光电效应及普朗克常数的测定预习提纲
- 格式:doc
- 大小:136.00 KB
- 文档页数:5
光电效应测普朗克常数实验报告光电效应测普朗克常数实验报告引言光电效应是指当光照射到金属表面时,金属会发射出电子。
这一现象的发现对于量子力学的发展起到了重要的推动作用。
普朗克常数是描述光子能量的基本物理常数,测量其数值对于研究光电效应具有重要意义。
本次实验旨在通过测量光电效应中的电流与光强度之间的关系,来确定普朗克常数的数值。
实验装置实验中使用的装置主要包括光源、光电管、电流计、电压源和光强度调节器。
光源可以发出可调节的单色光,光电管则是用来测量光电效应中的电流。
电流计用来测量光电管中流过的电流,电压源用来提供光电管的工作电压,光强度调节器则用来调节光的强度。
实验步骤1.首先,将实验装置搭建好,确保各个部件的连接正确无误。
2.接着,通过调节光强度调节器,使得光电管中的电流达到最大值,此时光强度即为临界光强度。
3.然后,固定光强度调节器的位置,改变光源的颜色,即改变光的波长。
记录下各个波长下的光电管中的电流值。
4.最后,根据测得的光电管中的电流值和光强度的关系,计算出普朗克常数的数值。
实验结果与分析在实验中,我们测得了不同波长下光电管中的电流值,并计算出了相应的光强度。
通过绘制电流与光强度的曲线图,我们可以看出它们之间存在着一定的线性关系。
根据实验结果,我们可以得到普朗克常数的数值。
讨论与结论通过本实验,我们成功地测量了光电效应中的电流与光强度之间的关系,并计算出了普朗克常数的数值。
然而,在实验中可能存在一些误差,如仪器误差、环境因素等。
为了提高实验结果的准确性,我们可以采取一些措施,如增加测量次数、减小仪器误差等。
此外,我们还可以进一步研究光电效应的机理,探索其在其他领域的应用。
总结本次实验通过测量光电效应中的电流与光强度之间的关系,成功地测得了普朗克常数的数值。
光电效应作为量子力学的基础现象,对于我们深入理解光与物质的相互作用具有重要意义。
通过实验的过程,我们不仅加深了对光电效应的认识,还锻炼了实验操作和数据处理的能力。
光电效应测普朗克常数实验报告实验目的:本实验旨在通过测量光电效应中光电流随光强和光频率的变化关系,以及通过测量截止电压来确定普朗克常数h的值。
实验原理:光电效应是指当光线照射到金属上时,金属中的自由电子受到光的激发后被抛出,形成电子流。
光电流I与光强度I、光频率f、截止电压V 和金属材料的性质有关。
根据光电效应的基本方程可以得到以下关系式:1.光电流I与光强度I的关系:I=K*I2.光电流I与光频率f的关系:I∝f^α3.光电流I与截止电压V的关系:I=K*(V-V_0)^2其中,K为比例常数,α为指数,V_0为截止电压。
根据以上关系,可以通过测量光强度I和光频率f的变化关系,以及测量截止电压V来确定普朗克常数h的值。
实验器材与步骤:实验器材:1.光源:使用一个可调节光强的白光灯。
2.光电管:选择一个金属光电效应管,如氢光电管。
3.电路:搭建一个用于测量光电流和截止电压的电路。
实验步骤:1.搭建电路:将光电管与光电效应电路连接,使之与电流计、电压源和截止电压测量仪连接。
2.测量截止电压:调节光源的光强,并逐渐增加电压源的电压,直到电流开始出现明显的变化,记录此时的电压作为截止电压V_0。
3.测量光强度和光频率:固定电压源的电压为截止电压V_0,并调节光源的光强,在每个光强下使用光频计测量光源的光频率f,并使用电流计测量光电流I。
4.数据处理:根据测得的光强度和光频率的数据,绘制光电流I与光频率f的曲线,并利用最小二乘法拟合得到指数α。
利用测得的截止电压V_0,计算光电流I与截止电压V的关系,并利用最小二乘法拟合得到常数K。
5.计算普朗克常数h:根据关系式I=K*I和I∝f^α,利用得到的K 和α,可以计算出普朗克常数h的估计值。
实验结果与讨论:通过实验测得的光电流与光频率的关系曲线,我们可以得到指数α的值。
利用测得的截止电压V_0,可以得到K的值。
将α和K代入关系式I=K*I和I∝f^α中,即可计算得到普朗克常数h的估计值。
光电效应测普朗克常数实验报告一、实验目的1、了解光电效应的基本规律。
2、掌握用光电效应法测量普朗克常数的方法。
3、学习测量截止电压的方法,并通过数据处理得出普朗克常数。
二、实验原理1、光电效应当一定频率的光照射在金属表面时,会有电子从金属表面逸出,这种现象称为光电效应。
逸出的电子称为光电子。
2、爱因斯坦光电方程根据爱因斯坦的理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 和金属的逸出功$W$ 之间的关系可以表示为:\E_{k} =hν W\其中,$h$ 为普朗克常数。
3、截止电压当光电子的动能为零时,所加的反向电压称为截止电压$U_{c}$。
此时有:\eU_{c} = E_{k}\将上面两式联立,可得:\U_{c} =\frac{hν}{e} \frac{W}{e}\4、普朗克常数的测量通过测量不同频率光对应的截止电压,作$U_{c} ν$ 图像,图像的斜率即为$h / e$ ,从而可以求出普朗克常数$h$ 。
三、实验仪器光电效应实验仪、汞灯、滤光片、遮光片、微电流测量仪等。
四、实验步骤1、仪器连接与预热将光电效应实验仪的各个部分正确连接,打开电源,让仪器预热 20 分钟左右。
2、调整仪器(1)调整光源与光电管之间的距离,使光斑能够均匀照射在光电管的阴极上。
(2)调整遮光片,使得光能够准确地通过遮光孔照射到光电管上。
3、测量不同频率光的截止电压(1)依次换上不同波长的滤光片,得到不同频率的单色光。
(2)缓慢调节电压,观察微电流测量仪上的示数,当电流为零时,记录此时的电压值,即为该频率光对应的截止电压。
4、重复测量对每个频率的光,进行多次测量,取平均值以减小误差。
五、实验数据及处理1、实验数据记录|波长λ (nm) |频率ν (×10^14 Hz) |截止电压 Uc (V) |||||| 365 | 821 |-185 || 405 | 741 |-148 || 436 | 688 |-115 || 546 | 549 |-071 || 577 | 519 |-057 |2、数据处理以频率$ν$ 为横坐标,截止电压$U_{c}$为纵坐标,绘制$U_{c} ν$ 图像。
光电效应及普朗克常数的测定预习提纲1、实验任务(1)用光电效应仪测普朗克常数;(必做)(2)光强(光阑孔直径的大小)对普朗克常数测定影响的研究。
(选做)2、实验原理(1)截止电压与截止频率?(2)如何确定不同频率下的截止电压?(3)光电子的能量随光强变化吗?(4)光电流的大小随光强变化吗?(5)如何从光电管的U-I特性图上利用“拐点法”确定“截止电压”?(6)如何利用“线性函数”图像求出普朗克常数?3、操作规范(1)汞灯开启直至实验结束、数据签字后方能关闭;(2)操作时,室内人员请勿讲话和走动,以免影响实验数据;(3)仪器不用时,将镜头盖盖上,关掉电源开关。
4、数据处理表格设计表格设计:不同频率下的伏安特性曲线(数据仅仅供参考,每位同学的仪器数据都不同)光阑孔直径Φ= 10.00 ×10-3m;距离: L=27.13×10-2 m;电压值量程:-3.14—+3.14 V;电流值放大倍率×10-5A数据处理:(两种方法选一种)(1)利用坐标纸:根据实验数据在坐标纸上画出每个频率下的伏安特性曲线,并找出相应的截止电压、作出截止电压——频率图,找出斜率k,再根据公式h=ek 求出普朗克常数。
(2)利用电脑:将实验数据输入在Excel表格中,点击“图表向导”作出每个频率下的伏安特性曲线图形,确定截止电压;再利用截止电压——频率数据作出截止电压——频率图,鼠标指向图线,按鼠标“右键”,点击“添加趋势线”,在“类型”中选则“线性(L)”,在“选项”中选“显示公式(E)”,在显示图形上,可直接确定斜率的大小,根据公式h=ek 求出普朗克常数。
(3)不确定度的处理方法在Excel中选:4个空格→fx→统计→Linest(双击) →分别在表格最上的1、2两行中,填入原始数据(截止电压、频率);在3、4两行中,分别填入true、true→(Ctrl+Shift+Enter),则第一列第一行为斜率拟合值,第一列第二行为斜光阑孔直径Φ=10.00×10-3m;距离: L=27.13×10-2 m;(5)作出截止电压U—v图线,确定斜率Ks截止电压U s —v 图线截止电压(纵坐标,单位:V )——频率(横坐标,单位:x1014HZ ):(6)数据计算过程公认值: h 0=6.63×10-34(J ·S)找出斜率,再根据公式h=eK 求出普朗克常数h 。
光电效应法测定普朗克常数实验原理光电效应法测定普朗克常数实验原理,听起来好像很高大上,但其实它就是利用光子的性质来测量一个非常小的数值——普朗克常数。
那么,这个实验到底是怎么进行的呢?别着急,让我来给你讲讲。
我们要了解什么是光电效应。
简单来说,光电效应就是当光子与物质相互作用时,会产生一些电子。
这些电子就像是光子的“孩子”,它们会从物质中“出生”,并且带有一些能量。
这个能量就叫做光子的能量。
好了,现在我们知道了光子和电子的关系,那么接下来就要用到普朗克常数了。
普朗克常数是一个非常小的数值,它的名字来源于它的发现者——德国物理学家马克斯·普朗克。
他在研究黑体辐射的时候,发现了一种规律:黑体辐射的能量是按照一定的频率分布的,而不是连续的。
这个规律被称为能量量子化定律。
而普朗克常数就是用来描述这个规律的一个重要参数。
那么,为什么我们需要测定普朗克常数呢?因为普朗克常数与光子的频率有关。
当光子的能量发生变化时,它的频率也会随之改变。
而我们通过测量光子的频率,就可以间接地测量出光子的能量。
这样一来,我们就可以用一种非常巧妙的方法来测定普朗克常数了。
接下来,让我们来看一下实验的具体步骤吧。
我们需要准备一个金属薄片,然后用一个光源照射它。
在照射的过程中,我们可以观察到金属薄片表面出现了一些电子。
这些电子就是由光子产生的。
接着,我们需要测量这些电子的数量以及它们的能量。
这样一来,我们就可以根据能量守恒定律和光电效应的公式,计算出光子的能量以及普朗克常数了。
当然啦,这个实验并不是那么简单就能完成的。
在实际操作过程中,我们还需要考虑很多因素,比如光源的波长、金属薄片的厚度等等。
但是总的来说,只要我们掌握了正确的方法和技巧,就一定能够成功地测定普朗克常数。
好了,现在你已经知道光电效应法测定普朗克常数实验的基本原理了吧?希望这篇文章能够帮助你更好地理解这个实验。
如果你还有什么疑问或者想了解更多关于光电效应的知识,欢迎随时来找我哦!。
光电效应法测定普朗克常数实验报告一、实验目的本实验旨在通过光电效应法测定普朗克常数,并掌握使用光电效应法测定普朗克常数的实验方法。
二、实验原理光电效应是指光照射在金属表面时,如果光子的能量大于金属的逸出功,那么就会发生光电子的发射。
发射的光电子速度与入射光子的能量有关,其关系式为:1/2mv^2=hv-φ其中,m为光电子的质量,v为光电子的速度,h为普朗克常数,v 为光子的频率,φ为金属的逸出功。
根据上述公式,我们可以通过测量光电子的最大动能和入射光子的频率来求解普朗克常数。
三、实验器材和实验步骤实验器材:光电效应实验仪、电压源、微安表、光源、金属样品、计算机等。
实验步骤:1.将金属样品安装在光电效应实验仪的样品台上,并调整光源的位置和强度,保证光线垂直照射在样品上。
2.调节电压源的输出电压,使得微安表的指针停留在零位。
3.改变光源的频率,记录微安表的读数,并记录此时的电压值。
4.重复第3步,直到微安表的读数变为零。
5.根据实验数据求解普朗克常数。
四、实验数据处理根据实验数据,我们可以绘制出光电效应实验的电流-电压曲线,如下图所示:其中,当电流为零时,表示此时的电压为最大电压,即光电子的最大动能。
通过测量光电子最大动能对应的电压值和对应的光源频率,我们可以求解普朗克常数。
五、实验结果与结论通过实验数据处理,我们得到普朗克常数的值为6.63×10^-34 J·s,这个数值与理论值非常接近,说明本次实验的结果是比较准确的。
实验结果表明,光电效应法可以用于测定普朗克常数,而且其测量精度高,方法简单易行,是一种非常有用的实验方法。
六、实验注意事项1.实验过程中要保证光线垂直照射在金属样品上,同时避免其他光源的干扰。
2.测量电流时,要注意保证电流表与金属样品之间的电路畅通无阻。
3.实验过程中要注意用手套或木夹子等工具操作,避免直接接触金属样品。
4.实验结束时,要注意关闭电源和光源,并按照要求归还实验器材。
光电效应普朗克常数实验报告实验报告:光电效应与普朗克常数测定一、实验目的1.了解光电效应现象及其规律;2.掌握普朗克常数的测定方法;3.培养实验操作能力和数据处理能力。
二、实验原理光电效应是指光照射在物质表面上,使得物质表面的电子获得足够的能量跳出物体表面,形成光电流的现象。
其中,普朗克常数h可以通过光电效应实验测定。
普朗克常数是量子力学中的基本常量,是能量和频率的乘积,单位为J·s。
测定普朗克常数的实验方法之一就是利用光电效应现象。
三、实验步骤1.准备实验器材:光电效应实验装置(光源、光电池、可调节滤光片、电压表)、稳压电源、毫米尺、数据处理软件;2.打开电源,预热几分钟后,将光电池放置在实验装置的光路上,调整光电池的位置和角度,使得光电池能够正常工作;3.调节滤光片,使得光源发出的光照射在光电池上,观察并记录电压表的读数,此为光电池的开路电压;4.逐一调节滤光片,增加光源的频率,观察并记录每次电压表的读数;5.重复步骤4,共进行5组实验,每组实验需要测量至少5个数据;6.关闭电源,整理实验器材;7.利用数据处理软件,对实验数据进行处理和分析。
四、实验结果及分析1.数据记录:将每次实验的滤光片号码、电压表读数记录在表格中,如表所示:2.数据处理:利用数据处理软件,将电压表读数转换为光子能量值,并绘制光子能量与频率的曲线图;3.结果分析:观察并分析曲线图,可以发现光子能量与频率之间存在线性关系,即E=hν,其中E为光子能量,ν为频率,h为普朗克常数。
通过线性拟合得到斜率k即为h的估计值。
五、结论通过本次实验,我们了解了光电效应现象及其规律,掌握了普朗克常数的测定方法。
实验结果表明,普朗克常数h约为6.63x10^-34 J·s,与文献值相比误差在可接受范围内。
此次实验不仅提高了我们的实验操作能力和数据处理能力,还让我们对光电效应和量子力学有了更深入的了解。
用光电效应测定普朗克常数1887年,德国物理学家赫兹发觉了光电效应现象。
可是在那时,利用麦克斯韦经典电磁理论无法圆满地说明光电效应的一系列性质。
直到1905年,爱因斯坦应用并进展了普朗克的量子理论,提出了“光量子”的概念,从而成功地说明了光电效应的规律,得出了光电效应方程。
后来,密立根对爱因斯坦的光量子理论进行了大量的实验测量,于1915年准确地测定了普朗克常数h ,有力地论证了爱因斯坦光量子理论的正确性。
这二位物理学家都因光电效应等方面的杰出奉献前后取得了诺贝尔物理学奖。
光电效应实验和光量子理论在物理学进展史上具有超级重要的意义。
利用光电效应制成的各类光电器件在工业生产、科研、军用器材装备中有超级普遍的应用。
现在咱们重复先辈物理学家的实验,不仅能够从中学到物理理论与物理方式、物理思想,而且能够学习他们坚忍不拔的毅力、严谨的科学态度,进一步提高大伙儿的实验能力和素养。
本次实验课的目的是:1、 加深对光的量子性的明白得;2、 验证爱因斯坦光电效应方程,测量普朗克常数。
[实验原理]1.大体知识:光电效应:必然频率的光照射在某些金属表面上时,有电子从金属表面逸出,这种现象叫光电效应。
所逸出的电子叫光电子,由光电子形成的电流叫光电流。
为了说明光电效应,爱因斯坦提出了“光量子”假说:在真空中传播的一束光确实是一束以速度c 运动的粒子流,这种粒子称为光量子,简称光子。
他以为频率为ν的光的每一个光子所具有的能量为νεh =,它不能再分割,而只能整个地被吸收或产生出来,h 叫做普朗克常数。
爱因斯坦依照光量子假说理论,成功说明了光电效应现象。
他以为,当光子入射到金属表面时,一个光子的能量hν一次地被金属中的一个电子全数吸收。
这些能量,一部份用来克服金属表面对它的束缚而做功,即金属的逸出功A ,其余的能量那么成为该电子逸出金属表面后的动能,也确实是光电子的初动能。
这确实是闻名的爱因斯坦光电方程,即A mv 21h 20+=ν。
一、实验目的1. 深入理解光电效应的基本规律和爱因斯坦的光电效应理论。
2. 掌握利用光电管进行光电效应研究的方法。
3. 学习对光电管伏安特性曲线的处理方法,并以此测定普朗克常数。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应理论,光子的能量与其频率成正比,每个光子的能量为 \( E = hv \),其中 \( h \) 为普朗克常数,\( v \) 为光的频率。
当光子的能量大于金属的逸出功 \( W \) 时,光子会将能量传递给金属表面的电子,使其逸出金属表面。
实验中,我们通过测量不同频率的光照射到光电管上时产生的光电流,根据光电效应方程 \( E = hv - W \) 和光电子的最大初动能 \( E_k = eU_0 \),可以计算出普朗克常数 \( h \)。
三、实验仪器1. YGD-1 普朗克常量测定仪(内有 75W 卤钨灯、小型光栅单色仪、光电管和微电流测量放大器、A/D 转换器、物镜一套)2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测试仪四、实验步骤1. 将光电管和微电流测量放大器连接到测试仪上,调整测试仪至合适的电压和电流范围。
2. 将滤色片插入光栅单色仪,选择不同频率的光源。
3. 调节光阑,使光线照射到光电管上。
4. 测量不同频率的光照射到光电管上时产生的光电流,记录数据。
5. 根据光电效应方程和光电子的最大初动能,计算普朗克常数 \( h \)。
五、实验数据及结果1. 波长(nm):365, 405, 436, 546, 5772. 频率(\( 10^{14} \) Hz):8.214, 7.408, 6.879, 5.490, 5.1963. 截止电压(V):1.724, 1.408, 1.183, 0.624, 0.504根据实验数据,利用线性回归方法计算得到斜率 \( k \) 的值为 0.001819,根据公式 \( k = \frac{h}{e} \) 计算得到普朗克常数 \( h \) 的值为6.523×\( 10^{-34} \) J·s。