不同类型高分子絮凝剂处理高浊度水的沉淀浓缩性能的比较
- 格式:doc
- 大小:99.00 KB
- 文档页数:4
常用无机高分子絮凝剂的类别和品种无机高分子絮凝剂的特点有哪些?Al(Ⅲ)、Fe(Ⅲ)、Si(Ⅳ)的羟基和氧基聚合物都会进一步结合为聚集体,在一定条件下保持在水溶液中,其粒度大致在纳米级范围,以此发挥凝聚—絮凝作用会得到低投加量高效果的结果。
若比较它们的反应聚合速度,由Al→Fe→Si是趋于强烈的,同时由羟基桥联转为氧基桥联的趋势也按此顺序。
因此,铝聚合物的反应较缓和,形态较稳定,铁的水解聚合物则反应迅速,容易失去稳定而发生沉淀,硅聚合物则更趋于生成溶胶及凝胶颗粒。
IPF的优点反映在它比传统絮凝剂如硫酸铝、氯化铁的效能更优异,而比有机高分子絮凝剂(OPF)价格低廉。
现在它成功地应用在给水、工业废水以及城市污水的各种处理流程,包括预处理、中间处理和深度处理中,逐渐成为主流絮凝剂。
但是,在形态、聚合度及相应的凝聚—絮凝效果方面,无机高分子絮凝剂仍处于传统金属盐絮凝剂与有机高分子絮凝剂之间的位置。
其分子量和粒度大小以及絮凝架桥能力仍比有机絮凝剂差很多,而且还存在对进一步水解反应的不稳定性问题。
IPF的这些弱点促进了各种复合型无机高分子絮凝剂的研究和开发。
聚合氯化铝的特点有哪些?聚合氯化铝(PAC),又称碱式氯化铝,化学式为ALn(OH)mCL3n-m。
PAC是一种多价电解质,能显著地降低水中粘土类杂质(多带负电荷)的胶体电荷。
由于相对分子质量大,吸附能力强,形成的絮凝体较大,絮凝沉淀性能优于其他絮凝剂。
PAC聚合度较高,投加后快速搅拌,可以大大缩短絮凝体形成时间。
PAC受水温影响较小,低水温时使用效果也很好。
它对水的pH值降低较少,适用的pH范围宽(可在pH=5~9范围内使用),故可不投加碱剂。
PAC的投加量少,产泥量也少,且使用、管理、操作都较方便,对设备、管道等腐蚀性也小。
因此,PAC在水处理领域有逐步替代硫酸铝的趋势,其缺点是价格较高。
另外,从溶液化学的角度看,PAC是铝盐水解—聚合—沉淀反应过程的动力学中间产物,热力学上是不稳定的,一般液体PAC产品均应在半年内使用。
不同絮凝剂沉降对比试验研究摘要:本文主要介绍了针对不同煤质情况,使用不同絮凝剂的沉降对比试验研究,就生产过程如何选用絮凝剂提出了指导性意见,从而确定合适的絮凝剂及加药量。
关键词:絮凝剂;沉降;对比;澄清;筛分组成1 前言煤泥水处理是整个选煤生产过程中的重中之重,而煤泥水的澄清是煤泥水处理的一个重要环节,影响着选煤生产指标的稳定性及煤泥水处理的效率。
由于煤泥是一种复杂的多分散体系,不同密度、粒度组成的煤泥构成的煤泥水性质差别很大,因此各选煤厂必须根据其煤泥性质选择合适的煤泥水澄清方法。
新庄孜选煤厂是淮南矿业集团下属的一座大型炼焦煤选煤厂,主洗新庄孜矿1/3焦煤,由于采用机械化开采,入洗原煤中细粒级所占比例越来越大,而且矿井不同槽别的原煤其煤泥性质差别也较大。
当煤质出现变化时,水质也相应变化,给煤泥水处理带来很大麻烦,循环水黑的情况常有出现。
煤泥水絮凝的基本原理是向煤泥水中加入絮凝剂,利用絮凝剂的架桥作用使得分散的微粒链接起来形成较大的絮团,从而迅速沉降达到煤泥水的澄清。
新庄孜选煤厂采用的絮凝剂是聚丙烯酰胺,由于不同种类的絮凝剂对不同煤泥水的絮凝效果大不相同,因此,当煤质变化时,选择合适的絮凝剂是煤泥水处理中的关键。
以下是几种不同絮凝剂沉降对比试验研究。
2 絮凝沉降对比试验2.1 试验样品及分析本试验选取了新庄孜矿入洗不同槽别煤质下的两种煤泥水(以下简称1号、2号)。
并选取了新庄孜选煤厂使用的3种絮凝剂(以下简称A、B、C三种品牌)进行沉降试验研究。
表1、表2分别为分选两种煤时的一次浓缩机溢流筛分组成表。
表1 1号煤一次浓缩溢流筛分组成表粒级(mm)样重(g)产率(%)灰分(%)0.25—0.125 99 19.84 39.880.125—0.074 74 14.83 48.550.074—0.044 149 29.86 53.63-0.044 177 35.47 60.02合计 499 100.00 52.42由表1可以看出,随着煤泥粒度的降低其灰分逐渐升高,0.074-0.044mm、-0.044mm含量分别为29.86%、35.74%,较高,且灰分也较高,矸石有泥化现象。
水处理絮凝剂的种类及特点
1. 咱先来说说无机絮凝剂吧!就像聚合氯化铝,那可是个厉害的角色。
你想想看,河水那么浑浊,它一下就能让杂质乖乖抱团沉淀,厉害吧!比如在处理污水时,投下去没多久,就能看到明显的效果,牛啊!
2. 还有三氯化铁也不能小瞧呀!它就像一位铁面无私的卫士,把那些污染物统统抓住。
哎呀呀,在工业废水处理中,它可是大显身手哦!
3. 聚丙烯酰胺也很了不起呢!它就如同一个温柔的胶水,能把那些小小的颗粒都黏在一起。
你知道吗,在矿山废水处理中就用得着它哦!
4. 聚合硫酸铁也得提一提呀!它可是个相当靠谱的家伙,处理污水那叫一个稳。
好比战场上的将军,指挥有方,把污水治理得服服帖帖。
比如在城市污水处理中那效果,杠杠的!
5. 明矾,大家应该也不陌生吧!这可是个老牌选手了,就像一个经验丰富的老兵。
当面对一些轻度污染的水时,它能迅速发挥作用呀,神奇吧!
6. 石灰也算是一种特殊的絮凝剂呢!它呀,就如同一个大力士,用力地让杂质沉淀下来。
在一些特定的水处理场景中,可少不了它呢!
7. 有机高分子絮凝剂也很强大呀!感觉它就像是一个有着魔法的精灵,轻松地解决絮凝问题。
哇塞,在复杂水。
几种常见的水处理絮凝剂的絮凝效果解析随着我国工农业生产的迅速发展,大量生产性和生活性污水排放量剧增,如不加以处理直接排放,将引发一系列的环境问题污.水处理领域中的治理方法很多,主要有生化法、絮凝沉降法、吸附法、电渗析法、离子交换法和化学氧化法等,其中絮凝沉降法是应用广、成本低的常用处理方法,而高效能的絮凝剂沉降处理过程关键在于恰当地选择和投加性能优良的水处理絮凝剂,因此,了解和比较各类絮凝剂的絮凝特征、相适应的水质条件以及絮凝过程中搅拌强度是非常重要的.本实验从胶体化学基本观点出发,结合一系列试验,综合分析聚合氯化铝、三氯化铁和硫酸铝3种常用的絮凝剂的絮凝特性,并对水中TOC去除效果进行对比.1 实验部分1.1 仪器与试剂1.1.1 仪器浊度仪(美国HACH公司);pH值测定仪(美国HACH公司);3型N电位仪(包括电泳槽、显微测速装置、时间跟踪器和中央数据处理显示器);COD测定仪(5000A,日本岛津);DC-506型六联浆拌式搅拌机.1.1.2 试剂三氯化铁;聚合氯化铝;硫酸铝;盐酸(AR级):北京化工厂;氢氧化钠(AR级):北京化工厂.1.2 实验方法(1)浊度水配制:配浊试验用水取自当地水库,配浊粘土取自水库上游,取回的粘土和水充分混合,静置2h后,取上层悬浮液,浊度为10NTU.(2)在DC-506型六联浆拌式搅拌机上进行搅拌(该机能够一次设定9种不同转速,絮凝过程自动完成,具有参数记忆、计算、显示功能,如水温、转速及相应的水力梯度G值的计算),每次可同时做6个水样,每个水样水量1000mL,并用1mol/L的HCl溶液和1mol/L的NaOH溶液调节溶液pH值至预定值.在快速搅拌状态下(120~180r/min)投加絮凝剂,搅拌1min后立即取样,在电泳仪上测定N电位和电泳迁移率EM值,然后继续慢速(40~90r/min)搅拌20min后停止,沉淀20min,用浊度仪测上清液的剩余浊度RT.2 结果与讨论2.1 絮凝剂的投加量对絮凝效果的影响从图1、图2中可知,对一定浊度的水质,PAC、三氯化铁和硫酸铝3种絮凝剂都存在最佳投加量.在配水浊度为10NTU、pH值为8.16、水温为19.5e条件下,聚合氯化铝(PAC)、三氯化铁和硫酸铝最佳投加量(剩余浊度为0.5NTU以下)分别为2mg/L(以Al2O3计)、8mg/L(以FeCl3计)和2mg/L(以Al2O3计).图1 聚合氯化铝和硫酸铝的投加量对絮凝效果的影响图2 三氯化铁的投加量对絮凝效果的影响2.2 pH值对絮凝效果的影响图3表明:同一种絮凝剂在不同pH条件下,絮凝效果不一样.这主要取决于絮凝剂水解生成物在不同pH条件下的形态转化规律.硫酸铝最佳絮凝区原水pH范围为6~8,PAC最佳絮凝区原水pH范围为4~10,三氯化铁最佳絮凝区原水pH范围为5~10.PAC和三氯化铁适应pH范围基本相同,都比硫酸铝适应pH范围宽.从絮凝效果可见,pH>7时PAC优于三氯化铁.图3 3种絮凝剂在不同pH值条件下絮凝效果对比絮凝剂投加量:三氯化铁8mg/L(以FeCl3计);PAC2mg/L(以Al2O3计);硫酸铝2mg/L(以Al2O3计)2.3 絮凝剂絮凝除浊作用及电泳特征絮凝剂投放在不同的pH原水中所表现的形态多种多样,通过控制絮凝反应条件,可以控制絮凝剂在水中的形态,进而探讨絮凝剂形态对絮凝效果的影响.2.3.1 三氯化铁絮凝除浊作用及电泳特征图4为向浊度10NTU的原水中投加8mg/L的三氯化铁后凝聚微粒的F值和上清液剩余浊度在不同pH的条件下的变化情况.在pH值为3时,F值为-16mV,上清液剩余浊度为5.7NTU,没有良好的絮凝效果;在pH接近5时,F值变为正值;当pH值为6左右时,F值为正值最大;随着pH的继续增大F值由正值变为负值,并且越来越大,但仍具有较好的絮凝效果.图4 F电位以及剩余浊度与pH的关系配水浊度为10NTU,水温为20.5e,三氯化铁投加量为8mg/L从上清液剩余浊度来看,pH为5~10时剩余浊度小于1NTU,受pH影响不大.当pH<4时凝聚决定于双电层压缩,主要是Fe3+和少量高电荷低聚合度物质对胶体颗粒的吸附脱稳.当pH=4~6时主要是正电荷聚合体对胶体颗粒吸附脱稳作用,此时的水解产物对胶体颗粒的吸附脱稳比Fe3+阳离子更有效,发挥作用的化合物是高电荷低聚合体和低电荷高聚合体.当pH>6时主要是铁盐水解生成Fe(OH)3沉淀物对胶体颗粒卷扫絮凝.2.3.2 PAC絮凝除浊作用及电泳特征图5为向浊度为10NTU的原水中投加2mg/L的PAC后凝聚微粒的F值和上清液剩余浊度在不同pH的条件下的变化情况.当pH为4~6时F值比较稳定,平均F值为-9.5mV,上清液剩余浊度为0.7~1NTU.pH上升到7时F值继续减小,pH为7~10时F值又出现稳定,平均F值为-6.25mV,上清液剩余浊度为0.5NTU以下.pH为10以上时F值开始升高.当pH在4~10范围,上清液剩余浊度小于1NTU,F值变化不大,产生良好絮凝的F值范围为?6mV.PAC不论是在pH高区、pH低区或pH中区都能较好地发挥压缩双电层、电中和吸附脱稳、凝聚絮凝的效能,这表明了PAC稳定性好,形态较为稳定,可以适应于更广pH范围内的水质净化.图5 F电位以及剩余浊度与pH的关系从图5中还可发现,F值在pH=4~10范围内并没有出现等电态,这主要由于投药量少,没有完全降低F电位.絮凝效果很好,是由于絮凝剂在水中发挥电性中和和压缩双电层的作用,并且由于粒子数目增多,碰撞次数增多,相对降低了对脱稳的要求.2.3.3 硫酸铝絮凝除浊作用及电泳特征图6为向浊度为10NTU的原水中投加2mg/L硫酸铝后,凝聚微粒的F值和上清液剩余浊度在不同pH条件下的变化情况.可见凝聚微粒的F值随pH的增大而减小,当pH<5时F值均为较高负值,所以不能产生凝聚.当pH=5.5时F值为-10mV,开始凝聚,pH为6左右时F值为-5.12mV,具有良好凝聚效果,此时发挥絮凝作用主要为高电荷低聚合度的电中和脱稳作用.在pH值7附近,F值上升为-10mV,发挥絮凝作用的铝几乎全是中性不溶解性的[Al(OH)3]]大型聚合体或低电荷高聚合度的物质,这时粘土粒子和铝聚合体之间几乎失去电排斥力,主要依靠OH-离子的架桥,使粘土粒子和[Al(OH)3]]粘结生成大的絮凝体,产生良好的絮凝沉淀效果.随pH的继续增大,F值增大,当pH值超过8.5以后,絮凝效果降低,此时发挥絮凝效果的主要成分为负电荷铝离子,这些阴离子成为Al(Ó)的主要形态,架桥聚合态铝离子也不足,浊度去除率也显著降低.从剩余浊度来看,当pH为6时上清液剩余浊度最低为0.5NTU以下.当pH<5.5或pH>8.5时基本上无絮凝效果,在5.5或pH>8.5时基本上无絮凝效果,在5.5<pH<8.5时为最佳除浊区段,这主要是由于铝矾水解生成的带电荷的聚合物质或氢氧化铝凝胶物对脱稳微粒产生粘结架桥絮凝和卷扫沉淀作用所致.图6 F电位以及剩余浊度与pH的关系配水浊度为10NTU,水温为20.5e,硫酸铝投加量2mg/L2.3.4 几种絮凝剂对水中TOC去除效果的对比影响TOC去除率絮凝效果的因素有絮凝剂品种、絮凝剂投加量、混合水力条件、原水水质变化以及药剂投加方式等.图7示出3种絮凝剂对水中TOC去除效果的对比.从图7中可知:同一种原水,不同絮凝剂对水中的TOC去除效果不同,在同样加药量的情况下聚合,氯化铝好于硫酸铝和三氯化铁,同时也发现过量加入同等剂量的混凝剂,聚合氯化铝对水中TOC的去除效果也明显好于其他两种混凝剂,并且随着混凝剂投加量的增加,TOC去除率明显增大,当聚合氯化铝投加量为42mg/L(Al2O35mg/L)时,TOC去除率达到99%以上.图7 不同投加量条件下TOC的去除率对比3 结论(1)对一定浊度的水质,PAC、三氯化铁和硫酸铝3种絮凝剂都存在最佳投加量,分别为2mg/L(以Al2O3计)、8mg/L(以FeCl3计)和2mg/L(以Al2O3计).(2)同一种絮凝剂在不同pH条件下,絮凝效果不一样.PAC和三氯化铁适应pH范围基本相同,都比硫酸铝范围宽.从絮凝效果可见,pH>7时PAC优于三氯化铁.(3)絮凝剂投放在不同的pH水中所表现的形态对絮凝效果会产生影响.(4)总体来看,PAC对浊度去除率最好,三氯化铁次之,硫酸铝最差.(5)PAC对水中TOC的去除效果明显好于三氯化铁和硫酸铝,并且随着混凝剂投加量的增加,TOC去除率明显增大.。
絮凝剂,简单来讲就是一类能够降低或消除水中分散微粒的沉淀稳定性和聚合稳定性,使分散微粒凝聚、絮凝成聚集体而除去的物质。
由于,价格低廉、无毒高效,且处理污水效果好,因此,现应用广泛。
那么,该产品都有哪几种呢?1、聚合氯化铝对各种水质适应性强,絮凝能力强,其用量仅为硫酸铝的1/2-1/3,即使在低温水中絮状物的形成速度也较快,且处理后水中残留铝量也较铝量也较低,因而被广泛采用,对于高浊度水絮凝沉淀效果尤显著,应用的PH值在5-9的范围内。
对于低温水处理的效果比较好,絮凝的矾花形成块、颗粒密而重,易于沉降,可缩短沉淀时间,出水浊度低,色度小,过滤性好。
可缩短过滤周期,腐蚀性小,利于管道保护,使用方便,易于储存、运输,如遇潮解,其效果不变。
2、三氯化铁在处理水时能形成较大的絮状物,并可与重金属离子发生有效的共沉淀作用,但三氯化铁等铁盐对金属的腐蚀性强,稳定性较低,使用过程需加熟石灰作为助凝剂,会产生大量污泥。
3、聚丙烯酰胺(pam)能以较快的速度形成较大的絮状物,但有机絮凝剂的缺点是价格较高,可以保证处理后水质的安全无毒。
4、聚合氯化铝铁这种类型的絮凝剂价格便宜,是新型、优质、高效铁盐类无机高分子絮凝剂,絮凝效果除表现为剩余浊度色度降低外,还具有絮体形成块,吸附性能高,泥渣过滤脱水性能好等特点,高效聚合氯化铝铁在处理高浊度水,低调低浊度水时,处理效果非常明显。
以上就是絮凝剂常用类型的一些简单介绍,相信大家通过以上内容对其也有了进一步的了解。
当然,由于并不是所有的絮凝剂都能够应用于污水处理,因此,大家正常的使用流程应该是邮寄污水的样品,然后再让厂家针对污水的样品进行化验之后确定使用哪种型号的絮凝剂,这样经过科学的配比之后就能够低成本的去处理污水。
絮凝剂种类及其优缺点絮凝剂种类及其优缺点1、明矾明矾溶于水后电离产生了Al3+,Al3+与水电离产生的OHˉ结合生成了氢氧化铝,氢氧化铝胶体粒子带有正电荷,与带负电的泥沙胶粒相遇,彼此电荷被中和。
失去了电荷的胶粒,很快就会聚结在一起,粒子越结越大,终于沉入水底。
这样,水就变得清澈干净了。
2、聚合硫酸铁聚合硫酸铁与其他无机絮凝剂相比具有以下特点:1.新型、优质、高效铁盐类无机高分子絮凝剂;2.混凝性能优良,矾花密实,沉降速度快;3.净水效果优良,水质好,不含铝、氯及重金属离子等有害物质,亦无铁离子的水相转移,无毒,无害,安全可靠;4.除浊、脱色、脱油、脱水、除菌、除臭、除藻、去除水中COD、BOD及重金属离子等功效显著;5.适应水体PH值范围宽为4-11,最佳PH值范围为6-9,净化后原水的PH值与总碱度变化幅度小,对处理设备腐蚀性小;6.对微污染、含藻类、低温低浊原水净化处理效果显著,对高浊度原水净化效果尤佳;7.投药量少,成本低廉,处理费用可节省20%-50%。
3、聚合氯化铝PAC聚合氯化铝由于喷雾干燥稳定性好,适应水域宽,水解速度快,吸附能力强,形成矾花大,质密沉淀快,出水浊度低,脱水性能好等优点,在同样水质的情况下,喷雾干燥聚合氯化铝投加量减少,尤其在水质不好的情况下,喷雾干燥产品投量与滚筒干燥聚氯化铝相比,可减少一半,不仅减轻了工人的劳动强度,而更重要的是减少用户的制水成本。
除此之外,用喷雾干燥产品可保证安全性,减少水事故,对居民饮用水非常安全可靠。
聚合氯化铝,简称高效聚氯化铝,或高效PAC。
采用目前最为先进的生产工艺,使用高效度的优质原料反应聚合而成。
所有质量指标都达到甚至超过国标GB15892-2009要求。
聚氯化铝是通过喷雾干燥工艺加工而成.因此也可叫高效级喷雾干燥聚合氯化铝.聚氯化铝PAC产品特性:开碧源牌PAC产品具有粉末细、颗粒均匀、易溶于水、絮凝效果好、净化高效稳定、投加量少、成本低等特点。
絮凝剂种类对比分析
絮凝剂根据各种规格型号标准规定可以分成以下几种种类,但是由于废水中杂物含水量的有所不同,所需要这类污水处理药剂的含水量有所不同,因此当应对废水系统时,大家采用哪一种规格的絮凝剂比较困难,此刻可以根据以下几点做好判定。
絮凝剂按离子特点可分成非离子、阴离子、阳离子和两性型絮凝剂4种种类。
1、大家都了解聚胺丙烯酰市场上阳离子较贵,其次是非离子絮凝剂,末尾是阴离子絮凝剂。
从价钱上我们可以初步对离子型做好判定。
2、从pH酸碱度区别不同规格的絮凝剂:
①先挑选一支阴离子絮凝剂和一支阳离子絮凝剂产品,分别做好溶药处理,把要检测的絮凝剂产品水溶液分别与这两种PAM水溶液做好混和,假如和阴离子絮凝剂产品产生反应,表明该絮凝剂是阳离子型的;假如和阳离子有反应,说明该PAM产品是阴离子型或者是非离子产品。
该方式的缺陷是无法精确辨别该产品是阴离子或者是非离子絮凝剂。
但我们可以从这些的溶解时间来判定,阴离子溶解比非离子要快很多。
通常阴离子一个小时就彻底溶解了,而非离子要一个半小时。
②利用废水试验推断,通常阳离子絮凝剂PAM比较适用于带负电的有机物悬浮固体;阴离子絮凝剂PAM比较适用于浓度值较高的带正电的无机物悬浮固体,及其悬浮颗粒较粗(0.01-1mm),pH值为中性化或偏碱溶,分子链中带有定量及性基能粘附水中悬浮的固体颗粒,使颗粒间架桥产生大的絮凝物,因此它加快混液中的颗粒的沉降。
非离子型絮凝剂PAM比较适用于有机化学、无机物混和情况的悬浮固体分离,水溶液偏酸或中性化;
阳离子絮凝剂产生的絮团大而且比较密,阴离子和非离子产生的絮团小而且散。
不同类型高分子絮凝剂处理高浊度水的沉淀浓缩性能的比较
近年来,高分子絮凝剂越来越多地用于水处理领域。
由于投加高分子絮凝剂后,絮体的沉速较大,所产生污泥比较密实且投药量较无机混凝剂少,因此在高浊度水处理中,采用高分子絮凝剂已得到了大家的公认。
高分子絮凝剂按其基团带电性可分为:非离子型、阳离子型和阴离子型三类。
国内对于非离子型和阴离子型高分子絮凝剂(如聚丙烯酰胺(PAM)等)的应用研究已开展了很多年,PAM已成功地用于黄河高浊度水的处理,但新近投入市场的阳离子型则处于实验阶段。
本项研究通过不同类型高分子絮凝剂对高浊度水沉淀浓缩性能的比较,拟探讨分子量、基团带电性及投药量对沉速、浓缩污泥浓度、余浊的影响,同时结合以前的工作及本次实验结果,探求在一定条件高分子絮凝剂投药量与浑液面自然沉速的相关性。
1 实验条件
实验采用西安黄土和黄河泥沙,黄河泥沙取自黄河宁夏大坝段,西安黄土取自地表下2—5米、无明显杂质。
将两种泥用西安市市政自来水人工搅拌浸泡7日,浸透的泥浆配成含砂量200kg/m3左右的原水,根据实验要求配至需要的浓度。
两种泥样的颗分曲线如图1。
实验采用的高分子絮凝剂主要性能见表1:
采用沉降筒实验,检测数据包括:浑液面自然沉速及絮凝沉速(mm/s),90分钟后上清液余浊(NTU),由沉降曲线根据肯奇理论计算沉降90min后的沉泥浓度(kg/m3)。
2 实验结果及分析
2.1 阴离子絮凝剂的沉降性能比较
不同品种阴离子絮凝剂的沉降性能如表2:
由表2中的结果可知,在相同条件下,投加低分子量的PAM时絮体沉速较大,浓缩污泥密实,且上清液余浊较小。
2.2 阳离子度的影响
阳离子度反映了合成絮凝剂的单体上正电荷的电性强弱。
采用不同阳离子度的阳离子絮凝剂,用西安黄土配成的水样进行沉降筒实验,结果如表3:
从实验结果可以看出,随阳离子度的增大,阳离子絮凝剂的沉降性能愈好,但增加到一定程度后,阳离子度对沉降性能的影响变得比较迟缓,因此在实际生产中,没有必要一味追求高的阳离子度。
2.3 基团带电性的影响
为使线型分子链在水溶液中充分伸展,增强架桥和卷扫沉淀作用,一般在非离子型高分子絮凝剂的构
造单体中引入带电的官能基,使其转化阴离子型或阳离子型。
三种类型高分子絮凝剂处理高浊度水的效果见表4:
计算结果表明,在高浊度水沉降浓缩中,电性中和不如吸附架桥的作用强烈,投加阴离子型絮凝剂,浑液面沉速较大、沉泥浓度高,但上清液浊度也比较大。
所以,可以认为:处理高浊度水时,在相同条件下,投加阴离子型高分子絮凝剂可获得较大的浑液面沉速和较强的浓缩能力,而阳离子型和非离子型絮凝剂的除浊能力强。
有鉴于此,在高浊度水处理的实践中,应区分处理目的是除浊还是浓缩,根据实际要求选用不同类型的高分子絮凝剂。
3 浑液面自然静沉沉速与投药量的相关性
研究表明,在高浊度水处理中,高分子絮凝剂投药量与泥砂颗粒总表面积及含砂量有如下关系:
(1)
式中:D i——在某一确定的等速段沉速时PAM的投量(kg/l);
S p——水中泥砂颗粒总表面积(m2/m3);
S0——水中泥砂颗粒比表面积(m2/kg);
C w——含砂量(kg/m3);
a i,
b i——相应等速段沉速时的经验系数。
另一方面,高浊度水自然静沉的实验表明,浑液面的自然沉速u与含砂量及泥砂粒度因素有关,西安建筑科技大学金同轨给出了如下的经验公式:
(2)
式中:u——浑液面自然沉速(mm/s);
α,β——经验系数;
S0——质量比表面积(m2/kg)。
式(1),(2)给出了下面的关系:
(3)
通过这个关系,可以推测:u与D有相关性,即u=f3(D)。
此关系通过以下的实验来得到验证,即:一定的自然沉速对应一定的含砂量及粒度,具有该含砂量及粒度的泥浆在一定絮凝沉速下有一定的投药量。
在不同絮凝沉速条件下自然沉速与对应的原水投药量的关系见图2。
从图2可以看出,u与D具有很好的相关性,对曲线拟合得到如下形式的经验关系:
(4)
式中:k1,k2——对应不同絮凝沉速的经验系数。
这样,在实际处理一定组成的高浊水时,可以借助于实验得到的经验关系,根据浑液面自然沉速以及所期望达到的絮凝速度确定高分子絮凝剂的投药量,从而避免对泥砂进行颗粒分析和测定含砂量带来的麻烦,简化实际操作。
4 结论
4.1 阴离子型高分子絮凝剂具有较好的絮凝沉速和浓缩性能;阳离子型与非离子型高分子絮凝剂的除浊能力较强。
相对而言,非离子型絮凝剂的絮凝沉速很小。
4.2 随阳离子絮凝剂的阳离子度增加,其处理高浊水的混凝沉降性能愈好,但没有必要追求过高的阳离子度。
4.3 组成一定的高浊水自然沉速与高分子絮凝剂的投量具有很好的相关性,在一定条件可通过这种相关性,根据浑液面自然沉速和要求达到的絮凝沉速确定加药量。