汽车空气动力学
- 格式:doc
- 大小:80.50 KB
- 文档页数:15
空气动力学在汽车制造中的应用空气动力学是研究气体流体在运动中的力学性质的学科,广泛应用于许多领域,包括航空航天、建筑工程、能源产业等。
而在汽车制造领域,空气动力学也扮演着重要的角色。
本文将介绍空气动力学在汽车制造中的应用,并探讨其对汽车性能和效率的影响。
一、空气阻力与汽车性能空气阻力是车辆行驶时所受到的一种阻碍力,它可以对汽车的性能产生直接的影响。
空气动力学的研究可以帮助汽车制造商设计更加流线型的车身,以减少空气阻力。
流线型车身能够减小车辆周围的气流阻力,从而降低能源消耗,提高汽车的燃油效率。
二、空气动力学与空气动力设计空气动力学对汽车的设计起到了关键作用。
通过利用气流分析和数值模拟,工程师可以预测汽车在不同速度下的气动性能。
他们使用计算流体力学(CFD)软件,通过模拟气流的流动,优化车辆的外形和构造。
这种设计优化可以减少车辆的空气阻力,提高车辆的稳定性和行驶性能。
三、空气动力学与车辆操控空气动力学还对汽车的操控性能产生影响。
通过改善车辆的气动性能,可以实现更好的稳定性和操控性。
例如,在赛车运动中,通过增加前后扰流器和侧翼,可以增加车辆的下压力,提高车辆在高速行驶时的稳定性。
同样地,一些高性能汽车采用了活动式尾翼设计,通过调整尾翼的角度,可以在不同的速度下提供更好的操控性能。
四、减少噪音和振动除了改善汽车的气动性能,空气动力学还可以帮助减少噪音和振动。
通过对车辆的外形和构造进行优化,可以降低气流产生的噪音和振动。
同时,一些流体力学的原理也可以应用于车辆的排气系统和发动机设计中,以减弱排气噪音和振动。
五、气动力学与电动汽车随着电动汽车的不断发展,空气动力学在电动汽车的设计中也变得关键。
电动汽车由于需要较大容量的电池组,通常比传统汽车更重。
然而,通过优化车辆的外形和减小空气阻力,可以提高电动汽车的续航里程。
此外,空气动力学也在电动汽车充电设备的设计中发挥作用,通过优化充电插头和充电站的设计,可以减少充电过程中的能量损耗。
车辆空气动力学车辆空气动力学是指车辆行驶时空气对车辆的影响和作用的学科。
空气动力学在汽车设计中起着至关重要的作用,它涉及到车辆的气动外形设计、空气阻力、升力、气流优化等方面,直接影响到车辆的性能、稳定性和燃油经济性。
车辆在行驶过程中,空气对车辆的影响主要表现为空气阻力和升力。
空气阻力是车辆行驶时空气对车辆前进方向施加的阻力,直接影响到车辆的速度和燃油消耗。
为了降低空气阻力,汽车设计师需要通过合理设计车身外形、减小车身侧面积、降低车身下压力等方式来优化车辆的空气动力学性能。
除了空气阻力,车辆在高速行驶时还会受到空气的升力影响。
升力会使车辆在高速行驶时产生不稳定的飘移现象,降低车辆的操控性和行驶稳定性。
为了减小升力,汽车设计师需要通过设计合理的车身下压力装置、增加车身稳定性等措施来改善车辆的空气动力学性能。
在汽车设计中,空气动力学设计是一个复杂而重要的领域。
设计师需要考虑车辆的外形、车身结构、进气口、排气口等因素,以确保车辆在高速行驶时具有良好的空气动力学性能。
通过使用计算流体力学(CFD)等工具,设计师可以模拟车辆在不同速度下的空气流动情况,优化车辆的空气动力学性能。
除了影响车辆性能和燃油经济性外,空气动力学还可以影响到车辆的外观设计。
许多现代汽车设计都采用了流线型的外形设计,以降低空气阻力和减小升力,提高车辆的性能和稳定性。
流线型的外形设计不仅具有美观的外观,也是对空气动力学原理的有效运用。
总的来说,车辆空气动力学是汽车设计中不可忽视的重要领域。
通过优化车辆的空气动力学性能,可以提高车辆的性能、稳定性和燃油经济性,为驾驶员提供更加安全和舒适的驾驶体验。
未来随着科技的不断发展,空气动力学在汽车设计中的作用将变得更加重要,为汽车工业的发展带来新的机遇和挑战。
汽车空气动力学原理解析当我们驾驶汽车在道路上疾驰时,可能很少会去思考空气对车辆行驶的影响。
但实际上,汽车空气动力学在车辆的性能、燃油效率、稳定性和舒适性等方面都起着至关重要的作用。
首先,让我们来了解一下什么是汽车空气动力学。
简单来说,它研究的是汽车在行驶过程中与空气相互作用的规律,以及如何通过优化车辆的外形和结构,来减少空气阻力,提高车辆的性能和效率。
空气阻力是汽车行驶中需要克服的主要阻力之一。
当汽车行驶时,空气会在车身表面形成一层边界层。
这层边界层的摩擦力会产生阻力,而且汽车前方的空气被压缩,形成压力波,后方则形成低压区,前后的压力差也会产生阻力。
这些阻力的总和就是我们常说的空气阻力。
空气阻力的大小与车速的平方成正比,这意味着车速越高,空气阻力对车辆性能和燃油消耗的影响就越大。
那么,汽车设计师们是如何运用空气动力学原理来降低空气阻力的呢?车辆的外形设计是关键。
流线型的车身能够有效地减少空气阻力。
比如,车头部分通常设计成较为圆润的形状,这样可以减少空气的冲击和分离,使气流更顺畅地流过车身。
前挡风玻璃的倾斜角度也经过精心设计,既能提供良好的视野,又能减少气流的阻力。
车身侧面的线条要尽量平滑,避免出现突兀的凸起或凹陷。
车尾部分的设计同样重要,一个良好的车尾设计可以减少车尾的乱流,降低阻力。
除了外形,车辆的一些细节设计也对空气动力学有着重要影响。
例如,后视镜的形状和位置,如果设计不合理,会在行驶中产生较大的阻力。
现在很多车型都采用了更符合空气动力学的后视镜形状,或者使用摄像头代替传统后视镜,以降低阻力。
车辆底部的平整度也很重要,不平整的底部会使气流紊乱,增加阻力。
因此,一些高性能汽车会在底部安装护板,使气流能够更顺畅地通过。
汽车的进气和散热系统也与空气动力学密切相关。
进气口的位置和形状要既能保证足够的进气量,又能减少阻力。
散热格栅的设计也要考虑到气流的流动,以提高散热效率的同时降低阻力。
此外,汽车的风阻系数是衡量其空气动力学性能的一个重要指标。
汽车空气动力学原理的应用当我们驾驶汽车在路上飞驰时,可能很少会想到,汽车的外形设计和行驶过程中所受到的空气阻力,其实都与空气动力学原理息息相关。
汽车空气动力学是一门研究汽车在行驶过程中与空气相互作用的科学,其应用不仅影响着汽车的性能、燃油经济性,还关系到车辆的稳定性和安全性。
首先,让我们来了解一下什么是汽车空气动力学。
简单来说,它是研究空气在汽车周围流动时所产生的各种力和现象的学科。
当汽车行驶时,空气会对车身产生阻力,同时也会在车底、车轮、车窗等部位产生升力或下压力。
通过合理的设计,可以减小阻力、增加下压力,从而提高汽车的性能。
汽车的外形设计是空气动力学应用的重要方面。
流线型的车身能够有效地降低风阻。
想象一下,一个圆润、光滑的物体在空气中移动,与一个棱角分明、凹凸不平的物体相比,前者所受到的阻力要小得多。
现代汽车的设计越来越注重线条的流畅性,从前脸到车尾,都经过精心的雕琢。
例如,车头的倾斜角度、大灯的形状、进气格栅的大小和位置等,都会影响空气的流动。
车尾的设计也同样重要,扰流板、后保险杠的形状等都能起到减少空气阻力和增加下压力的作用。
除了外形,汽车的底盘设计也对空气动力学有着重要影响。
平整的底盘可以减少车底气流的紊乱,降低风阻。
一些高性能汽车甚至会采用底盘护板来进一步优化气流。
此外,车轮和轮毂的设计也不容忽视。
合适的轮毂形状和轮胎花纹能够减少空气的阻力,提高车辆的行驶效率。
空气动力学在汽车的燃油经济性方面也发挥着关键作用。
较低的风阻意味着汽车在行驶中需要克服的阻力减小,发动机的负荷降低,从而节省燃油。
据研究,风阻系数每降低 10%,燃油经济性可以提高 3%左右。
这对于日益紧张的能源形势和消费者的钱包来说,都是非常重要的。
在汽车的稳定性和操控性方面,空气动力学同样功不可没。
通过在车身上增加空气动力学套件,如扰流板、扩散器等,可以增加车辆在高速行驶时的下压力,使车轮与地面的附着力更强,提高车辆的稳定性和操控性。
目录前言 (1)汽车空气动力学的研究现状 (2)一、汽车空气动力学研究的国内外发展情况 (2)二、汽车空气动力学的研究方法 (3)(1)基础理论 (3)(2)风洞试验 (3)(3)数值仿真 (3)(4)CAE技术平台 (6)三、改善汽车空气动力学性能的措施 (7)四、空气动力学的研究前沿 (9)总结 (12)参考文献 (13)前言汽车空气动力学主要是应用流体力学的知识,研究汽车行驶时,即与空气产生相对运动时,汽车周围的空气流动情况和空气对汽车的作用力(称为空气动力),以及汽车的各种外部形状对空气流动和空气动力的影响。
自从世界上有了第一辆汽车以后,德国就在航空风洞中进行了车身外形实验研究。
后来德国人贾莱·克兰柏勒提出前圆后尖的水滴状最小空气阻力造型设计方案,从而找到了解决形状阻力的途径。
美国人W.Elay于1934年用风洞测量了各种车身模型的空气阻力系数。
法国人J.Andreau则提出了汽车表面压差阻力的概念,并研究了侧风稳定性。
2O世纪40年代,另一位法国人L.Romani对诱导阻力进行了研究。
6O年代初,英国人white通过风洞实验提出了估算空气阻力系数的方法。
到7O年代,汽车空气动力学才真正成为一门独立学科。
我国是在8O年代才较为系统地研究汽车空气动力学的。
目前世界上许多公司都在汽车空气动力学研究方面进行探索与竞争,并且大都实力雄厚、各有建树。
美国几乎各大汽车公司都有自己的飞机制造子公司。
通用有休斯飞机公司,克莱斯勒有湾流公司。
苏联的伏尔加有一个27m²的风洞,最高风速1 20km/h。
法国雷诺已经开展了计算机空气动力学的研究。
西德大众最近也购得CDCgo00型计算机,其目的之一可能就是汽车空气动力学的摸拟。
现在世界上计算空气动力学一流水平当属美国NASA。
NASA在飞行器计算空气动力学方面拥有一流的学术、研究和应用水平,并且在不断更新其巨型机。
许多高超音速空气动力试验无法进行,就用计算机进行摸拟。
我国汽车工业由于近年来开始生产轿车才开始了汽车空气动力学的研究。
当前的主要任务应该是抓住太好时机,建立起我国自已的汽车空气动力学研究,试验、设计的综合系统,争取国家及有关高等院校科研单位的支持,建立相应的开放实验室,争取第一流的专家及广泛的国际交流。
开放实验室主要进行汽车空气动力学的计算机摸拟、外形的空气动力学优化设计及相关的并行软、硬件,计算数学的研究。
其中轿车的空气动力学摸拟与优化必将太大加快新车型的开发速度,以提高产品在世界市场的竞争力,并为我国产品参与世界市场竞争创造一个开放的高水乎研究环境。
在空气动力学的研究、应用的世界范围的角逐中,不断提高水平、提高素质。
汽车空气动力学的研究现状空气动力学特性直接影响汽车的经济性、动力性、操纵稳定性和乘坐舒适性等。
为改进汽车性能,汽车工业界投人大量人力、物力和财力研究汽车内外的空气流动及其相关的各种现象。
风洞试验是汽车空气动力学研究的传统而又有效的方法,但风洞建设投资大,试验周期长,且存在堵塞效应、地面效应与车轮旋转效应模拟等问题。
仅采用风洞试验和路面测试技术研究汽车空气动力学,已不能满足更快速度开发出更经济、安全、舒适的汽车的需要。
随着计算机和计算技术的迅速发展而蓬勃兴起的数值仿真方法为汽车空气动力学的研究开辟了新的途径。
近年来,汽车空气动力学数值仿真发展迅速,数值仿真在汽车流场研究中的重要性不断增加,应用范围不断扩大。
下面从不同方面阐述汽车空气动力学的发展情况。
一、汽车空气动力学研究的国内外发展情况国外的汽车空气动力学研究可以追朔到本世纪的20-30年代,但直到7O年代以觑,还没有比较完整系统的研究。
此学科在近3O年中得到了较大发展。
7O年代以来,国外陆续发表了汽车空气动力学方面的研究成果、研究报告和专著,研究手段普遍采用航空试验用的风洞对汽车空气动力特性进行研究,研究的重点主要是空气动力的特性以及它们对汽车性能的影响。
国内在这方面的研究起步较晚,尽管也开过专题性的学术会议,但总体上说还处于起步阶段。
从有关学术刊物上看到,有关汽车空气动力学方面的论文很少,也还没有见到国内学者编著有关汽车动力学方面的学术著作或教科书。
也就是说,国内还没有有效地进行汽车空气动力学的研究。
但是,鉴于这项课题研究的经济效益和社会效益,以及我国经济发展的中长期战略,都迫切地需要将这个课题的研究提到议事日程上来。
就国内目前的情况看,无论从人力还是设备上都完全具备研究的条件与实力,关键是要引起国内学者对此项研究的重视以及有关部门的组织与必要的投资,从而有远见地对汽车空气动力学进行先期研究,以适应今后十年乃至更长期国民经济发展的需要,为国家创造较大的经济效益。
二、汽车空气动力学的研究方法(1)基础理论研究空气运动规律的基础是质量守衡、动量守衡和能量守衡定律,可由Euler、NS等数学方程组来描述。
然而有关不可压流体特性、流体阻力理论以及汽车绕流特性等基础理论研究还有待深化。
[9](2)风洞试验风洞是利用巨大的风扇,把空气吸入管孔中,再利用整流板及管孔渐小的设计,把吸进的空气加以整流和加速,使之达到所需的风速,然后再送入风洞的试验段中。
在设计和改进汽车时,作出相应的模型或实物,并放入风洞进行空气动力学测试。
国内外大型汽车制造公司不惜耗费巨资建造汽车试验风洞,美国通用汽车公司研制出4 500 kW、叶片直径13.1 m的世界上最大的风洞装置。
风洞或实车道路空气动力学特性试验包括:①通过表面丝带法和网格丝带法测试车身表面流态;②通过烟度发生器实施烟流法测试汽车车身周围流态;③通过荧光添加剂喷雾法和水流模拟法进行流动模拟试验,以及用高速摄影法对雨水和灰尘流动特性进行印证;④通过肥皂泡法、丝带法和烟流法,对发动机室和驾驶室内的气流流态进行试验印证;⑤通过滑石粉法和泥土重量分析法印证泥垢附着状态等。
[9](3)数值仿真汽车空气动力学研究主要有两种方法,一种是进行风洞试验;另一种是利用CFD程序进行数值模拟。
传统的风洞试验结果一般可靠性比较高,但由于它有许多局限性,如风洞试验成本高、周期长、需要制作一系列油泥模型等,阻碍了它在汽车设计中的应用。
另外,在风洞试验时,我们只能在有限个截面和其上有限个点处测得速度、压力和温度值,而不可能获得整个流场中任意点的详细信息。
为了观测整车的流场结构,只能依靠一些定性手段,如烟流法、油膜法和丝带法。
要精确研究某些复杂流动现象,如层流向湍流的转变、拖拽涡形成与发展、尾部涡系结构等.测出这些流动的流场参数,测量截面选取很大程度上依靠经验,这样使得精确研究这些复杂流动及其机理变得非常困难。
与风洞试验相反,CFD精度比不上风洞试验,但却几乎克服了它的所有局限性。
CFD是计算流体动力学(Computational Fluid Dynamics)的英文名称的简写。
在过去的十几年中,随着计算机技术的发展,CFD被越来越多的应用到了汽车设计中。
目前,CFD可以分析从层流到湍流、定常到非定常、不可压到可压、无粘到有粘的几乎所有的流动现象。
CAD技术与CFD的结合可以使得新车型的空气动力学设计周期大大缩短。
由于CFD可以方便灵活地改变初始条件、边界条件以及几何边界条件,并且可以获得整个流场任意点处的详细信息,使得研究清楚流动机理变得可行。
对某种车型的空气动力性能优选更加快速有效。
CFD最主要的问题在于精度不如风洞试验,但目前许多大型商业化通用软件已经很好地解决了这一问题。
而某些专用CFD软件在解决某些汽车流场计算时可达到更高精度。
CFD方法是对流场的控制方程用计算数学的算法将其离散到一系列网格节点上求其离散的数值解的一种方法。
计算数学中,将具体的流场控制方程分为3类:椭圆型、抛物型和双曲型方程。
椭圆型方程与时间变量无关,仅与空间变量的:次导数项有关,一般用作描述定常情况的控制方程。
抛物型与双曲型方程不仅与空间变量导数项有关,而且分别与时间变量的一阶和二阶导数项有关,被用作描述非定常情况下的控制方程求解偏微分方程的数值方法主要分为有限差分法、有限元法及有限体积法3种。
它们中的任意一种都可以用来求解偏微分方程,但求解的精度各不相同。
对这3种不同类型方程数学上已经发展出不同的稳定、收敛的算法。
一般对椭圆型方程使用有限元法,对抛物型和双曲型方程则使用有限体积法。
目前流行的大型商业化CFD软件中FLOTRAN是使用有限元法,而CFX、STAR—CD、FLUENT等是使用有限体积法。
数值模拟的一般步骤是:a、建立所研究问题的物理模型,再将其抽象成数学、力学模型。
之后确定要分析的几何形体的空间影响区域。
b、建立整个几何形体与其空间影响区域,即计算区域的CAD 模型,将几何体的外表面和整个计算域进行空问网格削分。
网格的稀疏以及网格单元的形状将会对以后的计算产生很大的影响。
不同的算法格式为保证计算的稳定性和计算效率,一般对网格的要求也不一样。
c、加入求解所需的初始条件,入口与出口处的边界条件一般为速度、压力条件,若分析的问题考虑了湍流则还要给出湍流动能及耗散率的出入口边界条件。
另外还要加入几何壁面的边界条件,一般计算域的边界应加上正常的所处环境的流体参数,而几何形体表面由于粘性效应,则应加上无滑移的边界条件,即速度沿各个方向均为零。
这里要注意在考虑了相对运动和地面效应等之后的边界条件的加法,不要矛盾和重复。
d、选择适当的算法,设定具体的控制求解过程和精度的一些条件,对所需分析的问题进行求解,结果以数据文件保存。
e.选择合适的后处理器(Post Processor)读取计算结果文件,将其以图形化格式反映出来。
观察其结果若与真实情况不符则重复上述步骤直到求得收敛数值解。
在内燃机的设计和开发中,CFD已被作为一种重要而有效的工具加以利用。
内燃机的燃烧过程很大程度上受燃料与空气混合程度的影响,这种混合是一种复杂的瞬态流动。
目前绝大多数CFD商用软件均可以解决此问题,它们均提供有求解多元混合流动的模块,且计算精度均较高。
另外,在汽车室内气候调节、暖气、通风空调系统的设计中也大量使用CFD软件来帮助分析。
在发动机冷却、排气系统的设计中,CFD分析结果也被大量地使用。
在汽车制冷风扇的叶片设计以及液力变矩器、油泵和盘式制动器的冷却系统的设计中也大量地使用了CFD分析结果。
在汽车领域,CFD正成为预测整车外流场和热分布场的有力工具。
它正在被大量应用于日常汽车零部件的设计开发中。
由于风洞试验中取得整个流场任意一点处的流动状况非常难。
在某些情况下,当CFD求解精度足够时,CFD数值模拟可以提供整个计算域上的流场结构特征的详细信息。
只要应用适当,CFD能够显著地减少原型车风洞试验次数和设计成本,缩短开发周期。
在我们使用商业化CFD 软件进行汽车空气动力学数值模拟过程中,国内常见的CFD软件,如CFX 、FLUENT、STAR—CD以及FLOTRAN都可以对汽车外流场进行较精确的模拟。