10kV系统电压异常现象判断及处理
- 格式:doc
- 大小:34.50 KB
- 文档页数:3
10kV电压异常原因分析及处理措施10kV电压异常原因分析及处理措施摘要:本文对电网实际运行中时常出现的10kV电压异常现象的原因进行分类,并逐一研究分析其产生机理,从而引出处理10kV电压异常措施的思路。
关键词:电压异常;负荷;接地;断线;消弧线圈;谐振0 前言电压的异常直接影响设备的运行技术指标、经济指标,甚至导致用户的用电设备无法正常工作,电网的安全与经济运行遭至破坏。
10kV母线是调度部门可以进行电压调控的最后一级母线,也是最直接影响用户电压质量的母线。
因此对10kV电压异常产生的根本原因进行分析研究,对消除电压异常和保障电网安全运行具有十分重要的意义。
1 负荷变化引起的电压偏移根据相关调压原则要求:变电站和直调电厂的10kV母线正常运行方式下的电压允许偏差为系统额定电压的0%―+7%。
而在实际电网运行中,在白天用电高峰时段,10kV母线可能低于10.0kV下限,在深夜用电低谷时段,10kV母线也可能高于10.7kV上限。
造成电网正常运行中电压偏移的原因是不同大小的功率在电网元件中传输会产生不同的电压降落。
功率由系统通过110kV降压变压器经变压后到达10kV母线,其等值电路图和相量图如图1所示。
在上图中,为归算到110kV变压器10kV侧的一次电压,为110kV变压器的二次电压,即10kV母线电压,S为传输的视在功率,为归算到110kV变压器10kV侧的传输电流,φ为与的相位差,XT为110kV变压器归算到二次侧的等值电抗,RT为110kV变压器归算到二次侧的等值电阻。
图中,就是电压降相量,即(RT+XT),将电压降相量分解为与二次电压同方向和相垂直的两个分量和。
称为电压降落的纵分量,称为电压降落的横分量。
而在电网实际计算中,由于电压降横分量很小,可以忽略不计,因此,其电压降可以省略简化成仅为电压降落的纵分量,以ΔU表示。
由图3可得ΔU的模值为,将、、代入上式可得,因此可以得出,10kV母线电压与传输功率的关系公式为:由上式可知,通过减少传输的有功负荷P、无功负荷Q、电阻RT和电抗XT,或者提高110kV侧电压U1的方法,可以减少电压降落,提高10kV电压;反之则降低10kV电压。
10kV母线电压异常原因的分析与解决措施摘要:本文首先介绍了某站10kV母线电压三次谐波的含量超标问题,然后通过排除法分析出现谐波超标的原因,最后提出了解决消除谐波的措施。
对变电运行维护具有一定实际的意义。
关键词:三次谐波;电压互感器;铁磁谐振0 引言母线电压三次谐波超标会导致仪表指示不正常或保护误动。
消除和减少三次谐波是保证10kV电力系统可靠运行的必要条件。
本文介绍的某站10kV是中性点经小电阻接地,属于中性点非直接接地系统。
1 电压谐波超标情况某站运维人员在日常巡视中,发现10kV#3母线电压异常,电压波形详见图一。
经过录波装置分析,电压波形中含有25%的三次谐波和5%的九次谐波,根据规范电能质量公用电网谐波10kV的奇次谐波含有率不超过3.2%的规定,10kV#3母线电压的奇次谐波含量已严重超标。
图一 10kV#3母线电压波形图二 10kV#3母线电压谐波含量10kV#3母线2015年投产,当时10kV系统为接地变经消弧线圈接地,2019年改造为接地变经小电阻接地。
2 电压谐波超标原因分析与某站的10kV#3母线系统对比,10kV#1、#2母线电压正常。
三台主变的变高并列运行,且主变变低绕组为三角形接线方式,三次谐波电流在三角形内会形成环流,且不会流到10kV系统。
因此,谐波来源排除了主变变高或电源侧的系统。
通过观察日常负荷的峰、平、谷,研究其对三次谐波的影响。
发现三次谐波电压的畸变是稳定的。
这样就排除来自用户负荷的谐波来源的可能性。
根据文献[1],电压互感器二次中性点接地不良也可以导致三次谐波的产生。
但经过对比发现二者电压波形差别较大。
前者的电压波形是平顶波,而本文的波形是尖顶波。
而且经过现场的测量中性点和N600电压对比,电压互感器二次中性点接地良好。
综上,排除电压互感器二次中性点接地不良的导致产生谐波。
根据文献[2],电磁式电压互感器引起的铁磁高频谐振引起的过电压同样会产生三次谐波。
浅谈10kV母线电压异常分析及处理发表时间:2019-06-06T08:54:19.680Z 来源:《电力设备》2018年第36期作者:叶树伟[导读] 摘要:在小电流接地系统中,10kV PT电压异常时有发生,现结合220kV XX变电站发生的10kV PT电压异常分析和处理过程,对10kV PT电压异常的原因和预防措施进行了探究。
(东莞供电局广东东莞 523000)摘要:在小电流接地系统中,10kV PT电压异常时有发生,现结合220kV XX变电站发生的10kV PT电压异常分析和处理过程,对10kV PT电压异常的原因和预防措施进行了探究。
关键词:变电站;10kV PT;异常;故障辨析 0事件现象220kV XX站值班人员在监盘时发现:监控机发出“220kV XX站10kV 2乙M母线电压异常”异常告警信号,经检查发现10kV 2乙M母线电压A相2.0kV,B相6.0kV,B相6.0kV,监盘人员立即将该情况报告当值值班长。
1.技术分析 220kV XX站10kV 2乙M母线电压异常原因:10kV PT高压熔断器熔断、低压熔断器熔断、一次系统接地、断线故障、铁磁谐振、负载不对称、接线错误或松动、电压继电器辅助接点接触不良等。
1.110kV PT熔断器熔断 1)当系统发生单相间歇电弧接地时,产生接地过电压。
电压可达正常相电压3—3.5 倍,可能使10kV PT铁芯饱和,激磁电流急剧增加,引起高压侧熔断器熔断,熔断相低压侧电压降低但不为零,此时低压侧非故障的两相电压保持正常相电压。
同时,由于高压侧发生熔断器熔断,低压侧伴随出现零序电压,此时的零序电压高于10kV母线接地信号告警定值,因此保护装置启动并发出母线接地信号。
2)当10kV PT低压熔断器熔断时,二次侧现象与高压侧相似,区别在于低压侧熔断器熔断,只会影响某一绕组电压,不会伴随出现零序电压,所以不会发出母线接地信号。
1.2一次系统接地、断线小电流接地系统单相接地故障可分为金属性接地与非金属性接地两类: 1)当发生金属性接地时,接地电阻为零(或接近于零),中性点与故障相电压重合,故障相电压为零,非故障相电压上升为线电压(或接近于线电压)。
小接地系统10kV母线电压异常原因分析及调度处理措施分析小接地系统是电力系统的一部分,主要用于发电厂、变电站等电力设施的地电位变化监测和电气设备的保护。
10kV母线电压异常可能会导致电力设备的故障,影响电力系统的正常运行。
本文将对造成10kV母线电压异常的原因进行分析,并提出相应的调度处理措施。
造成10kV母线电压异常的原因主要有以下几方面:1.负荷突变:当电力系统负荷突变时,如其中一供电点的负荷突增或突减,会引起10kV母线电压的异常变化。
例如,一些供电点的负荷突增,导致10kV母线电压下降;一些供电点的负荷突减,导致10kV母线电压上升。
2.输电线路故障:输电线路故障是引起电力系统电压异常波动的主要原因之一、例如,输电线路发生短路故障,会导致10kV母线电压瞬时下降;输电线路发生断线故障,会导致10kV母线电压瞬时上升。
3.发电机故障:发电机故障是引起10kV母线电压异常的另一个重要原因。
例如,发电机出现失磁故障,会导致10kV母线电压下降;发电机感应电压异常,会导致10kV母线电压上升。
针对以上原因,应采取相应的调度处理措施,以保障电力系统的正常运行:1.对于负荷突变引起的异常电压,可以通过增减发电机容量或调整负荷分配方式等方式来平衡系统负荷,以维持10kV母线电压稳定。
2.对于输电线路故障引起的异常电压,应及时采取故障线路隔离、检修和恢复供电等措施,以保障10kV母线电压的稳定。
3.对于发电机故障引起的异常电压,应及时检修或更换故障发电机,以恢复10kV母线电压的正常运行。
此外,还可以通过合理调整电力系统的调度策略,采用优化的电力调度算法来降低10kV母线电压异常的概率。
综上所述,造成10kV母线电压异常的原因较多,调度处理应根据具体情况采取相应的措施。
通过合理的负荷管理、线路维护和设备检修等措施,可以最大程度地减少异常电压对电力系统的影响,保障电力系统的正常运行。
10kV系统电压异常现象判断及处理作者:米东林来源:《中国新通信》 2015年第15期米东林兰州供电公司【摘要】电网运行过程中,10kV 系统电压异常是比较常见的现象,对系统运行的可靠性有较大的影响。
针对此问题本文总结了引起10kV 系统电压异常的常见因素,同时对这些常见故障常规的表现及处理方法进行了归纳讨论,以便及时正确地维护系统稳定运行。
【关键词】 10kV 电压异常接地谐振一、引言10kV 系统一般是中性点不接地系统或中性点经消弧线圈接地系统,随着电网的扩大,电容电流的增多,越来越多的10kV 系统将会是中性点经消弧线圈接地系统。
在甘肃电网中10kV 配电网中使用中性点不接地系统, 经常会出现10kV 电压异常的现象,造成10kV 电网电压不正常的要素诸多,能够分成2 个类别:第一类是10kV 电力网络运行参数不正确;第二类是10kV电网设施出现故障,包含一次设施故障(还有可能产生多处故障)、计量回路故障(包含TV和二次回路事故)、一次设施故障而且计量回路也存在问题。
电压的体现方式通常有3 种:其一是常规有专门人员负责变电站,配备有电压表1 个,相电压绝缘监控表3 个;其二是常规变电站没有人值班变革以后,在当地后台及调控中心工作站电压棒图上可以看到一个线电压值和三个相电压值;一种是无人值守综合自动化站,在当地后台及调控中心工作站电压棒图以及遥测信息表上可以看出三个线电压值、三个相电压值和一个零序电压值,这种模式对10kV 系统电压异常的判断处理非常有利[1]。
二、测量回路故障的电压表现及其常见故障2.1 TV 高压熔丝熔断在一相、二相或三相高压熔丝中断无法正常运行过程中,熔断相二次电压会明显变低,且发射“母线接地”讯号。
在没有全部熔断时,或许不会发射此种讯号。
TV 高压熔丝一相熔断:当TV 高压熔丝熔断一相时,受负载影响,熔断相电压减小,但不为零,一般状况下,二次电压能够变为20 ~ 40V,从电压表反应出一相电压大幅度降低,其他相电压有不同程度的降低。
浅谈造成10kV电压异常的原因及处理摘要:本文阐述了110kv及以下变电站10kv电压异常的问题,分析了造成中性点不接地系统10kv电压异常的各种原因,引用部分实例,并结合自身实际工作经验对如何做出正确判断处理进行阐述。
对于10kv电压异常,本文从从综合概述、异常象征、原因分析、如何处理等几个方面进行了介绍。
关键词:10kv电压异常原因处理中图分类号:tm63 文献标识码:a 文章编号:1674-098x(2012)07(a)-0081-01在110kv及以下变电站的运行过程中,变电运行人员经常遇到10kv电压异常,如果这种异常状况得不到及时处理,就会演变为事故,给变电站的安全稳定运行带来极大威胁。
为了保证变电站的安全稳定运行,当出现10kv电压异常时我们应当从以下几方面进行分析和处理。
1 10kv电压互感器高、低压侧保险熔断或二次侧断线在10kv系统中我们通常采用三台单相电压互感器组成y,yn/接线,假定每台电压互感器的容量为s1,则y,yn/接线时的三相容量sy=3s1,若三相负荷不对称,则sy应适当降低。
这种接线能测量三个线电压和三个相电压,此外,用它的三个辅助线圈连接成形(开口三角形)。
当一次系统中任一相接地时,其开口三角的两端将产生约50-100v的电压,可接入绝缘监视系统作为一次系统的接地保护之用。
若高压保险熔断一相,熔断相电压指示降低但不为零,其他两相不变;若高压保险熔断三相,母线三相电压指示均为零;断一相或两相时,3u0数值升高,发“母线接地”或“电压回路断线”信号。
例如:一次侧a相保险熔断,ub、uc、ubc正常,ua、uab、uac电压很低,但不为零,uab<ub,uac<uc。
经验数值举例:ua=1.12vub=6.06vuc=6.09vuab=5.86vuac=5.73vubc=10.5v3u0 =78v。
在实际运行中,由于电压互感器二次所接的设备不同,因此熔丝熔断后电压的指示数值可能出现各种不同情况,但一般来说,非故障相的电压保持正常,与故障相有关的电压都会有不同程度的降低。
10kV母线电压异常分析及处理康林春2010年10月26日目录一、母线电压异常的五个表象二、母线单相接地故障处理三、母线谐振处理四、母线PT高压保险熔断处理五、母线PT低压保险熔断处理六、母线电压三相消失的处理一、10kV母线电压异常的五个表象1、表象一:单相接地象征:10kV母线电压三相指示不平衡,接地相电压指示趋近于零,非接地相电压上升为线电压,三相电压的数值基本稳定,且伴随有母线接地告警的声光信号,所接保护及自动装置可能发电压回路断线信号。
2、表象二:谐振象征:A、常规:10kV母线电压三相指示同时或波浪形上升或降低,峰值可超过线电压,谷值可低于相电压(但不会为零),三相数值不稳定,可伴随有母线接地告警的声光信号。
B、特殊:10kV母线电压三相变动及波动不一,有类似于接地时的三相电压象征,也有一至两相不变,另两相或一相波动的情况,可间歇性或长时伴随有母线接地告警的声光信号,所接保护及自动装置可能发电压回路断线信号。
3、表象三:母线PT高压保险熔断象征:10kV母线电压三相指示不平衡,熔断相电压降低为2-3kV,非熔断相电压不变,三相电压的数值稳定,所接保护及自动装置发电压回路断线信号,偶尔会并发接地信号。
4、表象四:母线PT低压保险熔断象征:10kV母线电压三相指示不平衡,熔断相电压降低为0-1kV,非熔断相电压不变,三相电压的数值稳定,所接保护及自动装置发电压回路断线信号。
5、表象五:母线三相电压消失象征:10kV母线电压三相指示为零,所接保护及自动装置发电压回路断线信号,10kV进线及出线断路器有功及无功为零,电流存在有或无两种情况(分别对应母线失压及假失压两种状况)。
注:因调度管辖权限划分规定昆明地调配网组辖10kV旁路母线及以下设备,主网组辖10kV母线及以上设备,故而上述五个表异常中只有接地由配网组指挥查找及处理10kV母线上各分路的接地异常,后四种均由主网调度员指挥处理。
二、10kV母线单相接地处理(一)10kV母线单相接地处理及其步骤:1、判定是否真接地:调度员接到关于10kV母线电压异常及接地的汇报,须对照SCADA系统迅速调出该站实时图,母线电压指示、现场汇报及其信息,迅速判断接地象征是否属实。
探究10kV配网线路电压不平衡故障的判断及处理方法摘要:随着配电网规模的不断扩大,其运行环境变得越来越复杂,尤其是作为电力系统末端的低压配电网。
为提高配电线路管理的基本素质,应积极建立健全完善的故障管控机制,构建系统化的处理机制和控制流程,为全面优化配电网管理和用户整体用电效率奠定基础。
为了充分满足电能质量的刚性要求,有必要对电压不平衡故障进行全面判断和系统处理,以确保接线和故障处理效果能够满足要求。
系统分析了10kV配电网线路电压不平衡故障的特点和判断依据,并从线路开关处理、接地点处理、牵引运行等方面提出了处理策略,仅供参考。
关键词:10kV配网线路;电压不平衡;故障;处理一、电压的不平衡问题特征(一)对于10kV配电网系统,只要存在单相接地问题,系统可以维持2小时的正常工作时间,用户仍然可以正常用电。
近年来,随着社会用电量的逐步增加,配电网线路建设规模不断扩大,10kV架空线路的线路数也呈线性增加,线路长度不断增加,导致电网电流和对地电容迅速增加。
每当出现单相接地问题时,接地电弧中可能会出现电弧过电压问题,这意味着电压值会迅速上升,直到达到相电压的3-5倍,此时,配电网的弱绝缘可能会发生故障,导致相间短路,并对电气设备造成一些损坏,导致故障和停电。
[1](二)10kV配电网线路电压不平衡的原因复杂,外部原因也很关键,如雷电和暴雨的作用;其内部原因主要包括:电气设备本身运行故障导致的断开和接地。
如果你想有效、合理地判断和解决故障,需要相应的工作人员对各种故障的性质和特点进行详细的判断和识别。
二、10kV配网线路电压不平衡故障判断依据为了科学判断10kV配电线路电压不平衡故障,需要对故障特征进行集中判断,结合相应情况,有效落实具体判断机制,结合判断结果制定更有效的处理方案,以减少10kV配电线路故障造成的安全故障。
(一)10kV配电网线路电压不平衡故障的类型首先,10kV配电网线路中的一相电压参数显著降低,但未达到0,而其他两相电压参数呈升高状态,相应的值已超过线路的基本电压参数,此时,该故障可视为谐振过电压故障。
10kV母线电压异常分析及处理康林春2010年10月26日目录一、母线电压异常的五个表象二、母线单相接地故障处理三、母线谐振处理四、母线PT高压保险熔断处理五、母线PT低压保险熔断处理六、母线电压三相消失的处理一、10kV母线电压异常的五个表象1、表象一:单相接地象征:10kV母线电压三相指示不平衡,接地相电压指示趋近于零,非接地相电压上升为线电压,三相电压的数值基本稳定,且伴随有母线接地告警的声光信号,所接保护及自动装置可能发电压回路断线信号。
2、表象二:谐振象征:A、常规:10kV母线电压三相指示同时或波浪形上升或降低,峰值可超过线电压,谷值可低于相电压(但不会为零),三相数值不稳定,可伴随有母线接地告警的声光信号。
B、特殊:10kV母线电压三相变动及波动不一,有类似于接地时的三相电压象征,也有一至两相不变,另两相或一相波动的情况,可间歇性或长时伴随有母线接地告警的声光信号,所接保护及自动装置可能发电压回路断线信号。
3、表象三:母线PT高压保险熔断象征:10kV母线电压三相指示不平衡,熔断相电压降低为2-3kV,非熔断相电压不变,三相电压的数值稳定,所接保护及自动装置发电压回路断线信号,偶尔会并发接地信号。
4、表象四:母线PT低压保险熔断象征:10kV母线电压三相指示不平衡,熔断相电压降低为0-1kV,非熔断相电压不变,三相电压的数值稳定,所接保护及自动装置发电压回路断线信号。
5、表象五:母线三相电压消失象征:10kV母线电压三相指示为零,所接保护及自动装置发电压回路断线信号,10kV进线及出线断路器有功及无功为零,电流存在有或无两种情况(分别对应母线失压及假失压两种状况)。
注:因调度管辖权限划分规定昆明地调配网组辖10kV旁路母线及以下设备,主网组辖10kV母线及以上设备,故而上述五个表异常中只有接地由配网组指挥查找及处理10kV母线上各分路的接地异常,后四种均由主网调度员指挥处理。
二、10kV母线单相接地处理(一)10kV母线单相接地处理及其步骤:1、判定是否真接地:调度员接到关于10kV母线电压异常及接地的汇报,须对照SCADA系统迅速调出该站实时图,母线电压指示、现场汇报及其信息,迅速判断接地象征是否属实。
10kV系统电压异常现象判断及处理
教程来源:网络作者:未知点击:787次时间:2009-10-26 8:43:44
10kV系统电压异常现象在电网运行中经常遇到,但要想准确及时地判断处理并不是一件容易的事。
10kV系统一般是中性点不接地系统或中性点经消弧线圈接地系统,随着电网的扩大,电容电流的增多,越来越多的10kV系统将会是中性点经消弧线圈接地系统。
以中性点经消弧线圈接地系统为例,引起10kV系统电压异常的因素非常多,可分为两大类:一类是10kV电网运行参数异常;一类是10kV系统设备故障,包括一次设备故障(还可能出现多重故障)、测量回路故障(包括TV及其二次回路故障)、一次设备故障而且测量回路也有故障。
电压的显示方式一般有三种:一种是常规有人值守变电所,配置有一个线电压表,三个相电压绝缘监测表;一种是常规变电所无人值守改造后,在调度端MMI显示出一个线电压值和三个相电压值;一种是无人值守综合自动化所,在调度端MMI 显示出三个线电压值、三个相电压值和一个零序电压值,这种模式对10kV系统电压异常的判断处理非常有利。
1 、10kV系统电压异常的表现形式
1.1 运行参数异常的电压表现
合空载母线时的谐振:电压一般显示为一相升高、两相降低;或者一相降低、两相升高。
消弧线圈脱谐度过低及系统不平衡电压过大:电压一般显示为一相降低、两相升高。
1.2 一次设备故障的电压表现
单相完全接地:电压一般显示为接地相电压为零,其余两相电压升至线电压。
原因主要有:线路断线接地、瓷瓶击穿、线路避雷器击穿、配变避雷器击穿、电缆击穿、线路柱上断路器击穿。
单相不完全接地:电压一般显示为一相升高、两相降低;或者一相降低、两相升高。
原因主要有:线路断线接地、配变烧毁、电缆故障。
线路单相断线:电压一般显示为一相升高、两相降低;或者一相降低、两相升高。
电压的变化幅度与断线的长度成正比。
线路两相断线:电压一般显示为一相升高、两相降低;或者一相降低、两相升高。
电压的变化幅度与断线的长度成正比。
1.3 测量回路故障的电压表现
TV高压熔丝一相熔断:有的相电压升高,有的降低。
TV高压熔丝两相熔断:电压一般显示为熔断相电压降低,正常相电压升高;或者三相电压均降低。
TV低压熔丝一相熔断:电压一般显示为熔断相的电压略有降低或基本不变,其余两相电压基本不变;或者熔断相电压为零,其余两相电压基本不变。
TV低压熔丝二相熔断:电压一般显示为熔断相的电压略有降低或基本不变,正常相电压基本不变;或者熔断相电压为零,正常相电压基本不变
TV高压或低压熔丝三相熔断:三相电压为零。
1.4 一次设备及测量回路均有故障信息来自:输配电设备网
其电压表现为一次设备故障电压与测量回路故障电压的叠加。
常见的有一相高压熔
丝熔断及一相接地同时出现,当熔断相与接地相是同一相时,接地熔断相可能升高,也可能降低,其余两相升高。
当接地相与熔断相是异相时,接地相为零,熔断相可能升高,也可能降低,另一相升高。
2 、10kV系统电压异常的判断与处理
针对电压异常,首先要判断是否是测量回路故障,排除了此类故障后,再考虑是一次设备故障或是运行参数异常。
用线电压值可以很好地将两者区分开来。
凡是TV或其二次回路故障,相关的线电压值都会变小。
对于无人值守综合自动化所,在调度端MMI上可直观地判断;对于常规有人值守变电所、常规变电所无人值守改造的,所显示的线电压无法反映的,可借助其它间接的手段来判断,如有功功率数值,在电流、电压不变的情况下,相关的有功功率数值突然降低很多,也可判断出测量回路故障。
一次设备故障与测量回路故障同时出现时,首先要将一次设备故障排除,再处理测量回路的故障。
对于一些特殊的故障需要特别判断,如TV三相或两相熔丝熔断且线路单相接地,由于三相电压为零,无法判断是否有接地,可先按熔丝熔断进行检查处理,若在开关室后听到母线有电晕放电声,则说明有接地故障了,就要先处理接地故障,再处理TV熔丝熔断。
至于运行参数异常与设备故障的区分,要先把运行参数异常情况排除。
运行参数异常主要有两种情况:合空母线时产生的谐振,只要将任一馈线投入运行,就可消除;另一种是消弧线圈的脱谐度过低,系统的不平衡电压过大所产生的虚拟接地现象,此时只要任意将一条馈线拉闸,电压异常消失,然后再将该馈线合闸,电压异常不再出现。
一次设备故障,情况最复杂,有绝缘击穿时形成的单相完全接地,有断线或配变烧毁形成的不完全接地。
由于消弧线圈的接地选线、小电流系统接地选线、馈线的零序电流信号经常出现误发或拒发信号,因此逐一试拉馈线仍是处理一次设备故障引起的10kV系统电压异常的主要手段。
线路断线,三相电压的不对称与断线长度成正比,还可通过馈线电流是否减少来辅助判断。
电流表的接线有两种,一种是不完全接线的取AC相的差流,一种是完全接线的直接取B相电流。
出线端B相断线,电流为零,其余两相出线断线,电流减少;线路中间或支路B相断线,电流减少;其余两相断线,电流减少相对少一点。
断线的原因主要有线路过载引起线路刀闸、电缆引线、线路接头烧断(短路冲击引起);变电所内断路器由于操作联动机构问题导致缺相(一般出现在停电后的送电操作时)等。
单纯的断线,馈线的零序过流信号不会动作。
对于完全接地,其电压特征明显,即接地相为零,其余两相升至线电压,接地信号光字牌会出现。
若馈线的零序过流信号出现,则先依此试拉。
否则就按照先次要馈线后重要馈线,先常故障馈线后不常故障馈线,先站外后站内的原则试拉,最后再检查母线上的所有设备。
查出故障线路或设备后进行隔离,通知有关部门处理。
对于馈线接地故障的查找,一般采用逐渐逼近法。
馈线有多个分段断路器的,由负荷侧向电源侧逐一试拉,确定故障线段(减少停电次数)。
检查故障主线段没问题后,再检查支路,有支路断路器的可试分合,确定是否是故障支路,若无支路断路器的,只能逐一检查,只有户外设备检查均没有问题后,才怀疑电缆,一般电缆外破可以在巡查时发现,电缆内部的故障往往要断电后检查才可确定。
复杂线路的接地故障,有时甚至要几天才能查出故障点。
一般而言,母线接地是很罕见的。
当每一条馈线都试拉过,而电压异常并没有消失时,就要考虑是不是出现多重故障了。
对于多重故障,如同相不同馈线同时接地、异相不同馈线同时不完全接地等,判断处理的方法会比较复杂。
如同杆架设的双回路、三回路线
路,上层线路一相断线并且电源侧接地,有可能碰下层线路。
若是同相的,引起两回路均接地,停一回路还不能消除故障,必须两回路一起停,当同相接地的两条线路不是同杆架设时,容易误判为母线接地,特别是零序过流不动作或接地选线不显示时更是如此,若馈线能形成手拉手接线,则将每一条线路转由其他母线供电,看看是否引起其他母线接地,来判断该线路是否接地,若没有手拉手接线,则要将该母线所有馈线都拉闸,来确定是不是母线故障,若不是母线故障,再逐一试送馈线,确定故障线路。
如同杆架设的双回路、三回路线路,上层线路一相断线并且电源侧接地,若是碰下层线路异相的,则引起断路器跳闸(一般只会跳一个线路断路器,也可能同时跳闸),若是原先接地的线路跳闸,则跳闸后接地相将改变,否则接地相不变。
运行中也出现过由于绝缘薄弱,一相接地引起另一相绝缘击穿形成两相接地短路,两相在同一线路的或不同线路但断路器一起跳闸的,断路器跳闸后接地消失;若不同线路的,只有一个线路断路器跳闸的,原先接地线路断路器跳闸后,接地相将发生改变。