十、解非线性方程(组)的迭代法和加速法
- 格式:doc
- 大小:39.00 KB
- 文档页数:4
求解非线性方程的三种新的迭代法
迭代法是一种通过迭代逼近的方式来求解方程的方法。
它的基本思想是通过不断逼近
方程的解,使得逼近值与真实解的差距越来越小,最终得到方程的解。
下面介绍三种新的迭代法:牛顿迭代法,弦截法和切线法。
一、牛顿迭代法
牛顿迭代法是一种通过利用函数导数的信息来逼近方程解的方法。
它的迭代公式为:
x_(n+1) = x_n - f(x_n)/f'(x_n)
x_n表示第n次迭代得到的逼近解,f(x_n)表示在x_n处的函数值,f'(x_n)表示在x_n 处的导数值。
牛顿迭代法的优点是收敛速度快,通常是二阶收敛,但其缺点是需要计算函数的导数,如果导数计算困难或者导数为零的情况下,该方法可能不适用。
二、弦截法
三、切线法
切线法的优点和牛顿迭代法类似,但其缺点是需要计算函数的导数,且对于初始逼近
解的选择比较敏感。
牛顿迭代法、弦截法和切线法都是三种常用的非线性方程迭代法。
它们各自有着优点
和缺点,适用的领域和条件也不尽相同。
在实际问题中,需要根据具体情况选择合适的方
法来求解非线性方程。
求解非线性方程的三种新的迭代法迭代法是一种通过反复递推计算得到逼近解的方法,对于非线性方程求解而言,迭代法通过不断更新变量的值,使得方程逐渐趋近于真实解。
下面将介绍三种新的迭代法:逐次缩小区间法、割线法和弦截法。
第一种迭代法是逐次缩小区间法。
逐次缩小区间法是一种通过不断递推缩小变量的取值范围来求解非线性方程的方法。
算法步骤如下:1. 选取一个初始区间[a, b],使得f(a)和f(b)异号,即f(a)*f(b)<0。
2. 将区间[a, b]均分,得到区间的中点c=(a+b)/2。
3. 比较f(a)*f(c)和f(b)*f(c),如果f(a)*f(c)<0,则说明解在区间[a, c]内;如果f(b)*f(c)<0,则说明解在区间[c, b]内。
4. 重复步骤2和步骤3,直到得到精度要求的解。
逐次缩小区间法的优点是简单易懂,计算量较小;但缺点是需要事先给出一个初始区间,初始区间的选择对结果有影响,并且对于复杂的方程可能需要很多次均分才能逼近解。
第二种迭代法是割线法。
割线法是一种通过利用连续两个点的斜率来逼近解的方法。
算法步骤如下:1. 选取两个初始点x0和x1,计算出对应斜率f(x0)和f(x1)。
2. 利用斜率和已知点构造直线方程,得到直线和x轴的交点x2,并将x1更新为新的x0,x2更新为新的x1。
3. 重复步骤2,直到满足精度要求。
割线法的优点是不需要计算导数,因此适用于不易求导的情况;但缺点是可能出现迭代过程不收敛的情况,需要事先给出两个初始点,并且计算量相对较大。
弦截法与割线法相似,也是通过利用连续两个点的连线来逼近解的方法,但不同之处在于弦截法的直线是通过前两个点的连线来构造的。
弦截法的优缺点与割线法类似,不需要计算导数,但迭代过程可能不收敛。
三种新的迭代法均有各自的特点和适用范围,适合于不同类型的非线性方程。
在实际应用中,需要根据具体的方程和精度要求选择合适的迭代方法。
求解非线性方程的三种新的迭代法随着科技的发展,求解非线性方程逐渐成为了计算数学领域中的热门问题之一。
在日常生活中,我们可能经常会遇到许多非线性方程,例如:x^2 - 3x + 1 = 0、e^x - x - 1 = 0等。
那么,在解决这些方程时,我们通常会采用哪些迭代法呢?下面,我将介绍三种新的迭代法,它们分别是:Halley法、Chebyshev法和Brouncker法。
一、Halley法Halley法是一种高阶迭代法,它能够同时逼近函数的根和导数的值,因此在求解非线性方程时非常有效。
该方法的基本思想是利用牛顿法的基础上,通过引入更高阶的泰勒级数,以加快收敛的速度。
具体来说,假设我们要求解方程f(x) = 0的解,那么可以先利用泰勒级数表示出f(x)的近似:f(x) ≈ f(x0) + f'(x0)(x - x0) + f''(x0)/2(x - x0)^2然后,在此式的基础上,我们可以用以下公式来计算出下一个近似解x1:在实际使用中,如果我们要求解的非线性方程只有单个根,那么该法一般很快就能收敛到准确解。
二、Chebyshev法Chebyshev法(切比雪夫法)是一种基于最小化误差的迭代法,它不需要计算导数,且具有高阶迭代、迭代次数少的优点。
该方法的基本思想是:我们可以将待求解方程转化为一个无穷大的级数,然后利用级数的递推公式来迭代求解。
具体来说,假设我们要求解方程f(x) = 0的解,那么我们可以将其转化为如下形式:x = g(x) = a0 + a1x + a2x^2 + ⋯其中,系数a0、a1、a2等可以通过传统的求根方法(如牛顿法、二分法等)来确定。
然后,我们可以利用以下递推公式来迭代求解:xn+1 = (g(xn)+xn)/2在实际使用中,如果我们要求解的非线性方程满足某些条件(如单峰性、单调性等),那么该法的效果将更加显著。
三、Brouncker法Brouncker法是一种较为简单的迭代法,它基于有理分式逼近的思想,能够高效地求解非线性方程的单根。
一:非线性方程的基本迭代方法简单迭代法非线性方程的一般形式f(x)=0 其中f(x)是一元非线性函数。
若存在常数s 使f(s)=0,则称s 是方程的根。
把方程转化为其等价的方程)(x x ϕ=,因而有)(s s ϕ=。
选定s 的初始近似值0x ,用迭代公式)(1k k x x ϕ=+,得到}{k x 收敛于s ,就求出了方程的解。
收敛性:)(s s ϕ=,)(x ϕ'在包含s 的某个开区间内连续。
如果|)(x ϕ'|<1则存在δ>0,0x ∈[s-δ,s+δ]时,由该迭代函数产生的迭代法收敛。
收敛速度:(}{k x 收敛于s ,k e 为s 与k x 的差值绝对值,则c e e r k k k =+∞→1lim,c 是常数,则该迭代是r 阶收敛)Newton 法为了使迭代的收敛速度更快,应尽可能使)(x ϕ在s 处有更多阶的导数等于零。
令)(x ϕ=)()(x f x h x +,)(x h 为待定函数,已知)(s ϕ'=0,推出)(x h =)(1x f '-。
这就得出了牛顿法的迭代形式 )()(1k k k k x f x f x x '-=+,(k=0、1、···) 牛顿法是二阶收敛的迭代方法,但是牛顿法的是局部收敛的,因此要求初值要靠近根。
求解中,对于每一个k 都要计算)(k x f ',而导数的计算比较麻烦,否则会产生很大误差。
割线法 在牛顿法基础上,用11)()(----k k k k x x x f x f 来代替)(k x f ',其中1-x 、0x 预先给定。
得到了割线法的迭代形式 )()())((111--+---=k k k k k k k x f x f x x x f x x ,(k=0、1、···) 割线法的收敛速度至少为1.618这样就避免了牛顿法求导数的繁琐程序单点割线法单点割线法就是在割线法的基础上,用))(,(00x f x 代替))(,(11--k k x f x ,得到的迭代形式 )()()(001k k k k k x f x f x f x x x x ---=+,(k=1、2、···) 单点割线法是一阶收敛的方法,它比割线法初值要少取一个点更加容易选取初值二:非线性方程的迭代解法的拓展修正的Chebyshev 法思想:将函数)(x f 在k x 处进行泰勒展开既 +-''+-'+≈!2)()())(()()(2k k k k k x x x f x x x f x f x f ,如果)(x f ≠0,先取线性部分来代替原来函数,既)(x f =)(k x f +))((k k x x x f -'=0,得到k x x -=)()(k k x f x f '-; 再用二次多项式部分代替原函数,既!2)()())(()()(2k k k k k x x x f x x x f x f x f -''+-'+==0,合并这两次的结果得到)()()))((2)()(1(2k k k k k k x f x f x f x f x f x x ''''⋅+-=,令1+=k x x ,得到就得到了新的迭代公式,这就是Chebyshev 方法的思想,该方法的迭代公式具有三阶收敛速度。
非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。
然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。
本文将介绍几种非线性方程的求解方法。
一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。
该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。
牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。
牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。
二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。
与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。
割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。
三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。
该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。
二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。
二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。
四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。
它和二分法类似,都是通过缩小根所在的区间来逼近根。
不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。
非线性方程组求解方法的比较与优化非线性方程组的求解在科学计算、工程领域以及其他许多实际问题中扮演着重要的角色。
在实际应用中,往往需要高效准确地求解非线性方程组,以获得所需的结果。
本文将对几种常用的非线性方程组求解方法进行比较,并探讨如何进一步优化这些方法,以提高求解效率。
一、牛顿法(Newton's Method)牛顿法是最常用的非线性方程组求解方法之一。
该方法基于泰勒级数展开,通过迭代逼近非线性方程组的解。
具体而言,给定初始猜测值x0,牛顿法通过以下迭代公式进行求解:x^(k+1) = x^k - [J(x^k)]^(-1) * F(x^k)其中,J(x^k)表示方程组F(x)的雅可比矩阵,F(x^k)表示方程组的值向量。
牛顿法通常具有快速收敛的特点,但在某些情况下可能出现发散或收敛速度慢的问题。
二、拟牛顿法(Quasi-Newton Methods)拟牛顿法是对牛顿法的改进和优化。
由于求解雅可比矩阵的逆矩阵相对困难且计算量大,拟牛顿法通过逼近雅可比矩阵的逆矩阵,避免了对逆矩阵的直接求解。
其中,最著名的拟牛顿法是DFP算法和BFGS算法。
DFP算法通过计算Hessian矩阵的逆矩阵的逼近,不断更新该逼近矩阵,以逼近真实的Hessian矩阵的逆矩阵。
BFGS算法同样通过逼近矩阵的更新来求解方程组,但采用了更加复杂的更新策略,相较于DFP算法在某些问题上具有更好的性能。
拟牛顿法通过避免直接计算逆矩阵,一定程度上提高了计算效率,但其迭代过程中的计算相对复杂,因此在实际问题中需要综合考虑。
三、Levenberg-Marquardt算法Levenberg-Marquardt算法是一种解决非线性最小二乘问题的方法,也可用于求解非线性方程组。
该算法基于牛顿法,利用信赖域思想进行调整,以提高求解的稳定性和收敛性。
Levenberg-Marquardt算法通过在牛顿迭代中引入一个参数,将其视为步长的控制因子,从而在迭代过程中实现步长的自适应调整。
解非线性方程是方法主要有:增量法、迭代法、增量迭代混合法。
几何非线性有限元方法:1、完全的拉格朗日列式法(T.L.Formulation)在整个分析过程中,以t=0时的位形作为参考,且参考位形保持不变,这种列式称为完全的拉格朗日列式(T.L法)对于任意应力-应变关系与几何运动方程,杆系单元的平衡方程可由虚功原理推导得到:式(1)式中各量分别为:应变矩阵,是单元应变与节点位移的关系矩阵;单元的应力向量;杆端位移向量;V是单元体积分域,对T.L列式,是变形前的单元体积域;单元杆端力向量;直接按上式建立单元刚度方程并建立结构有限元列式,称为全量列式法。
在几何非线性分析中,按全量列式法得到的单元刚度矩阵和结构刚度矩阵往往是非对称的,对求解不利,因此多采用增量列式法。
将式(1)写成微分形式变形后得:式(2)这就是增量形式T.L列式的单元平衡方程。
式中为:单元弹性刚度矩阵、单元初位移刚度矩阵或单元大位移刚度矩阵、初应力刚度矩阵、三个刚度矩阵之和,称为单元切线刚度矩阵。
2、修正的拉格朗日列式法(U.L.Formulation)在建立t+∆t时刻物体平衡方程时,如果我们选择的参照位形不是未变形状态t=0时的位形,而是最后一个已知平衡状态,即本增量步起始的t时刻位形为参照位形,这种列式法称为修正的拉格朗日列式法(U.L列式)。
增量形式的U.L列式结构平衡方程可写成:式(3)3、T.L列式与U.L列式的比较T.L列式与U.L列式是不同学派用不同的简化方程及理论导出的不同方法,但是它们在相同的荷载增量步内其线性化的切线刚度矩阵应该相同,这一点已得到多个实际例题的证明。
T.L列式与U.L列式的不同点比较内容| T.L列式| U.L列式| 注意点计算单刚的积分域| 在初始构形的体积域内进行| 在变形后的t时刻体积域内进行| U.L列式必须保留节点坐标值精度| 保留了刚度阵中所有线性与非线性项| 忽略了高阶非线性| U.L列式的荷载增量不能过大单刚组集成总刚| 用初始时刻各单元结构总体坐标系中的方向余弦形成转换阵,计算过程不变| 用变形后t时刻单元在结构总体坐标中的方向余弦形成转换阵,计算过程中不断改变| U.L列式中组集荷载向量也必须注意方向余弦的改变本构关系的处理| 在大应变时,非线性本构关系不易引入| 比较容易引入大应变非线性本构关系| U.L方法更适用于混凝土徐变分析从理论上讲,这这两种方法都可以用于各种几何非线性分析。
非线性方程组的求解摘要:非线性方程组求解是数学教学中,数值分析课程的一个重要组成部分,作为一门学科,其研究对象是非线性方程组。
求解非线性方程组主要有两种方法:一种是传统的数学方法,如牛顿法、梯度法、共轭方向法、混沌法、BFGS 法、单纯形法等。
传统数值方法的优点是计算精度高,缺点是对初始迭代值具有敏感性,同时传统数值方法还会遇到计算函数的导数和矩阵求逆的问题,对于某些导数不存在或是导数难求的方程,传统数值方法具有一定局限性。
另一种方法是进化算法,如遗传算法、粒子群算法、人工鱼群算法、差分进化算法等。
进化算法的优点是对函数本身没有要求,不需求导,计算速度快,但是精度不高。
关键字:非线性方程组、牛顿法、BFGS 法、记忆梯度法、Memetic 算法1: 三种牛顿法:Newton 法、简化Newton 法、修改的Newton 法【1-3】 求解非线性方程组的Newton 法是一个最基本而且十分重要的方法, 目前使用的很多有效的迭代法都是以Newton 法为基础, 或由它派生而来。
n 个变量n 个方程的非线性方程组, 其一般形式如下:⎪⎪⎩⎪⎪⎨⎧===0),...,(...0),...,(0),...,(21212211n n n n x x x f x x x f x x x f (1)式(1)中,),...,(21n i x x x f ( i=1, ⋯, n) 是定义在n 维Euclid 空间Rn 中开域 D 上 的实值函数。
若用向量记号,令:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x ...X 21,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡====)(...)()(0),...,(...0),..,(0)...,()(2121212,211X f X f X f x x x f x x x f x x x f X F nn n n n则方程组(1)也可表示为:0)(=X F(2) 其中:X ∈R n ,F ∶R n →R 0, F(X) ∈R n , R n 为赋值空间。
一、一般迭代法求解非线性方程组。
function [k,piancha,xdpiancha,xk]=diedai1(x0,k)
x(1)=x0;
for i=1:k
x(i+1)=fun1(x(i));
piancha=abs(x(i+1)-x(i));
xdpiancha=piancha/(abs(x(i+1))+eps);
i=i+1;xk=x(i);
[(i-1) piancha xdpiancha xk]
end
if (piancha>1)&(xdpiancha>0.5)&(k>3)
disp('此迭代序列发散,请重新输入新的迭代公式') return;
end
if (piancha<0.001)&(xdpiancha<0.0000005)&(k>3) disp('此迭代序列收敛,且收敛速度较快')
return;
end
p=[(i-1) piancha xdpiancha xk]';
1、function y=fun1(x)
y=(10-x.^2)./2
>> [k,piancha,xdpiancha,xk]=diedai1(5,10)
此迭代序列发散,请重新输入新的迭代公式
k =
10
piancha =
2.4484e+271
xdpiancha =
1
xk =
-2.4484e+271
2、function y=fun1(x)
y=10./(x+2)
>> [k,piancha,xdpiancha,xk]=diedai1(5,25)
此迭代序列收敛,且收敛速度较快
k =
25
piancha =
9.5676e-007
xdpiancha =
4.1300e-007
xk =
2.3166
二、第二种迭代法。
function [k,piancha,xdpiancha,xk,yk]=diedai2(x0,tol,ddmax)
x(1)=x0;
for i=1:ddmax
x(i+1)=fun(x(i));
piancha=abs(x(i+1)-x(i));
xdpiancha=piancha/(abs(x(i+1))+eps);
i=i+1;xk=x(i);yk=fun(x(i));
[(i-1) piancha xdpiancha xk yk]
if (piancha<tol)|(xdpiancha<tol)
k=i-1;xk=x(i);
return;
end
end
if i>ddmax
disp('迭代次数超过给定的最大值')
k=i-1;xk=x(i);yk=fun(x(i));
[(i-1) piancha xdpiancha xk yk];
return;
end
p=[(i-1),piancha,xdpiancha,xk,yk]';
function y=fun(x)
y=(x.^5+1)./3
>> [k,piancha,xdpiancha,xk,yk]=diedai2(0.3,0.0001,10)
k =
3
piancha =
1.2061e-005
xdpiancha =
3.6031e-005
xk =
0.3347
yk =
0.3347
三、Aitken加速方法。
function [k,xk,yk,p]=Aitken(x0,tol,ddmax)
x(1)=x0;
for i=1:ddmax
x1(i+1)=fun(x(i));
x2(i+1)=fun(x1(i+1));
x(i+1)=x2(i+1)-(x2(i+1)-x1(i+1))^2/(x2(i+1)-2*x1(i+1)+x(i));
piancha=abs(x(i+1)-x(i));
xdpiancha=piancha/(abs(x(i+1))+eps);
i=i+1;xk=x(i);yk=fun(x(i));
if (piancha<tol)|(xdpiancha<tol)
k=i-1;xk=x(i);yk=fun(x(i));
m=[0,1:i-1];p=[m',x1',x2',x'];
return;
end
end
if i>ddmax
disp('迭代次数超过给定的最大值')
k=i-1;xk=x(i);yk=fun(x(i));
m=[0,1:i-1];p=[m',x1',x2',x'];
return;
end
m=[0,1:i-1];p=[m',x1',x2',x'];
function y=fun(x)
y=-log(x./2);
>> [k,xk,yk,p]=Aitken(0.85,0.000001,10)
k =
3
xk =
0.8526
yk =
0.8526
p =
0 0 0 0.8500
1.0000 0.8557 0.8490 0.8526
2.0000 0.8526 0.8526 0.8526
3.0000 0.8526 0.8526 0.8526
四、切线法的收敛性
1、function [y,f]=newjushou(x)
f=fnq(x);fz=fnq(x)*diff(diff(fnq(x)))/((diff(fnq(x)))^2+eps);y=abs(fz); if (y<1)
disp('11111')
else
disp('22222')
end
p=[y,f]';
>> [y,f]=newjushou(-0.4)
>> [y,f]=newjushou(0.9)
2、function [k,xk,yk,piancha,xdpiancha]=newtonqx(x0,tol,ftol,gxmax) x(1)=x0;
for i=1:gxmax
x(i+1)=x(i)-fnq(x(i))./(diff(fnq(x(i)))+eps);
piancha=abs(x(i+1)-x(i));
xdpiancha=piancha/(abs(x(i+1))+eps);
i=i+1;xk=x(i);
[(i-1) xk yk piancha xdpiancha]
if (abs(yk)<ftol)&(piancha<tol)|(xdpiancha<tol)
k=i-1;xk=x(i);
[(i-1) xk yk piancha xdpiancha]
return;
end
end
if i>ddmax
disp('迭代次数超过给定的最大值')
k=i-1;xk=x(i);
[(i-1) xk yk piancha xdpiancha];
return;
end
p=[(i-1),xk,yk,piancha,xdpiancha]';
function f=fnq(x)
f=3/2-1/(2*x^2);
>> [k,xk,yk,piancha,xdpiancha]=newtonqx(-0.4,0.001,0.01,10)。