金属高温下的变形与断裂
- 格式:pdf
- 大小:11.13 MB
- 文档页数:50
蠕变断裂是一种在高温、高应力条件下发生的材料失效模式。
它通常发生在金属和合金等结构材料中,由于长时间的持续加载或周期性加载,导致材料逐渐产生塑性变形和应力集中,最终引起断裂。
蠕变断裂机理涉及以下几个关键因素:1. 高温:蠕变断裂通常在高温环境中发生,因为高温会促使材料分子间的原子扩散加剧,从而引发材料的塑性变形。
2. 应力:蠕变断裂需要存在足够高的应力水平,这可以是静态应力或动态应力。
在高温下,材料受到的应力会导致塑性变形,同时引起晶粒滑移和亚晶界滑移。
3. 时间:蠕变断裂是一个时间依赖的过程,它通常需要较长时间的持续加载或周期性加载。
在高温下,长时间的持续加载会使材料发生蠕变变形,逐渐累积应力,导致断裂。
4. 材料的本质特性:材料的化学成分、晶体结构、晶粒尺寸、缺陷等因素都会影响蠕变断裂的发生。
一些材料具有更好的抗蠕变性能,例如高温合金和特殊钢。
在蠕变断裂过程中,通常会出现以下几个阶段:1. 初期变形:开始加载后,材料会发生弹性变形,应力逐渐增加。
随着时间的推移,塑性变形开始显现,晶粒滑移和亚晶界滑移活动增加。
2. 稳定蠕变:在一定的应力水平下,材料的蠕变速率趋于稳定,达到一个平衡状态。
此时,塑性变形和应力累积仍然存在,但没有明显的断裂迹象。
3. 加速蠕变:当应力继续增加或超过临界值时,蠕变速率会加速增大。
这是由于应力集中和局部组织损伤的增加,导致断裂的风险增加。
4. 断裂:最终,在应力和时间的作用下,材料无法承受继续蠕变的负荷,出现断裂。
断裂可能发生在晶粒边界、亚晶界或位错堆积处。
蠕变断裂是一个复杂的过程,受多种因素的影响。
为了预防和延缓蠕变断裂的发生,需要选择合适的材料、设计合理的结构和加载条件,并进行适当的监测和维护。
1。
钢件热处理容易变形的温度
钢件热处理时容易发生变形的温度取决于钢的成分、形状和尺寸。
一般来说,钢在高温下会变得柔软,容易变形。
具体来说,碳
钢在大约727°C至927°C的温度范围内进行热处理时,会变得易
于塑性变形。
对于合金钢来说,这个温度范围可能会更高一些。
在进行热处理时,需要考虑钢件的形状和尺寸。
较薄的钢板或
钢管在高温下更容易发生变形,因为其表面积相对较大,容易受热
不均匀的影响。
相反,较厚的钢块可能在热处理过程中更容易保持
形状稳定。
除了温度外,冷却速度也会影响钢件的变形。
快速冷却可能会
导致内部和外部温度差异,从而引起形状变化。
因此,在热处理过
程中,控制冷却速度也是非常重要的。
此外,适当的热处理工艺和设备也可以减少钢件的变形。
例如,采用适当的夹具和支撑结构可以帮助钢件在热处理过程中保持稳定
的形状。
总之,钢件在热处理过程中容易发生变形的温度是一个复杂的
问题,需要综合考虑钢的成分、形状、尺寸以及热处理工艺等因素。
在实际操作中,需要根据具体情况采取合适的措施来减少变形的发生。
焊接材料的塑性变形与断裂机理焊接是一种常见的金属加工方法,通过高温加热和冷却过程将两个或多个金属材料连接在一起。
在焊接过程中,焊接材料的塑性变形和断裂机理是非常重要的因素,它们直接影响着焊接接头的质量和性能。
首先,我们来探讨焊接材料的塑性变形机理。
塑性变形是指金属材料在受到外力作用下发生的可逆形变过程。
在焊接过程中,焊接材料会受到焊接电弧或热源的加热,从而达到熔化温度。
一旦焊接材料熔化,它就会变得可塑性,可以通过外力进行塑性变形。
焊接材料的塑性变形主要是通过热塑性变形和冷塑性变形来实现的。
热塑性变形是指焊接材料在高温下受到外力作用时发生的塑性变形。
在焊接过程中,焊接材料受到焊接电弧或热源的加热,使其达到熔化温度,然后通过焊接工具施加的外力进行塑性变形。
热塑性变形的优点是能够使焊接接头的形状更加精确,缺点是容易产生热裂纹和变形。
冷塑性变形是指焊接材料在冷却过程中受到外力作用时发生的塑性变形。
在焊接过程中,焊接材料在熔化后会迅速冷却,形成焊缝。
在冷却过程中,焊接材料会受到外力的作用,使其发生塑性变形。
冷塑性变形的优点是能够增加焊接接头的强度和硬度,缺点是容易产生冷裂纹和变形。
除了塑性变形,焊接材料的断裂机理也是非常重要的。
断裂机理是指焊接材料在受到外力作用下发生破裂的过程。
在焊接过程中,焊接材料会受到焊接电弧或热源的加热和冷却过程的影响,从而产生内部应力。
如果这些内部应力超过了焊接材料的强度极限,就会导致焊接接头的断裂。
焊接材料的断裂机理主要有两种,一种是脆性断裂,另一种是韧性断裂。
脆性断裂是指焊接材料在受到外力作用下迅速破裂的过程。
脆性断裂的特点是断口平整,没有明显的塑性变形。
脆性断裂主要是由于焊接材料中存在的缺陷或内部应力引起的。
韧性断裂是指焊接材料在受到外力作用下发生延展性破裂的过程。
韧性断裂的特点是断口不平整,有明显的塑性变形。
韧性断裂主要是由于焊接材料中的晶粒细化和断口韧化等因素引起的。
综上所述,焊接材料的塑性变形和断裂机理是影响焊接接头质量和性能的重要因素。
金属材料强度及变形性能分析简介:金属材料的强度和变形性能是决定材料使用和应用范围的重要性能指标。
强度指材料抵抗外力破坏的能力,而变形性能则表征材料在外力作用下的形变特性。
本文将重点分析金属材料的强度和变形性能,并对其影响因素进行深入探讨。
一、金属材料的强度分析:1. 抗拉强度:金属材料的抗拉强度是指材料在拉伸力作用下抵抗破坏的能力。
抗拉强度取决于材料的原子结构、晶粒尺寸、晶体缺陷等因素。
常见的金属材料如钢、铝、铜等具有不同的抗拉强度。
2. 屈服强度:屈服强度是金属材料在拉伸过程中,从线性弹性阶段到非线性弹性阶段的临界点。
屈服强度是材料首次发生可见塑性变形的应力水平。
屈服强度反映了金属材料在外力作用下的抗变形能力。
3. 延伸率和断裂伸长率:延伸率和断裂伸长率是反映材料延展性能的重要参数。
延伸率指的是材料在断裂前的拉伸程度,断裂伸长率是指材料在断裂时相对于原始长度的变化程度。
较高的延伸率和断裂伸长率意味着材料具有良好的可塑性和变形能力。
二、金属材料的变形性能分析:1. 弹性变形:弹性变形是指金属材料在外力作用下具有恢复性的形变。
弹性变形区域内,材料的形状通过去除外力而恢复到初始状态。
弹性变形的特点是应变与应力呈线性关系,且应力和应变之间的关系服从胡克定律。
2. 塑性变形:塑性变形是指金属材料在外力作用下发生的不可逆形变,形变后无法完全恢复到初始状态。
金属材料的塑性变形可以通过冷加工、热加工等方式实现。
塑性变形主要由材料内部的晶格滑移、位错等现象引起。
3. 硬化和回弹:硬化是指金属材料在塑性变形过程中变得更加坚硬和脆性的现象。
在连续塑性变形中,材料会经历晶格被位错锁定的过程,导致材料的硬度增加。
回弹是指金属材料在去除外力后,部分形变恢复到原始状态的现象。
三、影响金属材料强度和变形性能的因素:1. 材料的组成和制备工艺:不同元素的添加和不同的制备工艺会对金属材料的强度和变形性能产生重要影响。
2. 晶体结构和晶粒尺寸:晶体结构的不同会导致材料的强度和塑性发生变化,较大的晶粒尺寸能够提高材料的强度,但会降低塑性。
高温合金的蠕变特性及机制探究高温合金是一种能够高温下稳定运行的重要材料,广泛应用于航空、航天、能源等领域。
然而,高温下的蠕变现象会严重影响高温合金的机械性能和使用寿命,因此研究高温合金的蠕变特性及机制具有重要意义。
一、高温合金的蠕变特性高温下的蠕变是指在一定应力下,物质在温度较高的条件下发生变形,表现为时间依赖的塑性应变。
高温合金的蠕变特性的研究主要包括蠕变应变速率与应力的关系、蠕变变形的时间依赖性、蠕变断裂机制等方面。
蠕变应变速率与应力的关系是高温合金蠕变特性的重要参数之一,通常用蠕变曲线来表示。
一般来说,蠕变曲线可以分为三个阶段:初期、稳定期和后期。
初期表现为瞬时蠕变,稳定期表现为缓慢蠕变,而后期表现为加速蠕变。
在初期和稳定期,蠕变曲线的斜率较小,而在后期则斜率增大,蠕变速率加快。
随着时间的增加,高温合金的蠕变应变也会逐渐增加。
在相同应力下,温度越高,蠕变应变越大。
高温合金的蠕变变形具有明显的时间依赖性,即在相同应力下,蠕变应变随时间的增加而增加。
这种时间依赖性表现为蠕变应变速率的变化。
蠕变变形的时间依赖性不仅影响高温合金的机械性能,还影响其使用寿命。
高温合金的蠕变断裂机制是指高温下材料断裂时的机制。
蠕变断裂主要有两种机制:晶粒边界间断裂和扩展型断裂。
晶粒边界间断裂可以在初期或稳定期发生,而扩展型断裂则通常发生在后期。
二、高温合金蠕变机制高温合金的蠕变机制是指材料在高温下发生蠕变的物理和化学机制。
高温合金蠕变机制的研究对于提高高温合金的性能以及延长其使用寿命具有重要意义。
高温合金的蠕变机制主要有两种:晶粒滑移和晶界扩散。
晶粒滑移是指晶体中原子在应力作用下发生的移动。
晶界扩散则是指晶界扩散的原子在应力作用下发生移动。
高温合金蠕变过程中,滑移和扩散机制通常同时存在。
不同的高温合金,其蠕变机制可能不同,同时机制的比例也可能不同。
在晶粒滑移机制中,晶体原子会沿着晶格面产生移动,使晶体的某些方向延伸,另外一些方向则收缩。
金属材料高温变形行为模拟与失效分析方法高温变形行为模拟与失效分析是金属材料研究中的重要课题之一。
在高温环境下,金属材料的性能和行为会发生显著的变化,因此需要进行相应的模拟和分析,以便更好地理解、预测和控制材料的高温变形和失效行为。
本文将介绍金属材料高温变形行为模拟与失效分析的方法。
一、高温变形行为模拟方法1. 热变形试验热变形试验是研究金属材料高温变形行为的重要实验手段。
它通过在高温条件下进行材料的拉伸、压缩、扭转等变形试验,来模拟和研究材料在高温下的变形行为。
常用的热变形试验方法有热拉伸试验、热压缩试验和热扭转试验等。
2. 热力学建模热力学建模是利用物理、数学和计算机模拟等方法,建立金属材料高温变形行为的数学模型。
通过对材料的热力学性质、塑性行为和组织变化等进行建模和仿真,可以预测材料在高温下的变形行为。
常用的热力学建模方法有有限元分析、计算流体力学等。
3. 材料本构模型材料本构模型是用来描述金属材料高温变形行为的数学模型。
它通过对材料的应力-应变关系进行建模,来模拟和预测材料在高温下的变形行为。
常用的材料本构模型有弹性模型、塑性模型和粘塑性模型等。
二、失效分析方法1. 断裂力学分析断裂力学分析是研究金属材料高温失效行为的重要方法之一。
它通过对材料的断裂行为进行力学分析,来研究和揭示材料在高温下的失效机制。
常用的断裂力学分析方法有线性弹性断裂力学、塑性断裂力学和破裂力学等。
2. 组织分析金属材料的组织对其高温变形和失效行为有着重要的影响。
因此,通过对材料的组织进行观察和分析,可以揭示其高温变形和失效机制。
常用的组织分析方法有金相显微镜观察、扫描电镜观察和透射电镜观察等。
3. 数值模拟数值模拟是利用计算机和数值计算方法,对金属材料高温变形和失效行为进行模拟和分析的方法。
通过建立相应的数学模型和计算模型,可以预测材料在高温下的变形和失效行为。
常用的数值模拟方法有有限元分析、计算流体力学和分子动力学模拟等。
第一章一、解:1.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象, 称为滞弹性。
2. 塑性:在给定载荷下,材料产生永久变形的特性。
3•解理台阶:解理裂纹与螺型位错相交形成解理台阶。
4. 河流状花样:解理裂纹与螺型位错相遇后,沿裂纹前端滑动二相互汇合,同号台阶相互汇合长大,当汇合台阶足够大时,便成为河流状花样。
5. 强度:材料在外力作用下抵抗永久变形和断裂的能力称为强度。
二、解:1.E :弹性模量。
2. d 0.2 :屈服强度3. b b :抗拉强度4. £ :条件应变或条件伸长率。
三、解:由d m= ( E Y s/ao)?得:丫s= d m2 • ao/E ①将代入d c= (2E • 丫s/ JI a)?=d m- ( 2*ao/刃*a)=504MPA.四、解:由题中所给式子知:⑴:材料的成分增多,会引起滑移系减少、孪生、位错钉插等,材料越容易断裂;⑵:杂质:聚集在晶界上的杂质越多,材料越容易断裂;⑶:温度:温度降低,位错摩擦阻力越大,所以材料越容易断裂;⑷、晶粒大小:晶粒越小,位错堆积越少,晶界面积越大,材料韧性越好,所以不容易断裂;⑸、应力状态:减小切应力与正应力比值的应力状态都会使材料越容易断裂;⑹、加载速率:加载速率越大,材料越容易断裂五、解:两者相比较,前者为短比例式样,后者为长比例式样,而对于韧性金属材料,比例试样尺寸越短,其断后伸长率越大,所以 d 5大于d 10.第二章作业题1应力状态软性系数:按“最大切应力理论”计算的最大切应力与按“相当最大正应力理论”计算的最大正应力的比值。
2缺口效应:截面的急剧变化产生缺口,在静载荷作用下,缺口截面上的应力状态将发生变化,产生缺口效应,影响金属材料的力学性能。
3布氏硬度:用一定直径的硬质合金球做压头,施以一定的试验力,将其压入试样表面,经规定保持时间后卸除,试样表面残留压痕。
HBW通过压痕平均直径求得。
钢在高温下的性能如何?高压锅炉和高温压力容器中经常使用哪
些材料
在较高温度下承受载荷的钢材,各种性能都与在常温下的性能有
明显的区别。
除了力学性能会随着温度的升高发生明显变化外,钢材
在高温下还会出现蠕变、松驰等异常现象。
所谓蠕变,是指金属在高
温下承载,应力虽不增加,而它的塑性变形却随着时间逐渐增加的现象。
因此,对于高温承压部件材料的强度,不仅要考虑它的短期高温
强度指标,更主要是考虑它的抗蠕变性能,即蠕变极限和持久强度。
蠕变极限是材料在一定温度下,在规定的使用时间内,使试件产生一
定量总变形的应力值。
持久强度是指在给定温度下,使材料经过规定
时间发生断裂的应力值。
蠕变极限反映的是材料在高温下工作的变形量,耐久强度反映了在高温下长期工作的材料的抗断裂能力,它更好
地反映了高温元件的失效特点,所以特别适用于高温承压部件。
用于制造高温承压部件的材料,应具有足够高的强度和持久塑性、良好的组织稳定性、高的松驰稳定性、良好的抗氧化性等性能。
目前,高压锅炉和高温压力容器中使用的耐热钢通常是低合金耐热钢,常用
的有钼钢Mo、铬钼钢Cr--Mo及铬钼钒钢 Cr—Mo—V三大类。
它们的
合金元素含量少,工艺性能好,广泛用于制造使用温度在600℃以下的承压部件。
常用的钢种有16Mo、12CrMo、15CrMo、12Cr1MoV等。
一些
承压部件工作温度可能更高些,则采用高合金镍铬钢,如OCrl8Ni9、OCr18Ni9Ti、1Cr18Ni9Ti等。