LED芯片种类及介绍
- 格式:ppt
- 大小:871.50 KB
- 文档页数:14
关于LED驱动电源那些常见的⼗款经典LED驱动芯⽚⽬前,芯⽚设计⾏业越来越多的⼚家加⼊了LED设计,设计出众多型号,在此从性能价格⽐⽅⾯详细的谈谈,怎样选择⾃⼰合适的IC,哪些IC最合适⾃⼰准备设计的产品。
为IC设计企业了解市场需要什么样的IC,应该制定什么价位中合适。
价格随时会变动只能为参考值。
质量和价格是决定是否采⽤的因数,符合产品设计质量参数要求很重要!价格更重要!1、美国CATALYST公司-CAT4201这个IC驱动1-7颗1W LED。
效率可达92%,6-28V电压输⼊范围降压型驱动应⽤设计。
它最⼤的优势是封装SOT23⼤⼩,线路简介,符合⽬前多数⼩体积灯杯设计使⽤要求。
⼤阻值范围电流调节,可以电位器宽阻值范围调节亮度,⽐如设计台灯等产品需要这样时。
2、美国国家半导体 LM3404LM3404和LM3402的线路⼀样,不同的是电流可以达到1A,驱动1-15pcsLED性价⽐较⾼。
上⾯所列IC规格都是内置MOS管,内置MOS管可以简化线路设计,⼩体积,降低设计综合成本,故障率也会降低。
因其⽬前IC⼯艺制成、成本等原因⼤于1A以上的LED驱动IC需要外置MOS管。
在我们⽇常产品设计中经常会遇到⼤电流设计,⽐如5W、10W等更⾼功率的设计要求,那只能选择外置MOS管的IC才可以。
3、褒贬不⼀的LED驱动芯⽚IC-AMC7150在当时AMC7150还是不错的,它有个很重要的因数就是价格,有不到2元的市场价格,是你采⽤它的理由。
AMC7150⽬前有⼏⼗家可以直接替换的IC型号,价格战会⽆法避免。
在设计参数要求不⾼的低压4-25V产品中可以选择它,基本驱动能⼒在3W以下应⽤设计。
⽐如1W串3颗或3W 1颗LED设计是稳定的。
4、欧洲Zetex公司-ZXLD1350这颗IC⽬前市场反应良好,也是SOT23⼩体积封装,输⼊7-30V电压降压恒流驱动1-7psc LED,线路简洁实⽤。
设计时Rs要紧靠IC避免供电电压⼤幅度不动,这样会影响恒流效果。
LED芯片分类知识LED 芯片分为MB 芯片,GB 芯片,TS 芯片,AS 芯片等4 种,下文将分析介绍这4 种芯片的定义与特点。
1.MB 芯片定义与特点定义:MB 芯片:Metal Bonding (金属粘着)芯片;该芯片属于UEC 的专利产品特点﹐1、采用高散热系数的材料---Si 作为衬底,散热容易。
Thermal ConductivityGaAs: 46 W/m-KGaP: 77 W/m-KSi: 125 ~150 W/m- KCupper:300~400 W/m-kSiC: 490 W/m-K2、通过金属层来接合(wafer bonding)磊晶层和衬底,同时反射光子,避免衬底的吸收. 3、导电的Si 衬底取代GaAs 衬底,具备良好的热传导能力(导热系数相差3~4 倍),更适应于高驱动电流领域。
4、底部金属反射层,有利于光度的提升及散热。
5、尺寸可加大﹐应用于High power 领域﹐eg: 42mil MB 2.GB 芯片定义和特点定义﹐GB 芯片:Glue Bonding (粘着结合)芯片;该芯片属于UEC 的专利产品特点:1:透明的蓝宝石衬底取代吸光的GaAs 衬底﹐其出光功率是传统AS (Absorbable structure)芯片的2 倍以上,蓝宝石衬底类似TS 芯片的GaP 衬底。
2:芯片四面发光﹐具有出色的Pattern 图。
3:亮度方面﹐其整体亮度已超过TS 芯片的水平(8.6mil)。
4:双电极结构﹐其耐高电流方面要稍差于TS 单电极芯片。
3.TS 芯片定义和特点定义:TS 芯片:transparent structure(透明衬底)芯片,该芯片属于HP 的专。
LED芯片种类及介绍LED芯片是一种发光二极管(Light Emitting Diode,LED)的核心组件,广泛应用于照明、显示、通讯和传感等领域。
根据不同的用途和要求,LED芯片有多种不同的种类和类型。
下面将介绍一些常见的LED芯片。
1.普通LED芯片:普通LED芯片是最基本的LED芯片,通常由镓磷化物材料构成。
它们具有低功耗、高亮度、长寿命等优点,广泛用于室内和室外照明、指示灯、面板指示等应用。
普通LED芯片有不同的尺寸和颜色可选。
2.SMDLED芯片:SMD(Surface Mount Device)LED芯片是一种表面贴装封装的LED芯片。
它们通常非常小巧,适合在限空应用中使用,例如电视、手机、平板电脑等显示屏。
SMD LED芯片有多种类型,包括单色、多色和全彩等,可实现各种显示效果。
3.COBLED芯片:COB(Chip on Board)LED芯片是将多个LED芯片连接到同一电路板上,形成一组LED芯片。
它们具有高亮度、高光效和均匀光分布的优点,在照明应用中非常受欢迎,例如室内灯具、车灯和户外照明。
4.UVLED芯片:UV(Ultraviolet)LED芯片是一种可以发出紫外线光的LED芯片。
它们广泛应用于紫外线消毒、紫外线固化、光刻、UV打印等领域。
UVLED芯片有多种波长可选,不同波长的紫外线适用于不同的应用。
5.IRLED芯片:IR(Infrared)LED芯片是一种可以发出红外线光的LED芯片。
它们在遥控器、红外线通信、红外线传感等领域得到广泛应用。
IR LED芯片有不同的波长和功率可选,可以适应不同的应用需求。
6.RGBLED芯片:RGBLED芯片由红、绿、蓝三种颜色的LED芯片组成,可以通过不同的亮度和混色方式来呈现各种颜色。
RGBLED芯片广泛用于彩色显示、舞台灯光、装饰照明等领域。
除了以上介绍的常见LED芯片,还有其他一些特殊类型的LED芯片,如高亮度LED芯片、高功率LED芯片、有机LED芯片等,它们在各自的领域有着特殊的用途和优势。
led 芯片材料体系LED(Light Emitting Diode)芯片是LED产品的核心部分,它通过半导体材料的能级跃迁来产生光。
LED芯片的材料体系主要包括以下几种:1. 硅基材料(Si-based):硅(Si)是最早被用于LED制造的材料之一,但由于其发光效率相对较低,目前主要用于低功率的LED应用,如指示灯。
2. 镓氮化物基材料(GaN-based):氮化镓(GaN)是制造蓝光LED的主要材料,因为它具有较高的击穿电压、良好的热稳定性和较宽的带隙。
蓝光LED可以通过与其他半导体材料结合形成量子阱结构来产生其他颜色的光,例如通过与砷化镓(GaAs)结合产生绿光,与铟镓磷(InGaP)结合产生黄光。
3. 磷化镓基材料(GaP-based):磷化镓(GaP)及其合金用于制造黄绿色、绿色到红色范围的LED。
4. 砷化镓基材料(GaAs-based):砷化镓(GaAs)常用于制造红光和红外线LED。
5. 铟镓氮化物基材料(InGaN-based):铟镓氮化物(InGaN)合金被用于制造高效率的蓝光和绿光LED。
6. 铝镓氮化物基材料(AlGaN-based):铝镓氮化物(AlGaN)合金可以产生紫外和深紫外光,常用于特殊应用,如UV固化、消毒等。
7. 复合材料:为了得到更广泛的光谱范围,研究者们开发了多种复合材料,如多元合金化镓氮化物(GaN-based alloys)。
LED芯片的设计和制造涉及到多种材料和工艺的结合,包括晶体生长、加工、封装等。
不同的材料体系具有不同的电学、热学和光学特性,因此选择合适的材料体系对于实现LED芯片的高效率、高稳定性和低成本生产至关重要。
随着技术的不断进步,新材料和新技术的开发也在持续进行中,以满足不断增长的市场需求。
LED芯片LED芯片是一种光电半导体器件,它的全称是Light-emitting diode,即发光二极管。
LED芯片的主要作用是将电能转换成光能,通过发光产生可见光。
与传统的荧光灯和白炽灯相比,LED芯片具有更高的能效、更长的寿命、更小的体积和更高的耐冲击性。
LED芯片的基本结构包括P型半导体和N型半导体,中间夹着一层P-N结。
当正向电压施加到LED芯片上时,电子会从N型半导体流向P型半导体,而空穴则从P型半导体流向N型半导体,两者在P-N结相遇时会发生复合,产生光能。
根据不同的材料组成,LED芯片可以发出不同的光谱,从红色、绿色到蓝色甚至紫外线。
LED芯片的优点主要体现在以下几个方面:1. 能效高:LED芯片的能效比传统荧光灯和白炽灯更高,转换电能至光能的效率非常高,能够节省能源的消耗。
相同功率下,LED芯片的光亮度要高于其他光源。
2. 长寿命:LED芯片寿命一般可以达到几万个小时以上,远远超过传统灯泡。
这意味着LED产品的使用寿命更长,更节省更换成本。
3. 可调性好:LED芯片的亮度和颜色可以通过外部电流和电压进行调节,具有非常好的可调性。
这使得LED应用非常广泛,可以满足不同场景下的需求。
4. 反应速度快:LED芯片的反应速度非常快,可以迅速达到最大亮度,适合对光亮度要求较高的场景,如电子显示屏和灯光效果等。
5. 尺寸小:LED芯片的尺寸非常小,可以做到非常紧凑的设计,适合集成在各种设备和产品中。
6. 环保节能:LED芯片不含有汞等有害物质,不会对环境产生污染,而且能效高,节约能源,符合可持续发展的要求。
目前,LED芯片已广泛应用于照明、显示、电子产品、交通信号灯、汽车照明等领域,成为一种主流的照明和显示技术。
随着技术的不断进步,LED芯片的亮度、颜色、能效和稳定性不断提高,预计未来LED芯片的应用范围还将进一步扩大。
LED 显示屏中常用的芯片说明及原理Led中常见的芯片有:74HC595列驱动,74HC138译码驱动,74HC245信号放大,74HC4953行扫描等。
1、74HC59574HC595是硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
74HC595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SHcp(移位寄存器时钟输入)的上升沿输入到移位寄存器中,在STcp(存储器时钟输入)的上升沿输入到存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。
三态。
将串行输入的8位数字,转变为并行输出的8位数字,例如控制一个8位数码管,将不会有闪烁。
2特点8位串行输入 /8位串行或并行输出存储状态寄存器,三种状态输出寄存器(三态输出:就是具有高电平、低电平和高阻抗三种输出状态的门电路。
)可以直接清除 100MHz的移位频率特点8位串行输入/8位串行或并行输出存储状态寄存器,三种状态输出寄存器(三态输出:就是具有高电平、低电平和高阻抗三种输出状态的门电路。
)可以直接清除100MHz的移位频率3输出能力并行输出,总线驱动;串行输出;标准中等规模集成电路595移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
参考数据Cpd决定动态的能耗,Pd=Cpd×VCC×f1+∑(CL×VCC^2×f0)F1=输入频率,CL=输出电容f0=输出频率(MHz)Vcc=电源电压4、引脚说明符号引脚描述Q0…Q7 8位并行数据输出,其中Q0为第15脚GND 第8脚地Q7’第9脚串行数据输出MR 第10脚主复位(低电平)SHCP 第11脚移位寄存器时钟输入STCP 第12脚存储寄存器时钟输入OE 第13脚输出有效(低电平)DS 第14脚串行数据输入VCC 第16脚电源2、74HC138 芯片74HC138是一款高速CMOS器件,74HC138引脚兼容低功耗肖特基TTL(LSTTL)系列。