第五章 误差椭圆
- 格式:ppt
- 大小:674.00 KB
- 文档页数:25
第五章误差理论选择题中误差反映的是( A )。
A)⼀组误差离散度的⼤⼩B)真差的⼤⼩C)似真差的⼤⼩D)相对误差的⼤⼩某段距离的平均值为100mm,其往返较差为+20mm,则相对误差为(C )。
A.;B.;C.往返丈量直线AB的长度为:其D AB=126.72m,D BA=126.76m相对误差为( A )A.K=1/3100;B.K=1/3200;C.K=在等精度观测的条件下,正⽅形⼀条边a的观测中误差为m,则正⽅形的周长(S=4a)中的误差为(C )A.m;B.2m;C.4m丈量某长⽅形的长为α=20,宽为b=15,它们的丈量精度(A )A相同;B.不同;C.不能进⾏⽐较衡量⼀组观测值的精度的指标是( A )A.中误差;B.允许误差;C.算术平均值中误差在距离丈量中,衡量其丈量精度的标准是(A )A.相对误差;B.中误差;C .往返误差下列误差中(A )为偶然误差A.照准误差和估读误差;B.横轴误差和指标差;C.⽔准管轴不平⾏与视准轴的误差若⼀个测站⾼差的中误差为,单程为n个测站的⽀⽔准路线往返测⾼差平均值的中误差为( B )A.;B.C.在相同的观条件下,对某⼀⽬标进⾏n个测站的⽀⽔准路线往返测⾼差平均值的中误差为( B )A.;B.;C.对三⾓形进⾏5次等精度观测,其真误差(闭合差)为:+4″;-3″;+1″;-2″;+6″,则该组观测值的精度( B )A.不相等;B.相等;C.最⾼为+1″经纬仪对中误差属( A )A.偶然误差;B.系统误差;C.中误差尺长误差和温度误差属(B )A.偶然误差;B.系统误差;C.中误差⼀条直线分两段丈量,它们的中误差分别为和,该直线丈量的中误差为(C)A.;B. ;C.某基线丈量若⼲次计算得到平均长为540m,平均值之中误差为0.05m,则该基线的相对误差为( C )A.0.0000925;B.1/11000;C.1/10000下⾯是三个⼩组丈量距离的结果,只有( B )组测量的相对误差不低于1/5000的要求A.100m0.025m;B.200m0.040m;C.150m0.035m对某量进⾏n次观测,若观测值的中误差为m,则该量的算术平均值的中误差为( C )A. ;B.m/n;C.m/⽤导线全长相对闭合差来衡量导线测量精度的公式是( C )A.B.;C.基线丈量的精度⽤相对误差来衡量,其表⽰形式为( A )A.平均值中误差与平均值之⽐;B.丈量值中误差与平均值之⽐;C.平均值中误差与丈量值之和之⽐下列误差中(AB)为偶然误差。
一、填空题:1、某点p(x,y),其坐标中误差分别为mx和my,则点位中误差mp=__________。
2、误差椭圆研究的是__________相对于起始点的精度;相对误差椭圆研究的是任意两个__________之间相对位置的精度。
(起始点/待定点)3、点位中误差为δP,纵向误差为δS,横向误差为δu,则δP2=________________。
4、控制网中,某点P的真位置与其平差后得到的点位之距离称为P点的_____。
5、测角网必要的起算数据是________个,而测边网必要的起算数据则是________个。
6、某测边网共有n个角度观测值,p个三角点,q个多余起算数据,r个多余观测,t个必要观测,如按条件平差进行时,此三边网可以列出r=_______________________条件方程;如按间接平差进行时,此三边网可以列出__________个误差方程。
二、选择题:1、位差的极大值为E,极小值为F,则点位方差δP2=__________。
A、E2+F2B、E+FC、E-FD、E2-F22、某点p(x,y),其坐标中误差分别为mx和my,则点位中误差mp=______。
A、22myxm+B、22myxm-C、22yxmm+D、22yxmm-3、误差椭圆研究的是__________相对于起始点的精度;相对误差椭圆研究的是任意两个__________之间相对位置的精度。
A、起始点/待定点B、起始点/起始点C、待定点/待定点D、待定点/起始点4、点位中误差为δP,纵向误差为δS,横向误差为δu,则δP2=__________。
A、22s uδδ+B、22usδδ-C、22usδδ+D、22usδδ-5、在误差椭圆中,位差的极大值方向为ϕE,极小值方向为ϕF,则有__________。
A、ϕE+180°=ϕF B、ϕE+90°=ϕF C、ϕE+270°=ϕF D、ϕE+360°=ϕF三、计算题在某测边网中,设待定点P1的坐标为未知参数,即[]11ˆTX X Y=,平差后得到ˆX的协因数阵为ˆˆ0.250.150.150.75XX Q ⎡⎤=⎢⎥⎣⎦,且单位权方差220ˆ 3.0cm σ=。
§6-1 概 论在测量中,点P 的平面位置常用平面直角坐标P P y x ,来确定。
为了确定待定点的平面直角坐标,通常由已知点与待定点构成平面控制网,并对构成控制网的元素(角度、边长等)进行一系列观测,进而通过已知点的平面直角坐标和观测值,用一定的数学方法(平差方法)求出待定点的平面直角坐标。
由于观测条件的存在,观测值总是带有观测误差,因而根据观测值通过平差计算所获得的待定点的平面直角坐P P y x ~,~面位置并不是 P 点的真位置,而是最或然点位, 记为 P ',在 P 和 P '对应的这两对坐标之间 存在着坐标真误差 x∆和 y∆。
由图6-1知⎭⎬⎫-=∆-=∆P P y P P x y y x x ˆ~ˆ~ (6-l-1) 由于x ∆和y ∆的存在而产生的距离P ∆称为 P 点的点位真误差,简称真位差。
由图6-1知222yxP∆+∆=∆222y xPσσσ+=(6-1-2)2.点位真误差的随机性P 点的最或然坐标Px ˆ和P yˆ是由一组带有观测误差的观测值通过平差所求得的结果,因此,它们是观测值的函数。
设P xˆ和P y ˆ与观测值向量L 之间的线性函数关系为 ⎭⎬⎫++=++=00ˆˆββααL y y L x xA P A P(6-1-3)设有两组不同的观测值向量1L 、2L ,分别代入式(6-1-3)可得010111ˆˆββαα++=++=L y yL x xA P A P 和020222ˆˆββαα++=++=L y yL x xA P A P对于同一控制网而言,如果观测量相同(如同样的角度、边长等),采取同样的平差方法,则式中的00βαβα、、、是不变量,但观测值向量1L 、2L 不会相等,因此21ˆˆP P x x ≠、21ˆˆP P y y ≠。
可见,随着观测值L 的不同,P x ˆ和P y ˆ也将取得不同的数值。
但P 点的真坐标P x ~和P y ~是唯一的,由式(6-l-1)、(6-l-2)知,就会出现不同的x ∆和y∆值以及P∆,所以说点位真误差随观测值不同而变化,即点位真误差具有随机性。
误差椭圆的定义嘿,朋友们!今天咱来聊聊误差椭圆呀!你说这误差椭圆,就好像是个调皮的小精灵,在测量的世界里蹦来蹦去。
想象一下哈,我们在测量一个东西的时候,就像是在黑暗中摸索,总会有些许偏差,而这个误差椭圆呢,就是把这些偏差给圈起来,告诉我们大致的范围。
它可不是随随便便就出现的,那是经过一番计算和琢磨才现身的呢!比如说我们要确定一个点的位置吧,实际测出来的可能就不是那么精准,会有这儿一点儿偏差,那儿一点儿偏差。
这时候误差椭圆就跳出来啦,说:“嘿,别担心,这个点大概就在我圈的这个范围里哦!”是不是很神奇?它就像是给我们测量结果加上了一个边界,让我们心里有个底。
就好比你要去一个地方,有人告诉你大概就在这一片儿,总比啥都不知道好吧!而且啊,误差椭圆还挺有个性的呢!它的大小和形状会根据不同的情况而变化。
有时候它扁扁的,有时候又圆圆的,就像个会变形的小怪物。
这可都是根据测量的数据来决定的呀!咱再打个比方,误差椭圆就像是一个神秘的领地,我们知道它的大致范围,但里面具体的情况还得我们去慢慢探索。
这探索的过程可有意思了,每一次测量都像是在给这个领地绘制更详细的地图。
你说要是没有误差椭圆,那我们测量出来的东西不就像没头苍蝇一样,不知道到底准不准确啦?它可是给我们指明了一个方向,让我们能更好地理解和处理测量的结果。
在实际应用中,误差椭圆可重要了呢!比如在建筑工地上,工程师们得靠它来确保建筑物的位置准确无误;在地图绘制中,它能帮助绘制出更精确的地图。
没有它,那可真是乱了套了呀!总之呢,误差椭圆这个小家伙虽然有时候让人有点头疼,但它确实是我们测量工作中不可或缺的好帮手呀!它让我们在面对不确定性的时候,能有个大概的把握,不至于两眼一抹黑。
所以啊,咱可得好好认识它、了解它,让它为我们的工作和生活发挥更大的作用呀!你们说是不是这个理儿呢?。