高空飞艇螺旋桨优化设计与气动性能车载试验_焦俊
- 格式:pdf
- 大小:607.71 KB
- 文档页数:7
引用格式:武珈羽,杨金水,陈丁丁,等. 航空复合材料螺旋桨叶片制造工艺研究进展[J]. 航空材料学报,2024,44(2):104-116.WU Jiayu,YANG Jinshui,CHEN Dingding,et al. Research progress in manufacturing technology of aviation composite propeller blade[J]. Journal of Aeronautical Materials,2024,44(2):104-116.航空复合材料螺旋桨叶片制造工艺研究进展武珈羽, 杨金水*, 陈丁丁, 郭书君, 尹昌平(国防科技大学 空天科学学院 材料科学与工程系,长沙 410073)摘要:螺旋桨推进方式在航空领域占有重要地位。
复合材料具有高比强度、高比模量、高阻尼、可设计性等特性,复合材料螺旋桨叶片能够提升螺旋桨减重效率、推进效率、耐蚀性、降噪等方面性能,已成为大势所趋。
本文对国内外航空复合材料螺旋桨叶片的研究成果进行回顾和总结,基于传统飞机螺旋桨叶片和旋翼桨叶,对航空螺旋桨叶片材料体系、结构设计和制造工艺进行分类阐述,重点总结复合材料螺旋桨制造工艺中的关键技术问题,概述桨叶制造工艺方面的仿真模拟研究,最后从健全材料体系、优化结构设计、深入工艺研究和加强数值模拟技术的工程化应用几个方面提出了国产化复合材料航空螺旋桨的未来发展方向。
关键词:复合材料;螺旋桨叶片;复合材料螺旋桨;成型工艺doi:10.11868/j.issn.1005-5053.2023.000042中图分类号:V258 文献标识码:A 文章编号:1005-5053(2024)02-0104-13Research progress in manufacturing technology of aviationcomposite propeller bladeWU Jiayu, YANG Jinshui*, CHEN Dingding, GUO Shujun, YIN Changping (Department of Material Science and Engineering,College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China)Abstract: Propeller propulsion technology plays an important role in aviation field. Composite materials have the characteristics of high specific strength,high specific modulus,high damping,designability and so on. The use of composite material propeller blades can further improve the performance of propeller in terms of mass reduction efficiency,propulsion efficiency,corrosion resistance,noise reduction. Composite material propeller blades have become the general trend. Based on aircraft propeller blades and rotor blades,this paper aims to perform a brief review of the research achievements of aviation composite propeller blades at home and abroad,classifies and expounds the material systems,structural design and molding processes of aviation propellers. The key technical problems and the simulation research on manufacturing process of propeller at home and abroad are summarized. Finally,the future development direction of domestic composite propellers from the aspects of improving the material system,optimizing the structure design,deepening the process research and strengthening the engineering application of numerical simulation technology are concluded.Key words: composite material;propeller blade;composite propeller;molding process螺旋桨是一种通过把流动介质向后推去而使桨叶产生反方向力的推进装置。
螺旋桨飞机的气动特性分析与优化设计一、引言航空工业一直以来都是高科技产业的代表之一,在现代航空工业的发展过程中,螺旋桨飞机一直都占据着重要的地位。
与常规喷气式飞机相比,螺旋桨飞机在短距离起降能力、飞行航线灵活性、短途航班航速等方面具有独特的优势。
本文将对螺旋桨飞机的气动特性进行分析,并提出相应的优化设计建议。
二、螺旋桨飞机气动特性概述1. 螺旋桨飞机的气动装置螺旋桨飞机通过转动的螺旋桨产生推力,从而实现飞行。
因此,螺旋桨的设计和性能对螺旋桨飞机的飞行性能具有重要影响。
螺旋桨主要由叶片、中心轴、变距机构、附属装置等组成,其中叶片是螺旋桨的核心部件,其翼型、叶尖速度、叶片尺寸等参数直接影响着螺旋桨的推力性能。
2. 螺旋桨飞机的气动特性螺旋桨飞机的气动特性主要表现为下列方面:(1)升阻比高:螺旋桨飞机具有升阻比高的特点,这使得螺旋桨飞机在短距离起降、高海拔场地等条件下的飞行表现非常优秀。
(2)飞行航线灵活:螺旋桨飞机具有较小的转弯半径和较短的起降距离,能够在复杂的地形条件下进行飞行,这种能力在特殊的机场起降时非常有用。
(3)噪声低:与常规的喷气式飞机相比,螺旋桨飞机的噪声非常低,这使得其在城市或者住宅区附近的机场安全可靠地运营。
三、螺旋桨飞机气动特性优化方案1. 叶片设计与制造的优化叶片是螺旋桨的核心部件,其设计和制造对螺旋桨的推力和噪声性能具有重要影响。
在叶片的设计中,应考虑以下几个方面:(1)叶片优化翼型:合适的翼型可以使叶片的升力系数更高,在同样的引擎功率下,可以产生更大的推力。
(2)优化叶尖速度:在螺旋桨的设计中,颇有争议的一个观点就是,叶尖越快,螺旋桨的性能就越好。
但在实际操作中,叶尖速度过快会增加螺旋桨噪声,并且会导致叶片的损坏。
因此,需要找到一个合适的叶尖速度。
(3)优化叶片尺寸:叶片的尺寸不仅对螺旋桨的推力和噪声性能具有影响,还会对螺旋桨的重量和制造成本产生影响。
因此,在叶片的设计中需要权衡各种因素,寻找一个最优的方案。
动升力翼飞艇气动特性与修正技术研究白静;解亚军【摘要】A comparative experimental study of two similar winged airships is presented. The force measurement experiments are carried out in NF-3 low speed wind tunnel at Northwestern Polytechnical University. Due to the specialty of airship experiments, several experimental aspects such as test models, balance configurations, process control and data processing are presented in detail. Necessary corrections including side - slip angle, blockage effect and lift effect are implemented to increase accuracy. The aerodynamic characteristics of two airships are also discussed.%针对动升力翼飞艇模型在双翼浮升和大载重浮升情况下风洞测力实验的特殊性,系统地开展了实验模型、测力天平、过程控制与数据处理方法等研究.对实验结果进行了支架干扰修正、气流偏角修正、阻塞效应及升力效应修正,给出了两种飞艇模型的气动特性,提高了实验精度.【期刊名称】《科学技术与工程》【年(卷),期】2011(000)022【总页数】5页(P5350-5354)【关键词】飞艇;动升力翼布局;测力实验;气动特性【作者】白静;解亚军【作者单位】西北工业大学翼型叶栅国家重点实验室,西安710072;西北工业大学翼型叶栅国家重点实验室,西安710072【正文语种】中文【中图分类】V265.2飞艇早于飞机诞生,属于轻于空气的航空器。
考虑气动-结构的高空螺旋桨多学科优化方法1 概述高空螺旋桨是一种重要的飞行器部件,用于飞机在高空巡航时提供推进力。
为了保证高空螺旋桨的安全性能和推进效率,需要进行气动-结构的多学科优化设计。
本文将对高空螺旋桨多学科优化方法进行探讨和分析。
2 气动-结构多学科优化的意义随着飞机技术的不断进步,高空螺旋桨的气动和结构特性对飞机的总体性能越来越重要。
从气动角度来说,高空螺旋桨需要具有较高的推进效率和稳定性能。
而从结构角度来说,高空螺旋桨需要具有足够的强度和刚度以承受高速飞行过程中的复杂载荷。
因此,实现高空螺旋桨的气动-结构多学科优化设计,能够在保证高空螺旋桨安全的前提下,提高飞机整体性能和效益。
3 气动-结构多学科优化的方法在进行高空螺旋桨气动-结构多学科优化设计时,需要考虑以下几个方面:3.1 基于CFD的气动特性分析采用计算流体力学(CFD)方法,对高空螺旋桨进行气动特性分析。
通过分析获得高空螺旋桨在不同飞行状态下的气动性能参数,如推力、扭矩、升力系数、阻力系数等。
在气动特性分析中,需要考虑高空飞行过程中较高的马赫数和迎角,以保证模拟结果的准确性。
3.2 结构特性分析基于有限元分析(FEA)方法,对高空螺旋桨进行结构特性分析。
通过建立高空螺旋桨的有限元模型,获得高空螺旋桨在不同工作状态下的应力、应变等结构特性参数。
结构特性分析需要考虑高空飞行对高空螺旋桨的冲击载荷,以保证模拟结果的准确性。
3.3 多学科优化将气动特性分析和结构特性分析的结果进行集成,并引入多学科优化(MDO)算法进行联合优化。
在MDO算法中,将气动-结构特性作为目标函数进行优化,在保证高空螺旋桨处于安全状态的前提下,最大化高空螺旋桨的推进效率和整体性能。
3.4 效果验证在进行多学科优化之后,需要对优化结果进行验证。
采用CFD和FEA模拟方法,对优化后的高空螺旋桨进行气动和结构特性分析,比较其与未优化前的高空螺旋桨的异同。
在验证中,需要重点关注高空螺旋桨的推进效率和安全性能。
螺旋桨流场数值模拟与优化设计螺旋桨是一种重要的船舶推进装置,它的设计和优化对于船舶的性能和效率具有关键作用。
而螺旋桨的性能与其流场密切相关。
为了更好地理解和优化螺旋桨的流场特性,数值模拟成为了一种重要的研究手段。
数值模拟是通过计算机模拟物理或工程现象的数学模型,以获取结果并推导出相应的结论。
在螺旋桨的数值模拟中,常用的方法是计算流体力学(CFD)方法。
CFD方法通过将流体划分成离散的计算单元,并运用守恒方程、流体运动方程和边界条件等基本原理,求解流体的速度、压力和其他相关参数。
首先,通过数值模拟可以获得螺旋桨的流场分布情况。
在数值模拟中,可以设定不同的边界条件和螺旋桨的几何参数,然后求解流场中的速度和压力分布。
通过分析螺旋桨周围的流场,可以了解到绕螺旋桨旋转的流体是如何受到螺旋桨叶片影响的。
这对于螺旋桨的设计和优化有着重要的参考价值。
其次,数值模拟还可以研究螺旋桨的性能参数,如推力、效率等。
在数值模拟中,可以计算螺旋桨叶片的力学特性,进而推导出螺旋桨的推力和效率。
通过改变螺旋桨的几何参数和边界条件,可以优化螺旋桨的设计,以达到更好的推进效果和节能效果。
此外,数值模拟还可以用于研究螺旋桨的噪声和振动特性。
对于大型船舶而言,螺旋桨的噪声和振动是非常重要的问题。
通过数值模拟可以预测和分析螺旋桨产生的噪声和振动,并寻找相应的改进方案。
这不仅可以提高船舶的运行安全性,还能减少对水生生物的干扰。
在数值模拟中,还可以考虑其他因素对螺旋桨性能的影响,如流体的黏性、湍流等。
这些因素都会对螺旋桨的流场分布和性能参数产生影响,因此在模拟中需要进行相应的考虑和分析。
此外,数值模拟还可以结合实验数据和现场观测结果,进行验证和修正,以提高模拟的准确性和可靠性。
总结而言,螺旋桨的流场数值模拟与优化设计在船舶工程领域中具有重要意义。
通过数值模拟,我们可以深入研究螺旋桨的流场特性,优化螺旋桨的设计和性能参数,并研究螺旋桨的噪声和振动特性。
船舶螺旋桨技术的最新进展与优化方案随着航运业的发展,船舶螺旋桨技术也在不断演进和进步。
本文将介绍船舶螺旋桨技术的最新进展和优化方案,以助于提高船舶性能和能源效率。
一、船舶螺旋桨技术的最新进展1. 利用计算流体力学(CFD)仿真模拟的应用计算流体力学是一种模拟流体运动和传热的数值计算方法,在船舶螺旋桨设计中起到了重要的作用。
通过使用CFD仿真模拟,设计人员可以预测船舶螺旋桨在水中的工作情况,从而对其进行优化。
这一技术的使用可以减少试验和改进周期,提高设计效率和成本效益。
2. 利用复合材料的应用传统的船舶螺旋桨通常使用铸铁或铜合金等金属材料制造,随着复合材料的发展,船舶螺旋桨也开始应用于复合材料制造。
复合材料螺旋桨具有更高的强度和更轻的重量,可以降低船舶的燃油消耗,提高航行速度和效率。
3. 螺旋桨翼型的优化设计船舶螺旋桨的翼型设计对于提高推进效率和减小噪音有重要影响。
近年来,研究人员通过优化螺旋桨的翼型设计,使得螺旋桨在水中工作时产生更小的湍流和阻力,从而提高推进效率和降低噪音。
二、船舶螺旋桨技术的优化方案1. 提高螺旋桨的材料和制造工艺船舶螺旋桨的材料和制造工艺对其性能有着直接的影响。
选择轻质、高强度的材料,并采用先进的制造工艺,可以提高螺旋桨的耐久性和抗腐蚀能力,同时降低螺旋桨的重量。
2. 优化螺旋桨的几何参数螺旋桨的几何参数是影响其推力和效率的重要因素。
通过调整螺旋桨的叶片数、叶片扭角、直径等几何参数,可以使螺旋桨在水中的工作更加有效,提高推进效率。
3. 运用可变螺距技术可变螺距技术可以根据船舶的速度和荷载情况自动调整螺旋桨的螺距,以提供最佳的推力和效率。
这一技术可以在不同工况下最大程度地利用螺旋桨的性能,提高船舶的能源利用效率。
4. 采用多螺旋桨系统多螺旋桨系统是一种将多个螺旋桨安装在船舶上的技术,通过相互配合和协同工作,可以提供更强的推力和精确的控制能力。
这种系统适用于大型船舶或需要高机动性的船只,可以显著提高船舶的操纵性和效率。