,提高燃油经济性、加速性能以及稳定性。
本文将探讨汽车车身外形设计中的空气动力学性能优化。
一、空气动力学基础空气动力学是研究空气在物体表面产生的压力和阻力的科学。
在汽车车身设计中,空气动力学性能优化主要涉及两个基本要素:空气阻力和升力。
空气阻力是汽车行驶时与空气作用的阻碍力,而升力则是垂直于行驶方向的力。
二、减小空气阻力减小空气阻力是提高汽车燃油经济性的关键。
以下是一些常见的空气动力学设计方法,用以降低汽车的空气阻力。
1.流线型外形设计流线型外形能够减少车身表面的湍流,从而减小空气阻力。
主要设计原则包括:合理的前脸设计、降低车头高度、光滑的车身曲线和尾部造型等。
2.减少气流分离气流分离是指气体从车身表面脱离或分离的现象。
当气流分离发生时,会形成大量的湍流,增加空气阻力。
通过在车身上增加导流板、风挡和尾翼等设计元素,可以将气流控制在车身表面,减少气流分离。
3.光滑下部车辆的底部也是空气阻力的重要源头。
通过在车底进行空气动力学优化设计,如增加护板和平滑底盘,能够减少下部的湍流和阻力。
三、提高稳定性与升力控制在汽车车身外形设计中,除了降低空气阻力外,还需要关注车辆的稳定性和升力控制。
1.增加下压力通过改变车身设计和增加扰流器等装置,可以增加车辆的下压力,使车辆更加稳定。
下压力可以加强轮胎与地面的附着力,提高操控性和行驶稳定性。
2.控制升力升力是指车辆在行驶过程中产生的垂直于行驶方向的力。
过大的升力会降低车辆的稳定性和行驶安全性。
通过设计车身的空气动力学特性,如增加扰流器和尾翼等,可以有效地控制和减小升力。
四、综合考虑其他因素除了空气动力学性能优化外,汽车车身外形设计还需要综合考虑其他因素,如乘客空间、安全性和美观性等。
1.乘客空间和安全性车辆的设计应该确保乘客空间足够,并满足相关的安全标准。
汽车造型与空气动力学的关系T813-9 20080130921 乔东兴空气动力学与汽车的造型有很大的关系,空气动力学主要研究运动汽车与空气之间的相互作用力,力的大小取决于空气与汽车之间的相对速度和汽车形状,通过对空气动力学课的学习,我们知道了汽车的形状对汽车的阻力有很大的影响,通过对汽车的造型演变历程研究发现,汽车的造型的改变很大方面是为了减少空气阻力,所以汽车造型与空气动力学有很大的关系。
自从德国工程师 Karl Benz 1885年发明了世界上第一辆汽车后25 a,德国就在Zeppelin工厂的航空风洞中进行了一系列有关车形的实验研究。
后来德国工程师杰瑞和他的助手 W. Klemperer发现前圆后尖的物体阻力最小 ,从而找到了解决形状阻力的途径 ,鱼和鸟的体形正是形状阻力较小的造型。
美国于 1934年采用风洞和模型汽车 ,测量了各种车身的空气阻力系数 ,这是具有重要历史意义的试验。
例如 ,他提出了“如果头部不是干净利落的圆滑 ,即使有良好的尾部造型也意义不大。
”我国是在 80年代才较为系统地研究汽车空气动力学。
汽车空气动力学主要是应用流体力学的知识 ,研究汽车行驶时 ,即与空气产生相对运动时 ,汽车周围的空气流动情况和空气对汽车的作用力 (称为空气动力 ),以及汽车的各种外部形状对空气流动和空气动力的影响。
此外 ,空气对汽车的作用还表现在对汽车发动机的冷却 ,车厢里的通风换气 ,车身外表面的清洁 ,气流噪声 ,车身表面覆盖件的振动 ,甚至刮水器的性能等方面的影响。
空气动力学上的每一项进展 ,都直观的反映在汽车造型的变化上。
几十年来 ,汽车造型的种种变化 ,都可以找到其空气动力学的依据。
当汽车的车速提高到每小时 50 km的时候 ,迎面而来的风使驾乘人员难以忍受 ,迫使人们考虑改变汽车的外形以克服其缺陷。
于是人们设计了一种带有球面的挡风板的汽车 ,这是流线型的萌芽。
汽车总高度的降低 ,汽车上部宽度的减小 ,都是为了减小汽车的迎风面积。
(汽车行业)空气动力学在汽车设计中的应用空气动力学汽车作为壹种商品,首先向人们展示的就是它的外形,外形是否讨人喜欢直接关系到这款车子甚至汽车厂商的命运。
汽车的外形设计,专业的说法叫做汽车造型设计,是根据汽车整体设计的多方面要求来塑造最理想的车身形状。
汽车造型设计是汽车外部和车厢内部造型设计的总和。
它不是对汽车的简单装饰,而是运用艺术的手法、科学地表现汽车的功能、材料、工艺和结构特点。
汽车造型的目的是以美去吸引和打动观者,使其产生拥有这种车的欲望。
汽车造型设计虽然是车身设计的最初步骤,是整车设计最初阶段的壹项综合构思,但却是决定产品命运的关键。
汽车的造型已成为汽车产品竞争最有力的手段之壹。
汽车造型主要涉及科学和艺术俩大方面。
设计师需要懂得车身结构、制造工艺要求、空气动力学、人机工程学、工程材料学、机械制图学、声学和光学知识。
同时,设计师更需要有高雅的艺术品味和丰富的艺术知识,如造型的视觉规律原理、绘画、雕塑、图案学、色彩学等等。
二战以后现代主义提倡的民主制度,强调每个人都必须平等。
但人和人之间始终存在着许多不同。
我们必须承认,所谓清壹色的平等只能够创造出壹种假象,而且不是真正满足了每个人的需要。
所以,今后的汽车造型设计将更多注重个体性和差异性。
技术的进步为设计师提供了强有力的技术支持,让他们有能力做出更灵活、更多样化的设计满足消费者的需求,旧有的规格化和标准化将被推翻。
目前部分技术实力高超的小型汽车厂商已经开始提供个人定制汽车服务,但要价不菲,2007年曾有美国富商向宾西法尼亚订购了壹辆价值300万美元的跑车。
消费者参和原始时期,人类使用的器物都是自己制作,且从制作过程中得到满足和成就感,这是人类的本能之壹。
大工业生产包办了壹切制作过程,人得到的只有最后的成品。
新的世纪里,这种本能将会被重新提倡。
既成品的概念已经成为过去。
在不完全否定工业大生产的前提下,现代产业体制将会做出灵活的调整。
今后的汽车会像今天我们所能见的电脑产品壹样,不再以最终完成品的状态出厂,而是有各种性能升级的空间。
汽车造型与空气动力学●轿车前部●轿车客舱●轿车尾部●轿车底部●附加装置●车轮一、轿车前部车头造型对气动阻力影响因素很多,主要有:车头边角、车头形状、车头高度、发动机罩与前风窗造型、前凸起唇及前保险杠的形状与位置、进气口大小、格栅形状等。
1.车头边角的影响:车头边角主要是车头上缘边角和横向两侧边角。
●对于非流线型车头,存在一定程度的尖锐边角会产生有利于减少气动阻力的车头负压区。
●车头横向边角倒圆角,也有利于产生减小气动阻力的车头负压区。
2.车头形状的影响●整体弧面车头比车头边角倒圆气动阻力小。
3.车头高度的影响●头缘位置较低的下凸型车头气动阻力系数最小。
但不是越低越好,因为低到一定程度后,车头阻力系数不再变化。
●车头头缘的最大离地间隙越小,则引起的气动升力越小,甚至可以产生负升力。
4.车头下缘凸起唇的影响●增加下缘凸起唇后,气动阻力变小。
减小的程度与唇的位置有关。
5.发动机罩与前风窗的影响●发动机罩的三维曲率与斜度。
(1)曲率:发动机罩的纵向曲率越小(目前大多数采用的纵向曲率为0.02m-1),气动阻力越小;发动机罩的横向曲率均有利于减小气动阻力。
(2)斜度:发动机罩有适当的斜度(与水平面的夹角)对降低气动阻力有利,但如果斜度进一步加大对将阻效果不明显。
(3)发动机罩的长度与轴距之比对气动升力系数影响不大。
●风窗的三维曲率与斜度。
(1)曲率:风窗玻璃纵向曲率越大越好,但不宜过大,否则导致工艺难实现、视觉视真、刮雨器的刮扫效果。
前风窗玻璃的横向曲率均有利于减小气动阻力。
(2)斜度:前风窗玻璃的斜度(与垂直面的夹角)<=300时,降阻效果不明显,但过大的斜度,使视觉效果和舒适性降低。
前风窗斜度=480时,发动机罩与前风窗凹处会出现一个明显的压力降,因而造型时应避免这个角度。
(3)前风挡玻璃的倾斜角度(与垂直面的夹角)越大,气动升力系数略有增加。
●发动机罩与前风窗的夹角与结合部位的细部结构。
6. 汽车前端形状●前凸且高不仅会产生较大的阻力而且还将会在车头上部形成较大的局部负升力区。