大学物理第8章
- 格式:ppt
- 大小:4.45 MB
- 文档页数:10
《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。
3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。
大学物理第八章课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章电磁感应电磁场8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大23分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).48 -5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ. 8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.5分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl M E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有6tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为 43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM == 当电流以tl d d 变化时,线圈中的互感电动势为 tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入t ΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =tξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少7分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R RNBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.8分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r ISμN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为tΦE d d -= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高9分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向. 解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高. 解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.10 解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-= 8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律t ΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB l o d cos 90sin ⎰=v()()l θB θωl o d 90cos sin ⎰-=l()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E t ΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高. 解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以 V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()tv v d d m F mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是()11t t gt ≤=v 其中1t t =时,gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为v Rl B IlB F A 22== 根据牛顿运动定律,可得线框运动的微分方程tv m v d d 22=-R l B mg 令mRl B K 22=,整理上式并分离变量积分,有 ⎰⎰=-t t t g 110d d vv Kv v 积分后将gh 210=v 代入,可得()()[]1212t t K e gh K g g K----=v (3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v 8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率t d d B 在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为td d π4B d ρm I =式中ρ 为铜的电阻率,d 为铜的密度. 解 圆形回路导线长为πR 2,导线截面积为2πr ,其电阻R ′为22rR ρS l ρR ==' 在均匀磁场中,穿过该回路的磁通量为BS Φ=,由法拉第电磁感应定律可得回路中的感应电流为t t t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='= 而2ππ2r R d m =,即dm Rr π2π2=,代入上式可得 td d π4B d ρm I = 8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率td d B 为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如1s T 010.0d d -⋅=tB ,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率td d B 等)密切相关,即S B l E d d ⋅∂∂-=⎰⎰S S k t .在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0d d <t B 时,电场线绕向与B 方向满足右螺旋关系;当0d d >t B 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , tB r t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r E k d d 2-= r >R , t B R t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r R E k d d 22-= 由于0d d >tB ,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此tB r R E k d d 22-= 将r 、R 、tB d d 的数值代入,可得15m V 100.4--⋅⨯-=k E ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk E l E d 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有 22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 证2 由题8 -17可知,在r <R 区域,感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E l k k PQ -=-==⋅=⎰⎰x E 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为 12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L I ΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度R I μN B B 200=穿过小线圈A 的磁链近似为 A B A A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πdR R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍. 8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===S N Rqc I n μμB r 相对磁导率1991102==I n μS N Rqc μr8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 2=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管。
第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别.二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ 它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B 时,粒子作匀速率圆周运动:运动半径:qB m R v =,运动周期:qBmT π2=.三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感强度.解:取l d 段,其中电流为 πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R RIB π=π⋅π=π=选坐标如图 RI B 20x d sin d π-=θθμ,R I B 20yd cos d π-=θθμ R IR I B 202/π020x d sin π-=π-=⎰μθθμ RI R I B 202/π020y d cos π-=π-=⎰μθθμT 108.12)(4202/12y 2x -⨯=π=+=RI B B B μ方向1/tan xy ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场: r)I/(μB π2d d 0=,l j I d d = )2/(d d 0r l j B π=μ由对称性的分析可知0d //=⎰B θμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j xl l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a =∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以 )4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式.(2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: 2/122001)(122x a Ir I B +⋅π=π=μμ 2导线在P 点产生的磁感强度的大小为: 2/122002)(122x a Ir IB +⋅π=π=μμ1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ(2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行; (2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S B m Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为 π=π===⎰⎰⎰⋅4d 2d d 00201I r r R I S B S B R μμΦ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r r IB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上?解:依据无限长带电和载流导线的电场和磁场知:r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零, 0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为: )2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμ)(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:I 1I 2I 2I 1θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为: 2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2)线圈平面与磁场成60°角时,线圈所受的磁力矩.解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩 m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为 ])(π2π2[10102a x I xI aI F +-=μμ方向向右,从a x =到a x 2=磁场所作的功为 )3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμBI I 28-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量 r b rNIS B d 2d d π==μΦ穿过截面的磁通量 12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i I02=π⋅r B ∴0=B四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.bIaP[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b . (D )方向在环形分路所在平面内,且指向a . (E )为零.[ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为 (A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]8-7、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π. (C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变. [ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T . (C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )Rr I I 22210πμ. (B )Rr I I 22210μ. (C )rR I I 22210πμ. (D )0.[ ]OI 18-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的?(A )H仅与传导电流有关.(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等. [ ] 8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ. (D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ] 8-21、电流元l I d 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此y xzO情形中,线框内的磁通量=Φ______________.8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ)8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在 图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ). ____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体?ef图(1)图(2)图(3)是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相IBII d对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.y ORωO bxaPδIa aI xO2a8-46、半径为R的均匀环形导线在b、c两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I,求:环心O处磁感强度的大小和方向.8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O点处的磁感强度.8-48、如图两共轴线圈,半径分别为R1、R2,电流为I1、I2.电流的方向相反,求轴线上相距中点O 为x处的P点的磁感强度.8-49、已知载流圆线圈中心处的磁感强度为B0,此圆线圈的磁矩与一边长为a通过电流为I的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb m-2,方向沿x轴正向,如图所示.试求:(1)通过图中abOc面的磁通量;(2)通过图中bedO面的磁通量;(3)通过图中acde面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0=4×10-7T ·m/A ,铜的相对磁导率r ≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s的电子沿垂直于B 的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσI θ Iθ ⊗ ⊙l lR I I⊗⊗B8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B的大小.8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。
第八章 电磁感应一、简答题1、简述电磁感应定律答:当穿过闭合回路所围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中都会建立起感应电动势,且此感应电动势等于磁通量对时间变化率的负值,即dtd i φε-=。
2、简述动生电动势和感生电动势答:由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。
由于磁感强度变化而引起的感应电动势称为感生电动势。
3、简述自感和互感答:某回路的自感在数值上等于回路中的电流为一个单位时,穿过此回路所围成面积的磁通量,即LI LI =Φ=Φ。
两个线圈的互感M M 值在数值上等于其中一个线圈中的电流为一单位时,穿过另一个线圈所围成面积的磁通量,即212121MI MI ==φφ或。
4、简述感应电场与静电场的区别? 答:感生电场和静电场的区别5、写出麦克斯韦电磁场方程的积分形式。
答:⎰⎰==⋅svqdv ds D ρdS tB l E sL⋅∂∂-=⋅⎰⎰d0d =⋅⎰S S B dS t D j l H s l ⋅⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰d6、简述产生动生电动势物理本质答:在磁场中导体作切割磁力线运动时,其自由电子受洛仑滋力的作用,从而在导体两端产生电势差7、 简述何谓楞次定律答:闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因(反抗相对运动、磁场变化或线圈变形等).这个规律就叫做楞次定律。
二、选择题1、有一圆形线圈在均匀磁场中做下列几种运动,那种情况在线圈中会产生感应电流 ( D )A 、线圈平面法线沿磁场方向平移B 、线圈平面法线沿垂直于磁场方向平移C 、线圈以自身的直径为轴转动,轴与磁场方向平行D 、线圈以自身的直径为轴转动,轴与磁场方向垂直2、对于位移电流,下列四种说法中哪一种说法是正确的 ( A ) A 、位移电流的实质是变化的电场 B 、位移电流和传导电流一样是定向运动的电荷 C 、位移电流服从传导电流遵循的所有规律 D 、位移电流的磁效应不服从安培环路定理3、下列概念正确的是 ( B )。
大学物理第8章恒定磁场总结及练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别. 二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ 它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F ⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B时,粒子作匀速率圆周运动:运动半径:qBm R v=,运动周期:qBmT π2=. 三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P的磁感强度.解:取l d 段,其中电流为πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R RIB π=π⋅π=π=选坐标如图RI B 20x d sin d π-=θθμ,R I B 20yd cos d π-=θθμ R IR IB 202/π020x d sin π-=π-=⎰μθθμ RIRI B 202/π020y d cos π-=π-=⎰μθθμ T 108.12)(4202/12y 2x -⨯=π=+=RIB B B μ方向1/tan x y ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场:r)I/(μB π2d d 0=,l j I d d = )2/(d d 0r l j B π=μ由对称性的分析可知0d //=⎰Bθμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j x l l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a = ∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以)4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式. (2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:2/122001)(122x a IrIB +⋅π=π=μμ2导线在P 点产生的磁感强度的大小为:2/122002)(122x a Ir IB +⋅π=π=μμ1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ(2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行; (2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S Bm Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r rR IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为π=π===⎰⎰⎰⋅4d 2d d 00201Ir r RIS B S B RμμΦ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上?解:依据无限长带电和载流导线的电场和磁场知:r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零,0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为:)2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμI 1I 2)(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为:2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力.(2)线圈平面与磁场成60°角时,线圈所受的磁力矩.2I 1B解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为])(π2π2[10102a x I xI aI F +-=μμ方向向右,从a x =到a x 2=磁场所作的功为)3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμ8-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i II I 2b02=π⋅r B∴0=B四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b .IaP(D )方向在环形分路所在平面内,且指向a . (E )为零. [ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是[ ]8-7、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π. (C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变.[ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T . (C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]O8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )RrI I 22210πμ. (B )RrI I 22210μ. (C )rRI I 22210πμ. (D )0.[ ]8-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的?(A )H仅与传导电流有关.(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.I 1(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等.[ ]8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ. (D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ]8-21、电流元l Id 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量=Φ______________.y xzO8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ)8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ). ____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.ef图(1)图(2)图(3)8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体?是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为IB零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.II d8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.y ORωO bxaPδI a aI xO2a8-46、半径为R 的均匀环形导线在b 、c 两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I ,求:环心O 处磁感强度的大小和方向.8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.8-48、如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.8-49、已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb ⋅m -2,方向沿x 轴正向,如图所示.试求:(1)通过图中abOc 面的磁通量; (2)通过图中bedO 面的磁通量; (3)通过图中acde 面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0=4×10-7T ·m/A ,铜的相对磁导率r ≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσ8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s 的电子沿垂直于B 的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10AI θ Iθ ⊗ ⊙l lR I⊗⊗BOBADCO 'ααB时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B 的大小.8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。
第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别.二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ ,它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B.该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F]应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B 时,粒子作匀速率圆周运动:运动半径:qB m R v =,运动周期:qBmT π2=.三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感强度.解:取l d 段,其中电流为 πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R R I B π=π⋅π=π=选坐标如图RI B 20x d sin d π-=θθμ,R I B 20y d cos d π-=θθμ RIR I B 202/π020x d sin π-=π-=⎰μθθμ R I R I B 202/π020y d cos π-=π-=⎰μθθμ【T 108.12)(4202/12y 2x -⨯=π=+=RIB B B μ/方向1/tan x y ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场: r)I/(μB π2d d 0=,l j I d d =)2/(d d 0r l j B π=μ`由对称性的分析可知0d //=⎰B θμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j xl l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a =∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以 )4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式.(2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: 2/122001)(122x a Ir I B +⋅π=π=μμ 2导线在P 点产生的磁感强度的大小为:):2/122002)(122x a IrIB +⋅π=π=μμ …1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ (2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行;~(2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S B m Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为 π=π===⎰⎰⎰⋅4d 2d d 00201I r r R I S B S B R μμΦ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为%2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.·8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上解:依据无限长带电和载流导线的电场和磁场知: r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零, 0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为:【)2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμ )(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.…I 1I 22I 1解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,…式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为: 2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2)线圈平面与磁场成60°角时,线圈所受的磁力矩.解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==—本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩 m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为 ])(π2π2[10102a x I xI aI F +-=μμ~方向向右,从a x =到a x 2=磁场所作的功为;BI I 2)3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμ8-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得|NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量 r b rNIS B d 2d d π==μΦ穿过截面的磁通量 12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i I02=π⋅r B ∴0=B!四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]{8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管bIaP单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.}[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b . (D )方向在环形分路所在平面内,且指向a . (E )为零.、[ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为 (A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]8-7、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π.@(C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变. [ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]!8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则 |(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T .(C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于~OI 1>(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )Rr I I 22210πμ. (B )Rr I I 22210μ. (C )rR I I 22210πμ. (D )0.[ ]8-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的(A )H仅与传导电流有关.)(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等. [ ]8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ.`(D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ]8-21、电流元l I d 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量=Φ______________.8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ),8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在 图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ).…____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.<ef图(1)图(2)图(3)y xzO8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.~8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )?8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.!IB8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.!8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.;8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.、a bI120°BO IaI dy ORωO bxaPδ8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.】8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.'8-46、半径为R 的均匀环形导线在b 、c 两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I ,求:环心O 处磁感强度的大小和方向.\8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.)8-48、如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.?8-49、已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb ⋅m -2,方向沿x 轴正向,如图所示.试求:(1)通过图中abOc 面的磁通量; (2)通过图中bedO 面的磁通量;·(3)通过图中acde 面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.!(真空的磁导率=4×10-7T ·m/A ,铜的相对磁导率r≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.:8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s 的电子沿垂直于B的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )*x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσ8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)-8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).?8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B 的大小.~8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。
第八章课后习题解答一、选择题8-1如图8-1所示,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即=A B p p 。
则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然[ ](A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热分析:由p V -图可知,A A B B p V p V =,即知A B T T <,则对一定量理想气体必有B A E E >,即气体由状态A 变化到状态B ,内能必增加。
而作功、热传递均是过程量,与具体的热力学过程相关,所以(A )、(C )、(D )不是必然结果,只有(B )正确。
8-2 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。
开始时它们的压强和温度都相同。
现将3 J 热量传给氦气,使之升高到一定的温度。
若使氢气也升高同样的温度,则应向氢气传递热量为[ ](A) 6 J (B) 3 J (C) 5 J (D) 10 J分析:由热力学第一定律Q E W =∆+知在等体过程中Q E =∆。
故可知欲使氢气和氦气升高相同的温度,由理想气体的内能公式2m i E R T M '∆=∆,知需传递的热量之比22222:():():5:3HHe H He H He H He H Hem m Q Q i i i i M M ''===。
故正确的是(C )。
8-3 一定量理想气体分别经过等压、等温和绝热过程从体积1V 膨胀到体积2V ,如图8-3所示,则下述正确的是[ ]习题8-1图(A) A C →吸热最多,内能增加(B) A D →内能增加,作功最少(C) A B →吸热最多,内能不变(D) A C →对外作功,内能不变分析:根据p V -图可知图中A B →为等压过程,A C →为等温过程,A D →为绝热过程。
又由理想气体的物态方程pV vRT =可知,p V -图上的pV 积越大,则该点温度越高,因此图中D A B C T T T T <==,又因对于一定量的气体而言其内能公式2i E vRT =,由此知0AB E ∆>,0AC E ∆=,0AD E ∆<。