高一数学下学期期末测试卷人教版
- 格式:docx
- 大小:224.15 KB
- 文档页数:6
密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
). 1.sincos=( ) A .B .C .1D .2.在等差数列{a n }中,a 3=24,a 6=8,则a 9=( ) A .﹣24B .﹣16C .﹣8D .03.在△ABC 中,AB =,A =45°,B =75°,则BC =( ) A .2B .2C .2D .44.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5B .7C .9D .105.已知tan α=﹣,且α∈(0,π),则sin (α+)=( )A .B .C .D .6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人所得与下三人等.问各得几何?”其意思是:“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( )A .钱B .钱C .钱D .钱7.在△ABC 中,若sin A :sin B :sin C =5:6:8,则△ABC 是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .可能是锐角三角形也可能是钝角三角形 8.设a =cos29°﹣sin29°,b =、c =,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a9.周长为9的三角形三边长成公差为1的等差数列,最大内角和最小内角分别记为α,β,则sin (α+β)=( )密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .B .C .D . 10.在△ABC 中,若sin B sin C =cos 2,则( ) A .A =BB .B =C C .C =AD .B +C =11.已知数列{a n }满足a 1=2,a n +1=1﹣(n ∈N*),则a 2020=( )A .2B .C .﹣D .﹣312.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物MN 的顶部M 处的仰角分别为∠MAN =30°,∠MBN =60°,∠MCN =45°,且AB =BC =60m ,则建筑物的高度为( )A .12mB .12mC .30mD .30m二、填空题(本大题共4小题,每小题5分,共20分). 13.tan15°= .14.已知数列{a n }的前n 项和为S n ,=2n +1,则a 1+a 7= .15.已知α为锐角,sin (﹣α)=,则cos α= .16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sinC +c sin B =4a sin B sin C ,b 2+c 2﹣a 2=8,则△ABC 的面积为 .三、解答题:本大题共6小题,共70分.解答题应写出必要的文字说明、证明过程及演算步骤.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且=﹣6,S △ABC =3. (1)求角B 的大小; (2)若c =3,求b 的值.18.已知函数f (x )=cos 2x ﹣sin 2x ﹣2sin x cos x (x ∈R ). (1)求f ()的值;(2)求f (x )的最小正周期及单调递减区间.19.已知等差数列{a n }的前n 项和为S n ,且a 1=25,S 17=S 9.(1)求数列{a n }的通项公式; (2)求S n 的最大值. 20.已知sin α=,sin (α﹣β)=,其中α,β∈(0,).(1)求sin (α﹣2β)的值; (2)求β的值.密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题21.已知数列{a n }满足a 1=,且a n +1=.(1)求证:数列{}是等差数列;(2)若b n =a n •a n +1,求数列{b n }的前n 项和S n .22.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2=a 2+bc .(1)求角A 的大小;(2)若a =,求(﹣1)b +c 的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求. 1.sincos=( ) A .B .C .1D .【分析】直接利用二倍角公式求出函数的表达式,计算出值即可. 解:因为==.故选:A .2.在等差数列{a n }中,a 3=24,a 6=8,则a 9=( ) A .﹣24B .﹣16C .﹣8D .0【分析】根据题意,由等差数列的性质可得a 3+a 9=2a 6,代入数据计算可得答案.解:根据题意,等差数列{a n }中,有a 3+a 9=2a 6, 又由a 3=24,a 6=8,则a 9=2a 6﹣a 3=﹣8; 故选:C . 3.在△ABC 中,AB =,A =45°,B =75°,则BC =( ) A .2B .2C .2D .4【分析】根据题意可求得C =60°,利用正弦定理即可得到B C .解:因为A =45°,B =75°,所以C =180°﹣45°﹣75°=60°,由正弦定理可得, 则BC ===2,故选:A .4.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=() A .5B .7C .9D .10【分析】由等差数列{a n }的性质,及a 1+a 3+a 5=3,可得3a 3=3,再利用等差数列的前n 项和公式即可得出. 解:由等差数列{a n }的性质,及a 1+a 3+a 5=3, ∴3a 3=3,密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴a 3=1, ∴S 5==5a 3=5.故选:A .5.已知tan α=﹣,且α∈(0,π),则sin (α+)=( )A .B .C .D .【分析】由特殊角的三角函数值得到α=,然后利用两角和与差的公式解答. 解:∵tan α=﹣,且α∈(0,π),∴α=,∴sin α=sin =,cos α=cos =﹣.∴sin (α+)=(sin αcos+cos αsin)=(×﹣×)=.故选:B .6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人所得与下三人等.问各得几何?”其意思是:“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .钱B .钱C .钱D .钱【分析】本题根据题意将实际问题转化为等差数列的问题即可解决.解:由题意,可设甲、乙、丙、丁、戊五人分得的钱分别为a 1,a 2,a 3,a 4,a 5.则a 1,a 2,a 3,a 4,a 5成等差数列,设公差为d . a 1+a 2+a 3+a 4+a 5=5, a 1+a 2=a 3+a 4+a 5.整理上面两个算式,得:,解得.∴a 5=a 1+4d =+4×(﹣)=. 故选:B .7.在△ABC 中,若sin A :sin B :sin C =5:6:8,则△ABC 是( ) A .钝角三角形 B .直角三角形密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题C .锐角三角形D .可能是锐角三角形也可能是钝角三角形【分析】根据正弦定理依据题设可求得a ,b 和c 的比例关系,进而令a =5,b =6,c =8,然后利用大角对大边推断出c为最大边,C 为最大角,利用余弦定理求得cos C 的值,进而判断得解.解:∵sin A :sin B :sin C =5:6:8,∴由正弦定理可知a :b :c =5:6:8,不妨令a =5,b =6,c =8, ∴cos C ===﹣<0,∵C ∈(0,π),∴C 为钝角,△ABC 是钝角三角形.故选:A . 8.设a =cos29°﹣sin29°,b =、c =,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a【分析】利用三角恒等变换化a =sin31°,b =sin29°,c =si n32°,再根据函数y =sin x 的单调性判断c >a >b . 解:a =cos29°﹣sin29°=sin (60°﹣29°)=sin31°,b ===sin29°,c ==sin32°,且y =sin x 在x ∈(0°,90°)内单调递增,所以sin32°>sin31°>sin29°,即c >a >b .故选:C . 9.周长为9的三角形三边长成公差为1的等差数列,最大内角和最小内角分别记为α,β,则sin (α+β)=( ) A .B .C .D .【分析】先根据条件求出边长,结合余弦定理求出中间角的余弦值,进而求得结论.解:因为周长为9的三角形三边长成公差为1的等差数列, 故三边长分别为2,3,4; 设中间边对应的角为A ; 则cos A ==;故sin (α+β)=sin (π﹣A )=sin A ===; 故选:D .10.在△ABC 中,若sin B sin C =cos 2,则( ) A .A =BB .B =CC .C =AD .B +C =【分析】利用三角函数的恒等变换变形得到cos (B ﹣C )=1,从而得到B =C ,则答案可求.密封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:∵由已知可得sin B sin C =cos 2=,即2sin B sin C =1+cos A =1﹣cos (B +C )=1﹣cos B cos C +sin B sin C ,则cos B cos C +sin B sin C =1,即cos (B ﹣C )=1.∵﹣π<B ﹣C <π,∴B ﹣C =0,即B =C .故选:B .11.已知数列{a n }满足a 1=2,a n +1=1﹣(n ∈N*),则a 2020=( ) A .2B .C .﹣D .﹣3【分析】利用数列的递推思想依次求出数列的前5项,从而得到数列{a n }是周期为4的周期数列,由此能求出a 2020. 解:∵数列{a n }满足a 1=2,a n +1=1﹣(n ∈N*),∴=, =﹣, =﹣3, =2,∴数列{a n }是周期为4的周期数列, ∵2020=505×4,∴a 2020=a 4=﹣3.故选:D .12.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物MN 的顶部M 处的仰角分别为∠MAN =30°,∠MBN =60°,∠MCN =45°,且AB =BC =60m ,则建筑物的高度为( )A .12mB .12mC .30mD .30m【分析】用MN 表示出AN ,BN ,CN ,利用余弦定理表示出cos ∠ABN ,cos ∠CBN ,根据cos ∠ABN +cos ∠CBN =0列方程求出MN .解:设MN =h ,则AN =h ,BN =,CN =h ,在△ABN 中,由余弦定理可得cos ∠ABN =,在△BCN 中,由余弦定理可得cos ∠NBC =,∵∠ABN +∠NBC =π, ∴+=0,即7200+﹣4h 2=0,解得:h 2=2160,∴h =12.故选:B .密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题二、填空题:本大题共4小题,每小题5分,共20分. 13.tan15°= 2﹣ .【分析】把15°变为45°﹣30°,然后利用两角差的正切函数公式及特殊角的三角函数值化简可得tan15°的值.解:tan15°=tan (45°﹣30°)====2﹣.故答案为:2﹣.14.已知数列{a n }的前n 项和为S n ,=2n +1,则a 1+a 7=29 .【分析】由题意利用数列的前n 项和与第n 项的关系,求得结果.解:数列{a n }的前n 项和为S n ,=2n +1,故S n =2n 2+n ﹣1,∴a 1=S 1=2,a 7=S 7﹣S 6=(2×72+7﹣1)﹣(2×62+6﹣1)=27,则a 1+a 7=2+27=29, 故答案为:29. 15.已知α为锐角,sin (﹣α)=,则cos α=+.【分析】先利用同角关系式求出余弦值,结合两角和差的余弦公式进行拆角转化即可. 解:∵α为锐角, ∴0<α<,则﹣<﹣α<0,﹣<﹣α<, ∵sin (﹣α)=,∴cos (﹣α)===,则cos α=cos (﹣α)=cos[(﹣α)﹣]=cos (﹣α)cos+sin (﹣α)sin=×+×=+,故答案为:+16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2﹣a 2=8,则△ABC 的面积为.【分析】直接利用正弦定理求出A 的值,进一步利用余弦定理求出bc 的值,最后求出三角形的面积.解:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . b sin C +c sin B =4a sin B sin C ,利用正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C , 由于0<B <π,0<C <π, 所以sin B sin C ≠0, 所以sin A =,密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题则A = 由于b 2+c 2﹣a 2=8, 则:,①当A =时,,解得bc =,所以.②当A =时,,解得bc =﹣(不合题意),舍去. 故:. 故答案为:.三、解答题:本大题共6小题,共70分.解答题应写出必要的文字说明、证明过程及演算步骤.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且=﹣6,S △ABC =3. (1)求角B 的大小; (2)若c =3,求b 的值.【分析】(1)由平面向量数量积的运算可得ac •cos B =﹣6,由正弦的面积公式可得ac •sin B =6,两式作商得tan B =﹣1,再结合B 的取值范围即可得解.(2)由(1)知,ac =,若c =3,则a =,再由余弦定理b 2=a 2+c 2﹣2ac •cos B ,代入数据进行运算即可得解.解:(1)在△ABC 中,因为=﹣6,所以ac •cos B =﹣6,又S △ABC =3,所以ac sin B =3,即ac •sin B =6, 所以tan B =﹣1, 因为0<B <π,所以B =. (2)由(1)知,ac ==.若c =3,则a =,由余弦定理知,b 2=a 2+c 2﹣2ac •cos B =9+8﹣2×3××()=29,所以b =.18.已知函数f (x )=cos 2x ﹣sin 2x ﹣2sin x cos x (x ∈R ). (1)求f ()的值;(2)求f (x )的最小正周期及单调递减区间.【分析】(1)利用辅助角公式进行化简,然后代入求值即可.(2)结合三角函数的周期公式,以及单调递减区间的性质建立不等式进行求解.密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:(1)f (x )=cos 2x ﹣sin 2x ﹣2sin x cos x =cos2x ﹣sin2x =2cos (2x +),则f ()=2cos=2×(﹣)=﹣1.(2)f (x )的最小正周期T ==π,令 2k π≤2x +≤2k π+π,k ∈Z ,得k π﹣≤x ≤k π+,k ∈Z ,即f (x )的单调递减区间为[k π﹣,k π+],k ∈Z .19.已知等差数列{a n }的前n 项和为S n ,且a 1=25,S 17=S 9.(1)求数列{a n }的通项公式; (2)求S n 的最大值.【分析】(1)利用等差数列{a n }的前n 项和公式列方程求出公差d =﹣2,由此能求出数列{a n }的通项公式. (2)由a 1=25,d =﹣2,求出S n ==﹣n 2+26n =﹣(n ﹣13)2+169,由此能求出数列的前n 项和最大值.解:(1)∵等差数列{a n }的前n 项和为S n ,且a 1=25,S 17=S 9. ∴由,解得d =﹣2, ∴数列{a n }的通项公式. (2)∵a 1=25,d =﹣2,∴S n ==﹣n 2+26n =﹣(n ﹣13)2+169,∴数列的前13项和最大,最大值为S 13=169. 20.已知sin α=,sin (α﹣β)=,其中α,β∈(0,).(1)求sin (α﹣2β)的值; (2)求β的值.【分析】(1)根据三角函数的同角关系,结合两角和差的正弦公式进行转化求解即可.(2)利用两角和差的正弦公式弦求出sin β的值,结合角的范围进行求解. 解:(1)由sin α=,及α∈(0,).得cos α==,因为α,β∈(0,),所以α﹣β∈(﹣,),又sin (α﹣β)=所以cos (α﹣β)==,所以sin2(α﹣β)=2sin (α﹣β)cos (α﹣β)=2××=,cos2(α﹣β)=1﹣2sin 2(α﹣β)=1﹣2×()2=,所以sin (α﹣2β)=sin[2(α﹣β)﹣α]=sin2(α﹣β)cos α﹣cos2(α﹣β)sin α=×=﹣.密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)sin β=sin[α﹣(α﹣β)]=sin αcos (α﹣β)﹣cos αsin (α﹣β)=×﹣×=,又β∈(0,),所以β=.21.已知数列{a n }满足a 1=,且a n +1=.(1)求证:数列{}是等差数列;(2)若b n =a n •a n +1,求数列{b n }的前n 项和S n .【分析】(1)数列{a n }满足a 1=,且a n +1=.两边取倒数可得:=+,即﹣=,=2.即可证明.(2)利用等差数列的通项公式、求和公式即可得出. 解:(1)证明:∵数列{a n }满足a 1=,且a n +1=.两边取倒数可得:=+,即﹣=,=2. ∴数列{}是等差数列,公差为,首项为2.(2)由(1)知:=2+(n ﹣1)×═,∴a n =.∴b n =a n •a n +1==4, ∴S n =4+……+=4×=.22.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2=a 2+bc . (1)求角A 的大小;(2)若a =,求(﹣1)b +c 的取值范围.【分析】(1)由已知利用余弦定理得cos A =,结合A 为△ABC 的内角,求出A 的值.(2)利用正弦定理,三角函数恒等变换,可得(﹣1)b +c =4sin (B +),然后求出B +的范围,利用正弦函数的性质,求出(﹣1)b +c 的取值范围.解:(1)由b 2+c 2=a 2+bc ,得=,由余弦定理,得cos A =.又A 为△ABC 的内角,所以A =. (2)由正弦定理,得=2,所以b =2sin B ,c =2sin C , 所以(﹣1)b +c =2()sin B +2sin C密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题=2()sin B +2sin (﹣B )=2()sin B +2(cos B +sin B )=2sin B +2cos B =4sin (B +), 因为A =,所以B ∈(0,),所以B +∈(,),所以sin (B +)∈(,1], 所以(﹣1)b +c ∈(,4].人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号 一 二 三 总分 得分一、选择题(本大题共12小题,每小题5分,共60分。
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第Ⅰ卷(选择题,满分60分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求) 1.现有这么一列数:1,32,54,78,(),1132,1364,…,按照规律,( )中的数应为( ). A.916B.1116C.12D.11182. 设,,a b c ∈R ,且a b >,则( ) A.ac bc >B.11a b< C.20c a b≥- D.11a b a>-3. 在△ABC 中,点D 在边BC 上,若2BD DC =,则AD = A. 14AB +34AC B.34AB +14AC C.13AB +23AC D.23AB +13AC 4. 设单位向量1cos 3e α⎛⎫= ⎪⎝⎭,,则cos 2α的值为( )A.79B.12-C.79-D.35. 已知ABC 中,23,22,4a b B π===,那么满足条件的ABC( ) A. 有一个解 B. 有两个解C. 不能确定D. 无解6.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212-a a b的值是 ( ) A.12B.12-C.12或12-D.147. 《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十四日所织尺数为( )A. 13B. 14C. 15D. 168. 在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,其中22tan tan a B b A =,那么ABC 一定是()A. 锐角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形9. 已知α,β都是锐角,3sin 5α=,()5cos 13αβ+=-,则sin β=( ) A.5665-B.1665-C. 3365D.636510. 如图所示,隔河可以看到对岸两目标A ,B ,但不能到达,现在岸边取相距4km 的C ,D 两点,测得∠ACB =75°,∠BCD密线学校 班级 姓名 学号密 封 线 内 不 得 答 题=45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km.A.85 B.415C.215511. 设G 是ABC 的重心,且()()()sin sin sin 0A GA B GB C GC ++=,若ABC 外接圆的半径为1,则ABC 的面积为( )A. 33B.33C. 34D.91612.当x θ=时,函数()2cos f x sinx x =+取得最小值,则sin 3πθ⎛⎫+ ⎪⎝⎭的值为( ) A. -215510B.2515+ C. 10 D.310第Ⅰ卷(非选择题,满分90分)二、填空题(本题共4小题,每小题5分,共20分) 13. 当1x >时,41x x +-的最小值为______. 14. 在ABC 中,tan ,tan A B 是方程22370x x +-=的两根,则tan C =_______.15. 如图,在半径为3的圆上,C 为圆心,A 为圆上的一个定点,B 为圆上的一个动点,若||||+=-AC CB AC CB ,则AB AC ⋅=_____.16.已知数列{}n a 满足1212a a ++…2*1()n a n n n N n +=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*4()1nnT n N n λ≤∈+恒成立,则λ的最小值是_______.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.17. (10分)已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4). (1)求顶点D 的坐标;(2)求AC 与BD 所成夹角的余弦值.18. (11分)已知数列{}n a 是公比为2的等比数列,且234,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记2,,n n na nb log a n ⎧=⎨⎩为奇数为偶数,数列{}n b 的前n 项和为n T ,求2n T . 19. (11分)已知向量()cos 3m x x=,(cos ,cos )n x x =且函数()f x m n =⋅.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)求函数()f x 在,02x ⎡⎤∈-⎢⎥⎣⎦π时的值域; (2)设α是第一象限角,且112610f απ⎛⎫+= ⎪⎝⎭求sin()4cos(22)παπα++的值. 20. (12分)首届世界低碳经济大会的主题为“节能减排,绿色生态”.某企业在国家科研部门的支持下,投资810万元生产并经营共享单车,第一年维护费为10万元,以后每年增加20万元,每年收入租金300万元.(1)若扣除投资和各种维护费,则从第几年开始获取纯利润? (2)若干年后企业为了投资其他项目,有两种处理方案: ①纯利润总和最大时,以100万元转让经营权;②年平均利润最大时以460万元转让经营权,问哪种方案更优?21. (12分)已知ABC 的角A ,B ,C 的对边分别为a ,b ,c ,满足()(sin sin )()sin b a B A b c C -+=-. (1)求A ;(2)从下列条件中:①3a =②3ABCS=中任选一个作为已知条件,求ABC 周长的取值范围.注:如果选择多个条件分别解答,按第一个解答计分. 22. (14分)函数()f x 满足:对任意,R αβ∈,都有()g()()αβαββα=+f f ,且(2)2f =,数列{}n a 满足()()2+=∈nn a f n N .(1)证明数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式;(2)记数列}{nb 前n 项和为n S ,且(1)nn n n ba +=,问是否存在正整数m ,使得(1)(4)190m m m S b +-+<成立,若存在,求m 的最小值;若不存在,请说明理由.参考答案与试题解析 第Ⅰ卷(选择题,满分60分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求) 1. A 【解析】 【分析】根据题意得出每个数的分母为2n ,分子为连续的奇数,即可求解.【详解】由题意知,一列数:1,32,54,78,(),1132,1364,…, 可得每个数的分母为2,n n N ∈,分子为连续的奇数,所以( )中的数应为916故选:A.【点睛】本题主要考查了数列的项的归纳推理,其中解答中根据数的排列,找出数字的规律是解答的关键,着重考查了归纳推理的应用. 2. C密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【解析】【分析】根据不等式的性质,直接判断即可. 【详解】对A ,当0c时,不成立,故A 错对B ,若a 为正数,b 为负数,不成立,故B 错对C ,由a b >,所以0a b ->,所以20c a b ≥-成立,故C 正确对D ,当2,1a b ==-时,11a b a>-不成立,故D 错 故选:C【点睛】本题考查不等式的性质,选择题可以使用特殊值法,便于计算,属基础题. 3. C 【解析】 分析】根据向量减法和2BD DC =用,AB AC 表示BD ,再根据向量加法用,AB BD 表示AD .【详解】如图:因22,()33BC AC AB BD BC AC AB =-==-,所以212()333AD AB BD AB AC AB AB AC =+=+-=+,故选C. 【点睛】本题考查向量几何运算的加减法,结合图形求解. 4. A【解析】 由题设可得2218cos 1cos 99αα+=⇒=,则27cos 22cos 19αα=-=,应选答案A . 5. B 【解析】 【分析】通过比较sin a B 与b 的大小关系,简单判断可得结果. 【详解】由题可知:23,22,4a b B π===2sin 2362==a B 622<=<b a 所以可知ABC 有两个解故选:B【点睛】本题考查两边及其一边所对应的角判定三角形个数,掌握比较方法以及正弦定理的使用,属基础题. 6. A【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d ,则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q ,则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a a b --==.本题选择A 选项.7. B 【解析】【分析】由已知条件利用等差数列的前n 项和公式和通项公式列出方程组,求出首项和公差,由此能求出第十四日所织尺数. 【详解】设第一天织1a 尺,从第二天起每天比第一天多织d 尺,由已知得1111721284715a d a d a d a d +⎧⎨+++++⎩==解得:111a d ==, ,∴第十四日所织尺数为14113113114=+=+⨯=a a d .故选:B . 【点睛】本题考查等差数列的性质,考查了等差数列的前n 项和,是基础的计算题. 8. D 【解析】 【分析】根据正弦定理sin sin a bA B =,将等式中的边,a b 消去,化为关于角,A B的等式,整理化简可得角,A B 的关系,进而确定三角形ABC 的形状.【详解】由正弦定理可得:22sin tan sin tan =A B B A ,整理得sin cos sin cos A A B B =,因此有11sin 2sin 222A B =,可得22A B =或22A B π=-, 当22A B =时,ABC 为等腰三角形;当22A B π=-时,有2A B π+=,ABC 为直角三角形,故选:D .【点睛】本题考查通过正弦定理化简判定三角形形状,熟悉正弦定理、余弦定理以及三角形面积公式,属基础题. 9. D 【解析】 【分析】 计算得到4cos 5α=,()12sin 13αβ+=,再根据()sin sin βαβα=+-展开得到答案. 【详解】α,β都是锐角,3sin 5α=,()5cos 13αβ+=-,故4cos 5α=,()12sin 13αβ+=. ()()()63sin sin sin cos cos sin 65βαβααβααβα=+-=+-+=.故选:D . 【点睛】本题考查了同角三角函数关系,和差公式,意在考查学生的计算能力. 10. B 【解析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【分析】由已知可求30CAD ∠=︒,120ACD ∠=︒,由正弦定理可求AD 的值,在BCD ∆中,60CBD ∠=︒,由正弦定理可求BD 的值,进而由余弦定理可求AB 的值.【详解】由已知,ACD ∆中,30CAD ∠=︒,120ACD ∠=︒,由正弦定理,sin sin CD ADCAD ACD =∠∠,所以·sin 4?sin12043sin sin30CD ACD AD CAD ∠︒===∠︒在BCD ∆中,60CBD ∠=︒,由正弦定理,sin sin CD BDCBD BCD =∠∠,所以·sin 4sin4546sin sin603CD BCD BD CBD ∠︒===∠︒ 在ABD ∆中,由余弦定理,222802?·3AB AD BD AD BD ADB =+-∠=,解得:415AB =所以A 与B 的距离415AB =故选B点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题. 11. B 【解析】 【分析】根据G 是三角形ABC 的重心得到0GA GB GC ++=,结合已知条件进行化简,求得sin sin sin A B C ==,由此判断出三角形ABC 是等边三角形,再结合三角形ABC 外接圆半径以及正弦定理,求得三角形ABC 的边长,由此求得三角形ABC 的面积. 【详解】∵G 是ABC 的重心,∴0GA GB GC ++=,则GA GB GC =--,代入()()()sin sin sin 0A GA B GB C GC ++=得,()()sin sin sin sin 0A B GB A C GC -+-=,∵GB GC ⋅不共线,∴sin sin 0A B -=且sin sin 0A C -=, 即sin sin sin A B C ==,∴ABC 是等边三角形,又ABC 外接圆的半径为1,∴由正弦定理得,22sin 60aR ==︒,则3a =∴2333ABC S ==△.故选:B. 【点睛】本小题主要考查三角形重心的向量表示,考查正弦定理的运用,考查化归与转化的数学思想方法,属于中档题.12. A 【解析】 【分析】利用辅助角公式可知函数min ()f x ,然后把x θ=代入结合平方关系可得sin ,cos θθ,最后利用两角和的正弦公式计算可得结果. 详解】由题可知:()()2cos 5,tan 2ϕϕ=+=+=f x sinx x x所以min ()5=-f x 2cos 5θθ+=-sin密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题所以225sin sin 2cos 5sin cos 125cos 5θθθθθ⎧=⎪⎧+=-⎪⎪⎨⎨+=⎪⎩⎪=-⎪⎩所以2155sin sin cos cos sin 33310πππθθθ⎛⎫+=+=- ⎪⎝⎭故选:A【点睛】本题考查辅助角公式以及平方关系,还考查了两角和的正弦公式,着重考查计算,属基础题.第Ⅰ卷(非选择题,满分90分)二、填空题(本题共4小题,每小题5分,共20分) 13. 5 【解析】 【分析】将所求代数式变形为()4111x x -++-,然后利用基本不等式可求得所求代数式的最小值. 【详解】1x >,10x ∴->,由基本不等式得()()444112115111x x x x x x +=-++≥-⋅=---. 当且仅当3x =时,等号成立.因此,41x x +-的最小值为5.故答案为:5.【点睛】本题考查利用基本不等式求代数式的最值,考查计算能力,属于基础题. 14.13【解析】 【分析】根据韦达定理以及两角和的正切公式计算即可.【详解】由题可知:tan ,tan A B 是方程22370x x +-=的两根所以37tan tan ,tan tan 22+=-=-A B A B 所以()tan tan tan tan 1tan tan 13+=-+=-=-A B C A B A B故答案为:13【点睛】本题主要考查两角和的正切公式,牢记公式,细心计算,属基础题. 15. 9 【解析】 【分析】化简||||+=-AC CB AC CB ,两边平方可得0AC CB ⋅=,然后将AB 用,CA CB 表示,然后进行计算即可.【详解】由题可知:||||+=-AC CB AC CB ,两边平方可得0AC CB ⋅=AB CB CA =-所以()()229⋅=-⋅-=-⋅==AB AC CB CA CA CA CA CB CA故答案为:9【点睛】本题考查向量的运算以及向量的数量积,属基础题. 16. 32 【解析】 【分析】依据题意可得2=2n a n ,然后可得n b ,利用裂项相消法可得nT ,最密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题后化简以及函数的单调性可得结果.【详解】由题可知:1212a a ++…21+=+n a n n n ① 当2n ≥时,1212a a ++…()211111-+=-+--n a n n n ② ①-②是可得:12n a n n =,所以()2=22≥n a n n当1n =时,1=2a 符合上式,所以()2=2*∈n a n n N则()()2222121211114411+⎛⎫++===- ⎪ ⎪++⎝⎭n n n n n b a a n n n n 所以()122222*********...1...422331⎛⎫ ⎪=+++=-+-+++- ⎪+⎝⎭n n T b b b n n 所以()()()2221114141⎛⎫+ ⎪=-=⎪++⎝⎭n n n T n n又41λ≤+n n T n ,所以()()22111124411λλ+⇒≥+⨯=≤+++++n n n n n n n n又函数()111f x x =++在()0,∞+单调递减 所以max 13112⎛⎫+= ⎪+⎝⎭n 所以*4()1n n T n N n λ≤∈+恒成立,则32λ≥故答案为:32【点睛】本题主要考查裂项相消法求和以及数列中恒成立问题,审清题意,细心计算,属中档题.三、解答题:解答应写出必要的文字说明、证明过程或演算步骤.17. (1)(2,2);(2)685.【解析】【分析】(1)根据向量的坐标表示,计算AB DC =,可得结果. (2)用坐标表示AC ,BD ,然后根据平面向量的夹角公式计算即可.【详解】(1)设顶点D 的坐标为(,)x y .(2,1)A -,(1,3)B -,(3,4)C ,(1(2),31)(1,2)AB ∴=----=,(3,4)DC x y =--,又AB DC =,所以(1,2)(3,4)x y =--.即13,24,x y =-⎧⎨=-⎩解得2,2.x y =⎧⎨=⎩所以顶点D 的坐标为(2,2). (2)由22(5,3),||5334AC OC OA AC =-==+=22(3,1),||3(1)10BD OD OB BD =-=-=+-=353(1)12AC BD ⋅=⨯+⨯-=685cos ,||||3410AC BD AC BD AC BD ⋅∴<>===⋅⨯【点睛】本题考查向量的坐标运算以及向量夹角公式,重在明白向量坐标的表示方法以及夹角公式的记忆,属基础题. 18. (1)12n n a -=;(2)224133=+-n n T n .【解析】 【分析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)依题意利用等差数列的性质可得22a=,然后利用等比数列通项公式计算即可.(2)由(1)的结论可得12,1,n n n b n n -⎧=⎨-⎩为奇数为偶数,然后利用分组求和,可得结果.【详解】(1)由题意可得()32421a a a +=+,即()2222214a a a +=+,解得:22a =,∴2112a a ==, ∴数列{}n a 的通项公式为12n n a -=.(2)12,1,n n n b n n -⎧=⎨-⎩为奇数为偶数21232=+++⋯+n n T b b b b3242152162()()-+++⋯++++⋯=++n n n T b b b b b b b b()024*******(13521)-=+++⋯+++++⋯+-n n T n2214(121)4114233-+-=+=+--n nn n n T n 【点睛】本题主要考查数列分组求和,掌握常用的求和方法:公式法、裂项相消法、分组求和法、错位相减法等,属基础题.19. (1)1[,1]2-;(2)522-.【解析】【分析】(1)用坐标表示向量的数量积以及辅助角公式可得 (1)1()sin(2)62f x x π=++,然后使用整体法以及正弦函数的性质可得结果.(2)根据(1)的条件可得3cos 5α=,然后使用两角和的正弦公式以及二倍角的余弦公式化简求值即可. 【详解】(1)由2()cos 3sin cos f x m n x x x =⋅=()1311cos 22sin(2)2262π=+=++f x x x x50,22666x x ππππ-≤≤∴-≤+≤ 1sin(2)[1,]62x π∴+∈-,则()f x 的值域为1[,1]2-(2)π11(),2610f α+=ππ111 sin 2()266210α⎡⎤∴+++=⎢⎥⎣⎦ 则π3sin()25α+=即3cos 5α= ,又α为第一象限的角,则4sin 5α22π2sin()cos )42cos(2π2)c 2cos )2co o s s 2sin ααααααααα++==++-则πsin()4cos(2π2)2522cos sin 2αααα==--++【点睛】本题考查向量数量积的坐标表示以及正弦型函数的性质,考查三角恒等变形,本题重在考查公式的应用以及计算能力的培养,属中档题.20. (1)从第4年开始获取纯利润;(2)方案②. 【解析】密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【分析】(1)依据题意可知每年的维护费用满足的是等差数列,然后可得利润2300(81010)y n n =-+,令0y >,简单计算以及判断可得结果.(2)根据(1)的结论可计算方案①所获利润,计算2300(81010)--=n n W n结合基本不等式可得所获利润,然后进行比较可得结果.【详解】(1)设第n 年获取利润为y 万元,n 年共收入租金300n 万元,付出维护费构成一个以10为首项,20为公差的等差数列,共2(1)1020102n n n n -+⨯=因此利润2300(81010)y n n =-+ 令0y >,解得:327n <<所以从第4年开始获取纯利润.(2)方案①:纯利润22300(81010)10(15)1440y n n n =-+=--+ 所以15年后共获利润:1440+100=1540(万元) 方案②:年平均利润2300(81010)810300(10)n n W n n n--==-+810300210120n n≤-⨯= 当且仅当81010n n =,即n =9时取等号所以9年后共获利润:120×9+460=1540(万元)综上:两种方案获利一样多,而方案②时间比较短,所以选择方案②.【点睛】本题考查数列模型的应用问题,审清题意,理清思路,细心就算,属中档题. 21.(1)3A π=;(2)选择①,(23,33;选择②,[6,) +∞. 【解析】【分析】(1)根据正弦定理将角化边计算可得1cos 2A =,最后可得结果.(2)选①根据正弦定理以及辅助角公式化简可得周长23)36π=+l B ,然后根据角度范围可得结果;选②可得bc ,然后结合余弦定理以及不等式可得结果. 【详解】(1)因为()(sin sin )()sin b a B A b c C -+=- 由正弦定理得()()()b a b a b c c -+=-,即222b c a bc +-=由余弦定理得2221cos ,(0,)22b c a A A bc π+-==∈所以3A π=(2)选择①3a =由正弦定理2sin sin sin b c aB C A===, 即ABC 周长22sin 2sin 32sin 2sin()33l B C B B π=+=+- 3sin 33B B =23)36B π=+251 (0,) ,sin()1366626B B B πππππ∈∴<+<<+≤密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题即ABC 周长的取值范围(23,33选择②3ABCS.,得13sin 324ABC S bc A bc ===△,得4bc =.由余弦定理得22222()3()12,a b c bc b c bc b c =+-=+-=+-即ABC 周长2()12,l a b c b c b c =++=+-+24b c bc +≥=,当且仅当2b c ==时等号成立 2 41246l a b c ∴=++-= 即ABC 周长的取值范围[6,) +∞【点睛】本题考查正弦定理、余弦定理以及面积公式解三角形,注意边角如何转化,以及求范围问题常会转化为三角函数或者不等式的应用,属中档题.22. (1)证明见解析;2n n a n =⋅;(2)存在,4. 【解析】【分析】(1)依据题意计算()()()1122222,++==⋅+⋅n n nn a f f f 然后可得1122n n n a a ++=+,根据递推关系以及等差数列的定义可得结果. (2)根据(1)的结论可得12n nn b +=,然后利用错位相减法可得n S ,最后构造函数,利用函数的单调性可得结果.【详解】(1)()()112,22,=∴==n n a f a f()()()()112222222,n n n n n a f f f f ++==⋅=⋅+⋅1122n n n a a ++∴=+, 11122n nn na a ++∴-= 2n na ⎧⎫∴⎨⎬⎩⎭为等差数列,首项为112a =,公差为1,,22nn n na n a n ∴∴==⋅.(2)由(1)12n n n n n n b a ++==23111111234(1)22222n n nS n n -=⨯+⨯+⨯++⨯++⨯ 2311111123(1)22222n n n S n n +=⨯+⨯++⨯++⨯,两式相减得121111111133(1)22222222n n n n n S n +++=+++-+⨯+=-332n nn S +∴=-,假设存在正整数m , 使得(1)(4)190m m m S b +-+<成立,即2160m m +-> 由指数函数与一次函数单调性知:()216m F m m =+- m N +∈为增函数.又因为34(3)231650,(4)241640F F =+-=-<=+-=> 所以当4m ≥时恒有()2160m F m m =+->成立. 故存在正整数m ,使得(1)(4)190m m m S b +-+<成立, 所以m 的最小值为4.【点睛】本题考查根据递推关系证明等差数列以及错位相减法求和,还考查了数列恒等式问题,本题关键在于得到1122n n n a a ++=+,考查分析能力以及计算能力,属中档题.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第I 卷 选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。
人教版高一数学下学期期末考试卷含答案214人教版高一数学下学期期末考试卷第一卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.1920°转化为弧度数为A。
32π/3B。
16π/3C。
16/3D。
3提示:1°=π/180.2.根据一组数据判断是否线性相关时,应选用A。
散点图B。
茎叶图C。
频率分布直方图D。
频率分布折线图提示:散点图是用来观察变量间的相关性的。
3.函数y=sin(x+π/4)的一个单调增区间是A。
[-π,0]B。
[0,π/4]C。
[π/4,7π/4]D。
[7π/4,2π]提示:函数y=sin(x)的单调增区间是(2kπ-π/2,2kπ+π/2) (k∈Z)。
4.矩形ABCD中,对角线AC与BD交于点O,BC=5e1,DC=3e2,则OC等于A。
(5e1+3e2)/2B。
(5e1-3e2)/2C。
(-5e1+3e2)/2D。
-(5e1+3e2)/2提示:OC=AC=AD+DC=BC+DC=(5e1+3e2)/2.5.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是A。
6,12,18B。
7,11,19C。
6,13,17D。
7,12,176.函数y=x/2sin(x)+3cos(x/2)的图像的一条对称轴方程是A。
x=π/2B。
x=-πC。
x=-π/2D。
x=π提示:函数y=sin(x)的对称轴方程是x=kπ+π/2 (k∈Z)。
7.甲乙两人下棋,甲获胜的概率为30%,甲不输的概率为70%,则甲乙两人下一盘棋,最可能出现的情况是A。
甲获胜B。
乙获胜C。
二人和棋D。
无法判断提示:由甲不输的概率为70%可得乙获胜的概率也为30%。
8.如图是计算1/11+1/12+。
+1/30的一个程序框图,其中在判断框内应填入的条件是A。
高一数学下学期期末测试卷(三)
第Ⅰ卷(选择题共60分)
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.
1.5sin()3
π
-
的值为 ( )
A.
B. C.12
- D.1
2
2.已知a = (2,3),b =(4,y),且a ∥b ,则y 的值为 ( )
A.6
B.-6
C.
8
3
D.-83
3.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( )
4. 如右图所示,D 是ABC ∆的边AB 上的中点,记1BC e =,2BA e =,则向量CD =( )
A .1212
e e --
B .1212
e e -+
C .121
2
e e -
D .1212
e e +
5.已知正边形ABCD 边长为2,在正边形ABCD 内随机取一点P ,则点P 满足||1PA ≤的概率是( )
A .
4
π B .
8
π C .116
π
-
6、︒150tan 的值为( )
A 、
3
3 B 、3
3-
C 、
3
D 、3-
7、已知角α终边上一点)0)(3,4(<-a a a P ,则αsin 的值为( )
A 、53
B 、54-
C 、
54 D 、53-
8、已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线x y 2=上,则
θ2cos =( )
A 、5
4-
B 、53-
C 、
5
3 D 、5
4
9.函数3sin(2)3
y x π
=+,则下列关于它的
图象的说法不正确的是
A .关于点(,0)
6
π
-
对
称
B .关于点(,0)3π
对称
C .关于直线
712
x π=
对称
D .关于直线512
x π
=对称
10.下列函数中,周期为π,且在[,]42ππ
上
为减函数的是
A
.
cos()2
y x π
=+ B .cos(2)2y x π=+ C .sin()2
y x π
=
+ D.
sin(2)2
y x π
=+
11. 下列命题中正确的个数是( )
①若直线a 不在α内,则a ∥α;
②若直线l 上有无数个点不在平面α内,则
l ∥α;
③若直线l 与平面α平行,则l 与α内的任意一条直线都平行;
④若l 与平面α平行,则l 与α内任何一条直线都没有公共点;
⑤平行于同一平面的两直线可以相交.
A .1
B . 2
C .3
D .4
12. A 为△ABC 的内角,且A 为锐角,则
A A cos sin +的取值范围是( )
A
.)2,2( B .)2,2(- C . D .]2,2[- 第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷上.
13.某林场有树苗30?000棵,其中松树苗4?000棵. 为调查
树苗的生长情况,采用分层抽样的方法抽
取一个容量为
150的样本,则样本中松树苗的数量为 .
14. 函数sin()(||)2
y A x π
ωϕϕ=+<部分图象如
右图,则
函数解析式为y = .
15.已知向量,a b 夹角为45︒
,且
1,210a a b =-=,
则_____b =.
16.△ABC 的三内角分别为A 、B 、C ,若
22sin sin (sin sin )sin A C A B B -=-,则角C
等于________。
三、解答题:本大题共6小题,共70分,解答应写出文字说明或演算步骤。
17.(本小题满分10分)
已知向量a =()1,1m +,向量b =()0,2,
且(a -b )⊥a . (1)求实数m 的值;
(2) 求向量a 、b 的夹角θ的大小.
18. (本小题满分12分)
已知函数cos 2()sin()
4
x f x x π
=
-
(Ⅰ)化简函数()f x 的解析式,并求定义域;
(Ⅱ)若4
()3
f α=
,求sin 2α的值.
19.(本小题满分12分)
高一、三班n 名学生在一次数学单元测试中,成绩全部介于
80分与130分之间,将测试成绩按如下方式
分成五组,第一组[80,90);
第二组[90,100),……,第五组[120,130],并得到频率分布表如下:
(Ⅰ) 求n 及分布表中x ,y ,z 的值;
(Ⅱ)设, t s 是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件 “10t s -≤”的概率.
20、(本小题满分12分)
已知a →
=(1,cos x ),b →
=(1
5
,sin x ),x ∈(0,
π)
(1) 若a →
//b →
,求sin x +cos x
sin x -cos x
的值;
(2)若a →⊥b →
,求cos x -sin x 的值.
21.(本小题满分12
已)(α=
f
(1(
2
,求值
22、(12分)已知(3sin ,cos )a x m x =+,
(cos ,cos )b x m x =-+, 且b a x f ⋅=)(
(1) 求函数()f x 的解析式;
(2) 若,63x ππ⎡⎤
∈-⎢⎥⎣⎦
, ()f x 的最小值是-4 ,
求此时函数()f x 的最大值, 并求出相应的
x 的值.
17.解:(Ⅰ)由已知得,a -b =()1,1m -,…… 2分
又(a -b )⊥a ⇔()0a b a -⋅=, 即1(1)(1)0m m +-+=…… 4分
∴ 20,0m m ==解得
18. 19.
解
:
(
Ⅰ
)
10.040.380.340.060.18y =----=. …
……………………………2分
3
500.06
n =
=. …………………………………………………3分
500.042x =⨯=,
500.3819z =⨯=. ……………………………5分
(Ⅱ)第一组[80, 90)中有2名学生,设其成绩为,m n ;第五组有3名学生,设其成绩为a b c 、、.则抽取(,)t s 的基本事件空间
{(,),(,),(,),(,),(,),(,),(,)
m n m a m b m c n a n b n c Ω=(,),(,),a b a c }(,)b c 共10个
基本事
件. ………………………………………………………8分
设事件A 为“10t s -≤”则
A ={}(,),(,),(,),(,)x y a b a c b c . ………10分
所以42
()105
P A =
=. 即事件10t s -≤的概率为2
5
. 20. 21.
22.解: (1)
()(3sin ,cos )(cos ,cos )
f x a b x m x x m x ==+-+
即
22()3sin cos cos f x x x x m =+-
(2)
21cos 2()2
x
f x m +=
+- 由,63x ππ⎡⎤
∈-⎢⎥⎣⎦
,
52,666x π
ππ⎡⎤∴+
∈-⎢⎥⎣⎦
,
1sin(2),162x π
⎡⎤∴+
∈-⎢⎥⎣⎦
, 211
4
22
m ∴-+-=-,
2m ∴=±
max 11
()1222
f x ∴=+-=-
,
此时262x ππ+=, 6
x π
=.。