2019年高考数学二轮选择题的解法大全
- 格式:ppt
- 大小:1.42 MB
- 文档页数:12
2019年高考数学答题技巧:选择题十大解法查字典数学网整理了2019年高考数学答题技巧:选择题十大解法,帮助广大高中学生学习数学知识!高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。
选择题的解题思想,渊源于选择题与常规题的联系和区别。
它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。
因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。
6大漏洞是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;8大原则是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。
经过我的培训,很多的学生的选择题甚至1分都不丢。
下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.25/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
盘点2019年高考数学选择题十大解法高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。
下面是高考数学选择题十大解法,希望对大家提高成绩有帮助。
选择题的解题思想,渊源于选择题与常规题的联系和区别。
它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。
因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。
6大漏洞是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;8大原则是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。
经过我的培训,很多的学生的选择题甚至1分都不丢。
下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.25/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C 为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2019高考数学二轮复习答题技巧与规范答题方法为了帮助考生更好的进行复习,查字典数学网整理了高考数学二轮复习答题技巧,请考生及时查看学习。
一、调整好状态,控制好自我。
(1)保持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)提前进入角色,考前做好准备.按清单带齐一切用具,提前半小时到达考区,一方面可以消除紧张、稳定情绪、从容进场,另一方面也留有时间提前进入角色让大脑开始简单的数学活动,进入单一的数学情境。
如:1.清点一下用具是否带齐(笔、橡皮、作图工具、身份证、准考证等)。
2.把一些基本数据、常用公式、重要定理在脑子里过过电影。
3.最后看一眼难记易忘的知识点。
4.互问互答一些不太复杂的问题。
5.注意上厕所。
(3)按时到位。
今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5分钟内。
建议同学们提前15~20分钟到达考场。
二、浏览试卷,确定考试策略一般提前5分钟发卷,涂卡、填密封线内部分和座号后浏览试卷:试卷发下后,先利用23分钟时间迅速把试卷浏览一遍,检查试卷有无遗漏或差错,了解考题的难易程度、分值等概况以及试题的数目、类型、结构、占分比例、哪些是难题,同时根据考试时间分配做题时间,做到心中有数,把握全局,做题时心绪平定,得心应手。
三、巧妙制定答题顺序在浏览完试卷后,对答题顺序基本上做到心中有数,然后尽快做出答题顺序,排序要注意以下几点:1.根据自己对考试内容所掌握的程度和试题分值来确定答题顺序。
2.根据自己认为的难易程度,按先易后难先小后大先熟后生的原则排序。
四、提高解选择题的速度、填空题的准确度。
数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求快、准、巧,忌讳小题大做。
专题三立体几何与空间向量专题检测选题明细表知识点·方法A组B组集合与常用逻辑用语 1 2复数9 1平面向量 4 4,13 不等式与线性规划 2 15计数原理与古典概型8 11三角函数11 5,10,16空间几何体3,10,13 4,6,7,9,12空间位置关系5,7,12,14,15 3,8,14,17 立体几何的向量方法6,16 18A组一、选择题1.若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为( C )(A)5 (B)4 (C)3 (D)2解析:x=-1,y=0时,z=-1;x=-1,y=2时,z=1;x=1,y=0时,z=1;x=1,y=2时,z=3.故z的值为-1,1,3,共3个元素.2.设a= log2π,b== loπ,c=π-2,则( C )(A)a>b>c (B)b>a>c(C)a>c>b (D)c>b>a解析:因为a= log2π> log22=1,b= loπ< lo1=0,c=π-2∈(0,1),所以a>c>b,故选C.3.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是( A )(A)1 cm3(B)2 cm3(C)3 cm3(D)6 cm3解析:本题主要考查了三视图的应用,根据三棱锥的体积公式V=××2×1×3=1,所以选A.4.△ABC的三个内角A,B,C所对的边分别为a,b,c,设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为( B )(A)(B)(C)(D)解析:因为p∥q,所以(a+c)(c-a)=b(b-a),即b2+a2-c2=ab.由余弦定理得cos C=,又0<C<π,所以C=.5.已知正四棱锥S ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为( C )(A)(B) (C) (D)解析:设AC,BD的交点为O,连接EO,则∠AEO为AE,SD所成的角或其补角;设正四棱锥的棱长为a,则AE=a,EO=a,OA=a,所以cos ∠AEO===,故选C.6.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a.点E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为( D )(A)30°(B)45°(C)60°(D)90°解析:以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系D xyz,D(0,0,0),P(0,0,a),B(a,a,0),E(0,,),=(a,a,-a),又=(0,,),·=0+-=0,所以PB⊥DE.由已知DF⊥PB,又DF∩DE=D,所以PB⊥平面EFD,所以PB与平面EFD所成角为90°.故选D.7.在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一点.若PA=AC=a,则当△MBD的面积为最小值时,直线AC与平面MBD所成的角为( B )(A)(B)(C)(D)解析:连接AC,BD交于O,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,所以PA⊥BD,AC⊥BD,所以BD⊥平面PAC,进一步求出BM=DM,过O点作OM⊥PC于M,当△MBD的面积为最小值,只需OM最小即可,若PA=AC=a,所以∠ACP=即为所求.故选B.二、填空题8.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.解析:因为这10个数是1,-3,(-3)2,(-3)3,(-3)4,(-3)5,(-3)6,(-3)7,(-3)8,(-3)9,所以它小于8的概率为=.答案:9.已知复数z=a2-1+(a+1)i(a∈R)为纯虚数,则为.解析:因为复数z=a2-1+(a+1)i(a∈R)为纯虚数,所以解得a=1,故z=2i,则=-2i.答案:-2i10.已知三棱锥S ABC的各顶点都在一个表面积为4π的球面上,球心O在AB上,SO⊥平面ABC,AC=,则三棱锥S-ABC的表面积为.解析:因为球的表面积为4π,所以球的半径为R=1,三棱锥S ABC的图形如图所示,由题意及图可知AB=2R=2,SO=AO=BO=CO=1,又SO⊥平面ABC,所以SA=SB=SC=,又AC=,所以BC=,所以△ABC与△ABS均为等腰直角三角形,其面积和为2×1=2,△SAC与△SBC均为等边三角形,其面积和为××=,所以三棱锥的表面积为2+.答案:2+11.方程3sin x=1+cos 2x在区间[0,2π]上的解为.解析:3sin x=1+cos 2x,即3sin x=2-2sin2x,所以2sin2x+3sin x-2=0,解得sin x=或sin x=-2(舍去),所以在区间[0,2π]上的解为或.答案:或12.平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且S位于平面α,β之间,AS=8,BS=6,CS=12,则SD= .解析:根据题意做出图形.因为AB,CD交于S点,所以三点确定一平面,所以设ASC平面为n,于是有n交α于AC,交β于DB,因为α,β平行,所以AC∥DB,所以△ASC∽△BSD,所以=,因为AS=8,BS=6,CS=12,所以=,所以SD=9.答案:913. 如图是正方体的平面展开图,则在这个正方体中①BM与ED平行;②CN 与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线.以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).解析:把展开图复原成正方体,如图,由正方体的性质,可知:BM与ED是异面直线,所以①是错误的;CN与BE是平行直线,所以②是错误的;从图中连接AN,AC,由于几何体是正方体,所以三角形ANC为等边三角形,所以CN,BE所成的角为60°,所以③是正确的;DM与BN是异面直线,所以④是正确的.答案:③④14. 如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为.解析: 因为四边形ABCD是正方形,所以CB⊥AB.因为平面ABCD⊥平面ABEF且交于AB,所以CB⊥平面ABEF.因为AG,GB⊂平面ABEF,所以CB⊥AG,CB⊥BG.又AD=2a,AF=a,四边形ABEF是矩形,G是EF的中点,所以AG=BG=a,AB=2a, 所以AB2=AG2+BG2,所以AG⊥BG,因为BG∩BC=B,所以AG⊥平面CBG,而AG⊂平面AGC,故平面AGC⊥平面BGC,如图.在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,所以∠BGH是GB与平面AGC所成的角.在Rt△CBG中,BH==a,BG=a,所以sin ∠BGH==.答案:三、解答题15. 如图,直三棱柱ABC A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N 分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h 为高)法一(1)证明:连接AB′,AC′,如图,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′的中点.又因为N为B′C′的中点,所以MN∥AC′,又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,因此MN∥平面A′ACC′.(2)解:连接BN,如图所示,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC,又A′N=B′C′=1,故====,法二(1)证明:取A′B′的中点P,连接MP,NP,AB′,如图,而M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′,又MP∩NP=P,因此平面MPN∥平面A′ACC′,而MN⊂平面MPN,因此MN∥平面A′ACC′.(2)解:=-==.16. (2018·全国Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M PA C为30°,求PC与平面PAM所成角的正弦值.(1)证明:因为PA=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2.如图,连接OB.因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,的方向为x轴正方向,建立空间直角坐标系O-xyz.由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2),=(0,2, 2).取平面PAC的一个法向量=(2,0,0).设M(a,2-a,0)(0≤a≤2),则=(a,4-a,0).设平面PAM的法向量为n=(x,y,z).由·n=0,·n=0得可取y=a,得平面PAM的一个法向量为n=((a-4),a,-a),所以cos<,n>=.由已知可得︱cos<,n>︱=cos 30°=,所以=,解得a=-4(舍去)或a=.所以n=(-,,-).又=(0,2,-2),所以cos<,n>=,所以PC与平面PAM所成角的正弦值为.B组一、选择题1.若复数z=1+i(i为虚数单位),是z的共轭复数,则z2+的虚部为( A )(A)0 (B)-1 (C)1 (D)-2解析:法一由z=1+i知=1-i,z2+=(1+i)2+(1-i)2=2i+(-2i)=0,其虚部为0.故应选A.法二由z=1+i知=1-i,z2+=(z+)2-2z=4-4=0,其虚部为0.故应选A.2.已知集合A={1,2,3,4,5},B={(x,y)︱x∈A,y∈A,x-y∈A},则B中所含元素的个数为( D )(A)3 (B)6 (C)8 (D)10解析:因为A={1,2,3,4,5},x,y∈A,x-y∈A,所以所以B中共10个元素,选D.3.(2017·湖州、衢州、丽水三市高三4月联考)已知平面α与两条不重合的直线a,b,则“a⊥α,且b⊥α”是“a∥b”的( A )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:已知平面α与两条不重合的直线a,b,如果a⊥α,且b⊥α,那么根据直线与平面垂直的性质定理,可得a∥b,充分性成立;反之,如果a∥b,那么不能推断a⊥α,且b⊥α,必要性不成立,即“a⊥α,且b⊥α”是“a∥b”的充分不必要条件.故选A.4.对任意向量a,b,下列关系式中不恒成立的是( B )(A)︱a·b︱≤︱a︱︱b︱ (B)︱a-b︱≤︱︱a︱-︱b︱︱(C)(a+b)2=︱a+b︱2 (D)(a+b)(a-b)=a2-b2解析:因为︱a·b︱=︱a︱︱b︱︱cos <a,b>︱≤︱a︱︱b︱,所以选项A 正确;当a与b方向相反时,︱a-b︱≤︱︱a︱-︱b︱︱不成立,所以选项B 错误;向量的平方等于向量的模的平方,所以选项C正确;(a+b)(a-b)=a2-b2,所以选项D正确.故选B.5.在△ABC中,BC边上的中线AD长为3,且cos B=,cos∠ADC=-,则边AC长为( A )(A)4 (B)16 (C)(D)解析:如图,因为∠ADC与∠ADB互补,所以当cos∠ADC=-时,cos∠ADB=,则sin∠ADB==,又cos B=,则sin B=,所以sin∠BAD=sin(π-∠B-∠ADB)=sin(∠B+∠ADB)=sin Bcos∠ADB+cos Bsin∠ADB=×+×=,在△BAD中,由正弦定理得:=,从而BD=2,所以CD=2,在△ADC中,由余弦定理得:AC2=9+4-2×3×2×(-)=16,所以AC=4.故选A.6. 如图,四面体ABCD中,AB=DC=1,BD=,AD=BC=,二面角A BD C的平面角的大小为60°,E,F分别是BC,AD的中点,则异面直线EF与AC所成的角的余弦值是( B )(A)(B) (C) (D)解析:取DC的中点为G,连EG,FG,则EG=BD=,FG=AC=,易知EF=,则∠EFG=θ就是异面直线EF与AC所成的角,故在△EFG中,cos θ==,故选B.7.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D重合于F,此时二面角E BC F的余弦值为( B )(A)(B) (C)(D)解析: 如图所示,取BC中点P,连接EP,FP,由题意得BF=CF=2,所以PF⊥BC,又因为EB=EC==,所以EP⊥BC,所以∠EPF即为二面角E BC F的平面角,而FP==,在△EPF中,cos ∠EPF===,故选B.8.在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( A )(A)平面α与平面β垂直(B)平面α与平面β所成的(锐)二面角为45°(C)平面α与平面β平行(D)平面α与平面β所成的(锐)二面角为60°解析:设P1=fα(P),P2=fβ(P),则PP1⊥α,P1Q1⊥β,PP2⊥β,P2Q2⊥α.若α∥β,则P1与Q2重合、P2与Q1重合,所以PQ1≠PQ2,所以α与β相交.设α∩β=l,由PP1∥P2Q2,所以P,P1,P2,Q2四点共面,同理,P,P1,P2,Q1四点共面.所以P,P1,P2,Q1,Q2五点共面,且α与β的交线l垂直于此平面.又因为PQ1=PQ2,所以Q1,Q2重合且在l上,四边形PP1Q1P2为矩形.那么∠P1Q1P2=为二面角αlβ的平面角,所以α⊥β.故选A.二、填空题9.某几何体的三视图如图所示,则此几何体的表面积是,体积是.解析:由三视图可得该几何体的直观图如图所示.该几何体是一个四棱锥A-CDEF和一个三棱锥F-ABC构成的组合体,底面直角梯形ABCD的面积为6,侧面CDEF的面积为4,侧面ABF的面积为2,侧面BCF的面积为2,侧面ADE的面积为4,侧面AEF的面积为2,所以这个几何体的表面积为16+2+2,四棱锥A-CDEF的底面面积为4,高为4,故体积为×4×4=,三棱锥F-ABC的底面积为2,高为2,故体积为×2×2=,故这个几何体的体积为V=+=.答案:16+2+210.若2sin α-cos α=,则sin α= ,tan (α-)=.解析:2sin α-cos α=⇒4sin 2α-4sin αcos α+cos 2α=5⇒sin 2α+4sin αcos α+4cos 2α=0⇒sin α+2cos α=0,因此sin α=,cos α=-,tan α=-2;tan (α-)==3. 答案: 311.若(x+)(2x-)5的展开式中各项系数的和为2,则该展开式中的常数项为.解析:令x=1,即可得到(x+)(2x-)5的展开式中各项系数的和为1+a=2,所以a=1,(x+)(2x-)5=(x+)(2x-)5,要找其展开式中的常数项,需要找(2x-)5的展开式中的x和,由通项公式得T r+1=(2x)5-r·(-)r=(-1)r·25-r·x5-2r,令5-2r=±1,得到r=2或r=3,所以有80x和-项,分别与和x相乘,再相加,即得该展开式中的常数项为80-40=40.答案:4012. 如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°.沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.解析:如图,连接BD′,设直线AC与BD′所成的角为θ.O是AC的中点.由已知得AC=,以OB为x轴,OA为y轴,过O与平面ABC 垂直的直线为z轴,建立空间直角坐标系,则A(0,,0),B(,0,0),C(0,-,0).作DH⊥AC于H,连接D′H,翻折过程中,D′H始终与AC垂直,则CH===,则OH=,DH==,因此D′(-cos α,-,sin α)(设∠DHD′=α),则=(-cos α-,-,sin α),与平行的单位向量为n=(0,1,0),所以cos θ=︱cos<,n>︱=︱︱=,所以cos α=-1时,cos θ取得最大值为.答案:13.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则·= .解析:设AC与BD交于O点,则·=2·==2×32=18.(注意AP⊥BD 有·=)答案:1814. 如图,二面角α-l-β的大小是45°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是.解析:过点A作AO垂直平面β于点O,作AC垂直直线l于点C,连接CO,BO,则∠ACO=45°,∠ABC=30°,∠ABO即为AB与平面β所成的角.设AO=a,则AC=a,AB=2a,所以sin∠ABO===.答案:15.已知正数a,b,c满足:5c-3a≤b≤4c-a,cln b≥a+cln c,则的取值范围是.解析:把5c-3a≤b≤4c-a变形为5·-3≤≤4·-1,所以5·-3≤4·-1,所以0<≤2;所以-3<5·-3≤≤4·-1≤7,①又cln b≥a+cln c,所以c(ln b-ln c)>a,所以ln>-ln.设x=,h(x)=x-ln x(x≥),利用导数可以证明h(x)在(,1)上单调递减,在(1,+∞)上单调递增,所以h(x)≥h(1)=1,故ln≥1,所以≥e,②由①②可得e≤≤7.答案:[e,7]三、解答题16.(2017·江苏卷)已知向量a=(cos x,sin x),b=(3,-),x∈[0,π].(1)若a∥b,求x的值;(2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值.解:(1)因为a=(cos x,sin x),b=(3,-),a∥b,所以-cos x=3sin x.若cos x=0,则sin x=0,与sin2x+cos2x=1矛盾,故cos x≠0.于是tan x=-.又x∈[0,π],所以x=.(2)f(x)=a·b=(cos x,sin x)·(3,-)=3cos x-sin x=2cos (x+). 因为x∈[0,π],所以x+∈[,],从而-1≤cos(x+)≤.于是,当x+=,即x=0时,f(x)取到最大值3;当x+=π,即x=时,f(x)取到最小值-2.17.(2018·宁波期末) 如图,在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,底面ABCD为矩形,E为PA中点,AB=2a,BC=a,PC=PD= a.(1)求证:PC∥平面BDE;(2)求直线AC与平面PAD所成角的正弦值.解:(1)设AC与BD的交点为O,连接EO.因为四边形ABCD为矩形,所以O为AC的中点.在△PAC中,由已知E为PA中点,所以EO∥PC.又EO⊂平面BDE,PC⊄平面BDE,所以PC∥平面BDE.(2)在△PCD中,DC=2a,PC=PD=a,所以DC2=PD2+PC2,即PC⊥PD.因为平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AD⊥CD,所以AD⊥平面PCD,故AD⊥PC.又因为AD∩PD=D,AD,PD⊂平面PAD,所以PC⊥平面PAD,故∠PAC就是直线AC与平面PAD所成的角.在Rt△PAC中AC=a,PC=a,所以sin ∠PAC===.即直线AC与平面PAD所成角的正弦值为.18. (2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E AG C的大小.解:(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP.又BP⊂平面ABP,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.(2)法一如图①,取的中点H,连接EH,GH,CH. 因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==.取AG的中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG, 所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12, 所以EC=2,所以△EMC为等边三角形,故所求的角为60°.法二以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图②所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3).设m=(x1,y1,z1)是平面AEG的一个法向量,由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量,由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>==.故所求的角为60°.。
高考数学选择题的解题全攻略(一)数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础。
例1、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。
∴a>1,且2-a>0,∴1<a<2,故选B 。
例2、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。
∴a>1,且2-a>0,∴1<a<2,故选B 。
2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
用特例法解选择题时,特例取得愈简单、愈特殊愈好。
(1)特殊值例3、若sin α>tan α>cot α(24παπ<<-),则α∈( )A .(2π-,4π-) B .(4π-,0) C .(0,4π) D .(4π,2π) 解析:因24παπ<<-,取α=-6π代入sin α>tan α>cot α,满足条件式,则排除A 、C 、D ,故选B 。
例4、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( ) A .-24 B .84 C .72 D .36 解析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2019年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学本试卷满分150分,考试时间120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2–56|0A x x x =+>,{}–10|B x x =<,则A B =I( )A .(–1)∞,B .(–2)1,C .(–3)–1,D .(3)+∞,2.设–32z i =+,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.已知()2,3AB =u u u r ,(3)AC t =,uuu r,1BC =uu u r ,则AB BC =⋅uu u r uu u r( ) A .–3 B .–2 C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r满足方程:121223()()M M M R r R r r R +=++.设rR α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( ) ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 ( ) A .中位数 B .平均数 C .方差 D .极差 6.若a b >,则 ( ) A .0()ln a b -> B .33a b < C .330a b -> D .a b >7.设α,β为两个平面,则αβP 的充要条件是 ( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面 8.若抛物线()220y px p =>的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2 B .3 C .4D .89.下列函数中,以2π为周期且在区间42ππ⎛⎫ ⎪⎝⎭,单调递增的是( )A .()cos 2f x x =B .()sin 2f x x =毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)C .()cos f x x =D .()f x sin x =10.已知π20a ⎛⎫∈ ⎪⎝⎭,),2sin2cos2+1αα=,则sin α=( ) A .15 BCD11.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( )ABC .2D12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。
2019年普通高等学校招生全国统一考试理科数学(II 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(集合)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( ) A .(∞-,1) B .(–2,1)C .(–3,–1)D .(3,∞+)【解析】集合A ={x |x 2–5x +6>0}={x |x <2或x >3},集合B ={x |x <1},所以有A ∩B={x |x <1},即A 答案. 【答案】A2.(复数)设i z 23+-=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】i z 23+-=,则z 的共轭复数为i z 23--=,所以在复平面内z 对应的点位于第三象限. 【答案】C3.(平面向量)已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( ) A .–3 B .–2C .2D .3【解析】(1,3)=+=-BC BA AC t ,由于||1=BC ,所以03=-t ,即3=t ,(1,0)=BC .所以21302⋅=⨯+⨯=AB BC【答案】C4.(公式推导)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( ) A .21M R M B .212M R MC .2313M R M D .2313M R M【解析】∵=rR α,∴=r R α,代入121223()()+=++M M M R r R r r R 中得12122222(1)(1)+=++M M M R R R ααα12122(1)(1)+=++M M M ααα33453122333=3(1)++⎛⎫=≈ ⎪+⎝⎭M r M R ααααα所以有 2313=M r R M 【答案】C5.(概率统计)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差D .极差【解析】根据几个数字特征的定义,很容易得出答案:去掉1个最高分、1个最低分,最后中位数不变. 【答案】A6.(函数)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .|a |>|b |【解析】答案A :∵a >b ,∴a -b >0,无法判断ln(a −b )的正负;答案B :∵y =3x 为增函数,∴3a >3b ;答案C :∵y =x 3为增函数,∴a 3>b 3;答案D :当0>a >b 时,|a |<|b |.【答案】C7.(立体几何)设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】通过画图,采用排除法,很容易得到正确答案. 【答案】B8.(解析几何)若抛物线y 2=2px (p >0)的焦点是椭圆1322=+py p x 的一个焦点,则p =( ) A .2 B .3 C .4D .8【解析】抛物线y 2=2px (p >0)的焦点为)0,2(p,并且在x 轴上. 所以椭圆1322=+p y p x 的一个焦点为)0,2(p . 所以有p p22=,得p =8. 【答案】D9.(三角函数)下列函数中,以2π为周期且在区间)2,4(ππ单调递增的是( ) A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x |D .f (x )=sin|x |【解析】答案A :函数f (x )=|cos2x |的图像如图A9-1所示,其周期是函数f (x )=cos2x 的一半,即21π=T ,且在区间)2,4(ππ为单调递增的. 答案B :与答案A 类似,函数f (x )=|sin2x |的周期是函数f (x )=sin2x 的一半,即22π=T ,且在区间)2,4(ππ为单调递减的;答案C :函数f (x )=cos|x |为偶函数,其图像如图A9-2所示.由函数f (x )=cos|x |的图像可知,其周期π23=T ;答案D :与答案C 类似,由函数f (x )=sin|x |的图像可知,其不是周期函数. 【答案】A图A9-1 图A9-210.(三角函数)已知α∈(0,2π),2sin2α=cos2α+1,则sin α=( ) A .15B .55C .33D .255【解析】利用三角公式12cos 2sin 2+=αα化简得ααα2cos 2cos sin 4=ααcos sin 2=所以2cot =α,设α所对得边为1,则临边为2,斜边为5,所以55sin =α. 【答案】B11.(解析几何)设F 为双曲线C :22221(0,0)-=>>x y a b a b的右焦点,O 为坐标原点,以OF 为直径的圆与圆222+=x y a 交于P ,Q 两点.若=PQ OF ,则C 的离心率为( ) A .2 B .3C .2D .5【解析】如图A11所示. ∵OF 为直径,=PQ OF ,∴PQ 也是直径.,即点P 、Q 的坐标为)2,2(c c .把)2,2(c c 代入222+=x y a 得,222=c a . ∴22=e ,即2=e .图A11【答案】A12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【解析】由)(2)1(x f x f =+可得Z x x f t x f t∈⋅=+),(2)(,即Z x t x f x f t∈-⋅=),(2)(.∵当(0,1]∈x 时,()(1)=-f x x x ,1()[,0]4∈-f x ∴当(1,2]∈x 时,1(0,1]-∈x ,则)2)(1(2)1(2)(--=-⋅=x x x f x f ,1()[,0]2∈-f x∴当(2,3]∈x 时,2(0,1]-∈x ,则)3)(2(4)2(2)(2--=-⋅=x x x f x f ,()[1,0]∈-f x 函数()f x 的图像如图A12所示. 对任意(,]∈-∞x m ,都有8()9≥-f x ,因此(2,3]∈m 令98)3)(2(4)(-=--=x x x f ,得 37=x 或38=x . 由图A12可知,当37≤m 时,都有8()9≥-f x .图A12【答案】B二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学选择题答题技巧有哪些高考选择题占高考分数比重十分可观,750分中约有320分为选择题,占总分的45%左右。
其中数学选择题的分数为60分,而且单项分数很高,两道选择题的分数等于一道大题的分数。
学生的在选择题这类题型上,又普遍失分严重,据不完全统计,400分左右的学生,选择题丢分高达150~240分。
500分左右的学生选择题丢分80~150分。
所以,一直以来,选择题是拉开同学们分数距离的一条屏障,老师总是利用选择题的特点,让高考的选拔形成梯度。
如果选择题不丢分,同学们的总分就可以大幅度的提升,快速跨越当前的局限。
每年五月一日,仅剩一个月的情况下,当其他的辅导机构以及学校还在埋头做题,反复讲知识点的时候,玖久已经开始带领学生进入一个考试技术训练的阶段。
我们就用5月1日这一天,通过7-8个小时,传授学生选择题的本质和具体的做题原则,学生通过我们的教学法则,轻松突破选择题,最后成为高考上的黑马。
所以,我们格外重视高考非智力考核的潜在规则,也因此形成一套考试技术,专门应对考试。
就是训练学生最后的那临门一脚。
上篇博文提到选择题的一些解答思维,今天我们以数学这个学科为例,通过一些历年高考真题,给同学们传授一些选择题的解答思维:“如何理解转化知识点,如何将选择题做的又快又对”。
(那位认为上篇博文过于理论的同学,请看过来,现在我们具体教您技巧了。
)解答高考选择题既要求准确破解,又要快速选择,正如《考试说明》中明确指出的,应“多一点想的,少一点算的”。
我们都会有算错的时候,怎样才不会算错呢?“不算就不会算错” 因此,在解答时应该突出一个选字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。
我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。
下面略举数例加以说明:快速解题思维一:利用题目中的已知条件和选项的特殊性。
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
第一部分 专题四 第二讲A 组1.设{a n }的首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=(D )A .2B .-2C .12D .-12[解析]由题意知S 1=a 1,S 2=2a 1-1,S 4=4a 1-6,因为S 1,S 2,S 4成等比数列,所以S 2=S 1·S 4,即(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.故选D .2.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a1a2+1a2a3+…+1anan +1等于( B )A .1-14nB .23(1-14n )C .1-12nD .23(1-12n)[解析]因为a n =1×2n -1=2n -1,所以a n ·a n +1=2n -1·2n =2×4n -1,所以1anan +1=12×(14)n -1,所以{1anan +1}也是等比数列,所以T n =1a1a2+1a2a3+…+1anan +1=12×错误!=错误!(1-错误!),故选B .3.(2018·烟台模拟)已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( C)A .30B .45C .90D .186[解析]设{a n }的公差为d ,首项为a 1,由题意得⎩⎪⎨⎪⎧ a1+d =6,a1+4d =15,解得⎩⎪⎨⎪⎧a1=3,d =3,所以a n =3n ,所以b n =a 2n =6n ,且b 1=6,公差为6,所以S 5=5×6+5×42×6=90.4.等差数列{a n }中,a 1>0,公差d <0,S n 为其前n 项和,对任意自然数n ,若点(n ,S n )在以下4条曲线中的某一条上,则这条曲线应是( C )[解析]∵S n =na 1+错误!d ,∴S n =错误!n 2+(a 1-错误!)n ,又a 1>0,公差d <0,所以点(n ,S n )所在抛物线开口向下,对称轴在y 轴右侧.[点评] 可取特殊数列验证排除,如a n =3-n .5.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2; ②f (x )=2x ;③f (x )=|x|; ④f (x )=ln|x |.则其中是“保等比数列函数”的f (x )的序号为( C )A .①②B .③④C .①③D .②④ [分析]保等比数列函数指:①定义在(-∞,0)∪(0,+∞)上的函数;②若{a n }是等比数列,则{f (a n )}仍是等比数列.[解析]解法一:设{a n }的公比为q .①f (a n )=a 2n ,∵a2n +1a2n =(an +1an )2=q 2,∴{f (a n )}是等比数列,排除B 、D .③f (a n )=|an|,∵|an +1||an|=|an +1an|=|q|,∴{f (a n )}是等比数列,排除A .解法二:不妨令a n =2n .①因为f (x )=x 2,所以f (a n )=a 2n =4n .显然{f (a n )}是首项为4,公比为4的等比数列.②因为f (x )=2x ,所以f (a 1)=f (2)=22,f (a 2)=f (4)=24,f (a 3)=f (8)=28,所以错误!=错误!=4≠错误!=错误!=16,所以{f (a n )}不是等比数列.③因为f (x )=|x|,所以f (a n )=2n =(2)n .显然{f (a n )}是首项为2,公比为2的等比数列.④因为f (x )=ln|x |,所以f (a n )=ln2n =n ln2.显然{f (a n )}是首项为ln2,公差为ln2的等差数列,故选C .6.(2018·邵阳一模)已知数列{b n }为等比数列,且b 1009=e(e 为自然对数的底数),数列{a n }的首项为1.2_017的值为2018a 则ln ,n b ·n a =+1n a 且,[解析]因为数列{b n }为等比数列,且b 1009=e(e 为自然对数的底数),数列{a n }的首项为1,且a n +1=a n ·b n ,所以a 2018=b 1·b 2·b 3·b 4·…·b 2017=b 20171009=e 2017,ln a 2018=lne 2017=2017.7.已知数列{a n }是等比数列,其公比为2,设b n =log 2a n ,且数列{b n }的前10项的和为25,那么1a1+1a2+1a3+…+1a10的值为1 023128.[解析]数列{a n }是等比数列,其公比为2,设b n =log 2a n ,且数列{b n }的前10项的和为25,所以b 1+b 2+…+b 10 =log 2(a 1·a 2·…·a 10)=log 2(a 10121+2+…+9)=25,所以a 101×245=225,可得:a 1=14.那么1a1+1a2+1a3+…+1a10=4(1+12+122+…+129)=4×1-12101-12=1023128.8.已知等比数列{a n }的公比q >1,42是a 1和a 4的一个等比中项,a 2和a 3的等差中项为6,若数列{b n }满足b n =log 2a n (n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和S n .[解析](1)因为42是a 1和a 4的一个等比中项,所以a 1·a 4=(42)2=32.由题意可得⎩⎪⎨⎪⎧a2·a3=32,a2+a3=12.因为q >1,所以a 3>a 2.解得⎩⎪⎨⎪⎧a2=4,a3=8.所以q =a3a2=2.故数列{a n }的通项公式a n =2n .(2)由于b n =log 2a n (n ∈N *),所以a n b n =n ·2n , S n =1·2+2·22+3·23+…+(n -1)·2n -1+n ·2n ,①2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.②①-②得,-S n =1·2+22+23+…+2n -n ·2n +1=错误!-n ·2n +1.所以S n =2-2n +1+n ·2n +1=2+(n -1)·2n +1.9.(文)(2018·天津卷,18)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.[解析](1)设等比数列{b n }的公比为q ,由b 1=1,b 3=b 2+2,可得q 2-q -2=0.因为q >0,可得q =2,故b n =2n -1.所以T n =1-2n1-2=2n -1.设等差数列{a n }的公差为d .由b 4=a 3+a 5,可得a 1+3d =4.由b 5=a 4+2a 6,可得3a 1+13d =16,从而a 1=1,d =1,故a n =n ,所以S n =错误!. (2)由(1),知T 1+T 2+…+T n =(21+22+…+2n )-n =2n +1-n -2.由S n +(T 1+T 2+…+T n )=a n +4b n 可得错误!+2n +1-n -2=n +2n +1,整理得n 2-3n -4=0,解得n =-1(舍),或n =4.所以n 的值为4.(理)(2018·天津卷,18)设{a n }是等比数列,公比大于0,其前n 项和为S n (n∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式.(2)设数列{S n }的前n 项和为T n (n ∈N *),①求T n ;②证明[解析](1)设等比数列{a n }的公比为q .由a 1=1,a 3=a 2+2,可得q 2-q -2=0.因为q >0,可得q =2,故a n =2n -1.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,可得b 1+3d =4.由a 5=b 4+2b 6,可得3b 1+13d =16,从而b 1=1,d =1,故b n =n .所以数列{a n }的通项公式为a n =2n -1,数列{b n }的通项公式为b n =n .(2)①由(1),有S n =1-2n1-2=2n -1,故T n =k =1n(2k -1)=k =1n 2k-n =错误!-n =2n +1-n -2.②因为错误!=错误!= 错误!=错误!-错误!,B 组1.设S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52,则数列{错误!}的前n 项和T n =( C ) A .-n2n +1B .n2n +1C .-2n2n +1D .2n2n +1[解析]本题主要考查等差、等比数列的性质以及裂项法求和.设{a n }的公差为d ,因为S 1=a 1,S 2=2a 1+d =2a 1+a3-a12=32a 1-54,S 4=3a 3+a 1=a 1-152,因为S 1,S 2,S 4成等比数列,所以(32a 1-54)2=(a 1-152)a 1,整理得4a 21+12a 1+5=0,所以a 1=-52或a 1=-12.当a 1=-52时,公差d =0不符合题意,舍去;当a 1=-12时,公差d =a3-a12=-1,所以a n =-12+(n -1)×(-1)=-n +12=-12(2n -1),所以错误!=-错误!=-(错误!-错误!),所以其前n 项和T n =-(1-13+13-15+…+12n -1-12n +1)=-(1-12n +1)=-2n2n +1,故选C .2.(文)以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等关系不一定成立的是( D )A .2a 3>3a 4B .5a 5>a 1+6a 6C .a 5+a 4-a 3<0D .a 3+a 6+a 12<2a 7[解析]依题意得a 6=S 6-S 5<0,2a 3-3a 4=2(a 1+2d )-3(a 1+3d )=-(a 1+5d )=-a 6>0,2a 3>3a 4;5a 5-(a 1+6a 6)=5(a 1+4d )-a 1-6(a 1+5d )=-2(a 1+5d )=-2a 6>0,5a 5>a 1+6a 6;a 5+a 4-a 3=(a 3+a 6)-a 3=a 6<0.综上所述,故选D .(理)已知a n =32n -11,数列{a n }的前n 项和为S n ,关于a n 及S n 的叙述正确的是( C )A .a n 与S n 都有最大值B .a n 与S n 都没有最大值C .a n 与S n 都有最小值D .a n 与S n 都没有最小值[解析]画出a n =32n -11的图象,点(n ,a n )为函数y =32x -11图象上的一群孤立点,(112,0)为对称中心,S 5最小,a 5最小,a 6最大.3.已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( A )A .25B .50C .100D .不存在 [解析]∵S 20=a1+a202×20=100,∴a 1+a 20=10.∵a 1+a 20=a 7+a 14,∴a 7+a 14=10.∵a n >0,∴a 7·a 14≤(a7+a142)2=25.当且仅当a 7=a 14时取等号.4.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( B )A .2n -1B .(32)n -1C .(23)n -1D .12n -1[解析]由S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,∴Sn +1Sn =32,∵a 1=1,S 1=2a 2,∴a 2=12a 1=12,∴S 2=32,∴S2S1=32,∴S n =(32)n -1.5.(2018·山东省实验中学调研)在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n),则a n =( A )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n[解析]a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n -ln(n -1)+ln(n -1)-ln(n -2)+…+ln2-ln1+2=2+ln n .6.(2018·西安一模)已知数列{a n }的通项公式a n =log 2n n +1(n∈.16的值为n 4成立的最小自然数-<n S 则使,n S 项和为n 设其前),*N[解析]因为a n =log 2nn +1,所以S n =log 212+log 223+log 234+…+log 2n n +1=log 2(12·23·34·…·n n +1)=log 21n +1,若S n <-4,则1n +1<116,即n >15,则使S n <-4成立的最小自然数n 的值为16.7.如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第一群,第二群,.-3n -2n 3·2个数的和是n 群中n 则第,个数n 群恰好n 第,…,群n 第,…[解析]由图规律知,第n 行第1个数为2n -1,第2个数为3·2n -2,第3个数为5·2n -3……设这n 个数的和为S则S =2n -1+3·2n -2+5×2n -3+…+(2n -3)·2+(2n -1)·20①2S n =2n +3·2n -1+5·2n -2+…+(2n -3)·22+(2n -1)·21②②-①得S n =2n +2·2n -1+2·2n -2+…+2·22+2·2-(2n -1)=2n +2n +2n -1+…+23+22-(2n -1)=2n +错误!-(2n -1) =2n +2n +1-4-2n +1=3·2n -2n -3.8.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[分析](1)利用a n +1=S n +1-S n 用配凑法可获证;(2)假设存在λ,则a 1,a 2,a 3应成等差数列求出λ的值,然后依据a n +2-a n =λ推证{a n }为等差数列.[解析](1)由题设:a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1,令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 9.已知数列{a n }满足a n +1=-1an +2,a 1=-12.(1)求证{1an +1}是等差数列;(2)求数列{a n }的通项公式;(3)设T n =a n +a n +1+…+a 2n -1.若T n ≥p -n 对任意的n ∈N *恒成立,求p 的最大值.[解析](1)证明:∵a n +1=-1an +2,∴a n +1+1=-1an +2+1=an +2-1an +2=an +1an +2,由于a n +1≠0,∴1an +1+1=an +2an +1=1+1an +1, ∴{1an +1}是以2为首项,1为公差的等差数列.(2)由(1)题结论知:1an +1=2+(n -1)=n +1,∴a n =1n +1-1=-nn +1(n ∈N *).(3)∵T n =a n +a n +1+…+a 2n -1≥P -n ,∴n +a n +a n +1+…+a 2n -1≥P ,即(1+a n )+(1+a n +1)+(1+a n +2)+…+(1+a 2n -1)≥p ,对任意n ∈N *恒成立,而1+a n =1n +1,设H (n )=(1+a n )+(1+a n +1)+…+(1+a 2n -1),∴H (n )=1n +1+1n +2+…+12n ,H (n +1)=1n +2+1n +3+…+12n +12n +1+12n +2,∴H (n +1)-H (n )=12n +1+12n +2-1n +1=12n +1-12n +2>0,∴数列{H (n )}单调递增,∴n ∈N *时,H (n )≥H (1)=12,故P ≤12.1 2.∴P的最大值为。
【考向解读】不等式的性质、求解、证明及应用是每年高考必考的内容,对不等式的考查一般以选择题、填空题为主.(1)主要考查不等式的求解、利用基本不等式求最值及线性规划求最值;(2)不等式相关的知识可以渗透到高考的各个知识领域,往往作为解题工具与数列、函数、向量相结合,在知识的交汇处命题,难度中档;在解答题中,特别是在解析几何中求最值、范围或在解决导数问题时经常利用不等式进行求解,但难度偏高.【命题热点突破一】不等式的解法1.一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.2.简单分式不等式的解法(1)f xg x>0(<0)⇔f(x)g(x)>0(<0);(2)f xg x≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解.例1、(2018年北京卷)设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【变式探究】【2017江苏,10】某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储之和最小,则x的值是▲.【答案】30【解析】总费用,当且仅当900xx=,即30x=时等号成立.【变式探究】若,则( )(A)c ca b<(B)c cab ba<(C)(D)【答案】C【解析】用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,,选项B 错误,,选项C 正确,,选项D 错误,故选C .【变式探究】设变量x ,y 满足约束条件则目标函数25z x y =+的最小值为( )(A )4- (B )6 (C )10 (D )17【答案】B【感悟提升】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.【变式探究】(1)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________. (2)函数y =x -1x +3+x -1的最大值为________. 【答案】(1)2 (2)15【解析】(1)由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +y 2-x 22yx=x 2+2y 22xy ≥2x 2·2y 22xy =2,当且仅当 x =2y 时取等号.(2)令t =x -1≥0,则x =t 2+1, 所以y =t t 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t +1,因为t +4t ≥24=4(当且仅当t =2时取等号),所以y =1t +4t +1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).【点评】求条件最值问题一般有两种思路:一是利用函数单调性求最值;二是利用基本不等式.在利用基本不等式时往往都需要变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值.等号能够取得.【命题热点突破三】简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.例3、(2018年全国I 卷)设变量满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45 【答案】C【变式探究】【2017山东,文3】已知x ,y 满足约束条件,则z =x +2y 的最大值是A.-3B.-1C.1D.3 【答案】D【解析】画出约束条件表示的可行域,如图中阴影部分所示,平移直线20x y +=,可知当其经过直线与2y =的交点()1,2-时, 2z x y =+取得最大值,为,故选D.3. (2018年浙江卷)若满足约束条件则的最小值是___________,最大值是___________.【答案】 (1). -2 (2). 84. (2018年天津卷)已知a ,b ∈R ,且a –3b +6=0,则2a +的最小值为__________. 【答案】 【解析】由可知,且:,因为对于任意x ,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.5. (2018年北京卷)若 ,y 满足,则2y− 的最小值是_________.【答案】3【解析】不等式可转化为,即满足条件的在平面直角坐标系中的可行域如下图令, 由图象可知,当过点时,取最小值,此时,的最小值为.6. (2018年江苏卷)在中,角所对的边分别为,,的平分线交于点D ,且,则的最小值为________.【答案】97. (2018年全国III 卷)若变量满足约束条件则的最大值是________.【答案】3【解析】作出可行域1.【2017课标1,文7】设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D2.【2017课标II ,文7】设,x y 满足约束条件,则2z x y =+的最小值是A.15-B.9-C.1 D 9 【答案】A【解析】x 、y 满足约束条件的可行域如图:5.【2017山东,文3】已知x ,y 满足约束条件,则z =x +2y 的最大值是A.-3B.-1C.1D.3 【答案】D6.【2017浙江,4】若x ,y 满足约束条件,则y x z 2+=的取值范围是A .[0,6]B .[0,4]C .[6,)∞+D .[4,)∞+【答案】D【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .7.【2017江苏,10】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 ▲ .【答案】30 【解析】总费用,当且仅当900x x=,即30x =时等号成立. 1. 【2016高考新课标1卷】若,则( )y(A )c c a b < (B )c c ab ba < (C ) (D )【答案】C2.【2016高考天津文数】设变量x ,y 满足约束条件则目标函数25z x y =+的最小值为( )(A )4-(B )6(C )10(D )17【答案】B【解析】可行域为一个三角形ABC 及其内部,其中,直线z 25x y =+过点B 时取最小值6,选B.3.【2016高考山东文数】若变量x ,y 满足,则22x y +的最大值是( )(A )4 (B )9 (C )10 (D )12【答案】C【解析】不等式组表示的可行域是以A (0,-3),B (0,2),C (3,-1)为顶点的三角形区域,22x y +表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值为210OC=,故选C.6.【2016年高考四川文数】设p :实数x ,y 满足,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A7.【2016高考新课标3文数】若,x y 满足约束条件 则z x y =+的最大值为_____________.【答案】32【解析】作出不等式组表示的平面区域,如图中阴影部分所示.由图知,当直线z x y =+经过点A 时,z取得最大值.由得112x y =⎧⎪⎨=⎪⎩ ,即1(1,)2A ,则.8.【2016高考新课标1卷】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000作出二元一次不等式组②表示的平面区域(如图),即可行域.将变形,得,平行直线73y x =-,当直线经过点M时,z 取得最大值.【答案】A8.(2015·广东卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A.315B.6C.235D.4【解析】不等式组所表示的可行域如下图所示,【答案】C9.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________. 【解析】f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,∴f (x )的最小值为22-3.【答案】0 22-3。
专家支招高考数学:高考数学选择题十大解法专家支招高考数学:高考数学选择题十大解法【】高考语文作文题是高考语文的重点,也是每年考生的关注焦点。
查字典数学网高考频道为大家整理专家支招高考数学:高考数学选择题十大解法下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.25/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C 为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
例:银行计划将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户.为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户回扣率最小值为()A.5%B.10%C.15%D.20%解析:设共有资金为,储户回扣率,由题意得解出0.10.10.4+0.350.6-0.15解出0.10.15,故应选B.7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。