材料力学:补充:电测法的基本原理
- 格式:ppt
- 大小:236.50 KB
- 文档页数:5
电测法的原理及应用1. 电测法的概述电测法(Electrical Measurement)是一种用电流、电压或电阻等电学参数来对物体进行测量的技术方法。
它广泛应用于科学研究、工程技术和工业生产等领域,以实现对物体电性质、电特性和电参数的测量、分析和控制。
2. 电测法的原理电测法主要基于以下几个原理进行测量:2.1 电流测量原理电测法通过测量电流来了解物体的电性质。
电流测量可以通过感应法、位移法、霍尔元件和锁相放大器等方式进行。
2.2 电压测量原理电压测量是电测法中常用的测量方法之一。
电压测量可以通过电压表、差动放大器和信号调理电路等设备进行。
2.3 电阻测量原理电阻测量通过测量电阻来判断物体的电导率和电阻率等电学特性。
电阻测量可以通过电桥、电阻表和四引线阻抗测量等方法进行。
2.4 电导测量原理电导测量是衡量物体导电性能的常用方法之一。
电导测量可以通过电导计和电流源等设备进行。
3. 电测法的应用3.1 科学研究领域•在物理学领域,电测法用于测量材料的电导率、磁性和热性等特性。
•在化学科学领域,电测法用于测量化学反应在不同电位下的反应速率和电化学性质。
•在生物医学领域,电测法用于测量人体的生物电信号,如心电图、脑电图和肌电图等。
3.2 工程技术领域•在电力系统中,电测法用于测量电网电流和电压,以实现对电网的监测和控制。
•在电子电路领域,电测法用于测量电路的电压、电流和功率等电参数,以验证电路的性能和正确性。
•在通信领域,电测法用于测量信号的幅度、频率和相位等特性,以实现对通信设备的调试和维护。
3.3 工业生产领域•在能源行业,电测法用于测量石油、天然气和水的电导率和电阻率等参数,以实现对资源的开发和利用。
•在材料加工领域,电测法用于测量材料的电导率、电阻率和磁化率等特性,以实现对材料加工过程的监测和控制。
•在制造业中,电测法用于测量产品的电气性能和安全性能,以确保产品符合相关的标准和要求。
4. 总结电测法作为一种电学测量技术,具有广泛的应用领域和重要的意义。
电测法测t型杆件弯矩电测法测t型杆件弯矩1. 引言在工程领域,弯矩是一个十分重要的物理量,它描述了杆件受力情况下的弯曲程度。
而准确地测量和估算杆件的弯矩对于确保结构的安全和可靠性至关重要。
其中,电测法作为一种常见和有效的测量方法被广泛应用于测量杆件的弯矩。
本文将深入探讨电测法测量t型杆件弯矩的原理、方法和应用,并就个人见解加以阐述。
2. 电测法的基本原理电测法是通过测量杆件上产生的电压或电流来推导出杆件悬臂端点的弯矩。
根据悬臂梁的受力原理,在杆件受力时,悬臂端点会发生弯曲,因而产生变形。
这种变形会引起电阻值或感应电流的变化,通过测量这种变化可以推导出杆件受到的弯矩。
3. 电测法测量t型杆件弯矩的方法在实际应用中,电测法常常通过悬臂长度上的应变片传感器来实现。
应变片是一种能够精确测量悬臂端点变形的传感器。
当杆件受到弯矩作用时,应变片会产生电压变化,并通过电路传递给测量仪器。
通过调整电流和电压的测量值,可以得出杆件悬臂端点受到的弯矩。
4. 电测法测量t型杆件弯矩的应用电测法广泛应用于各个领域,特别适用于材料力学和结构工程中。
在材料力学中,电测法能够精确测量杆件的弯曲性能,为材料的研究提供了重要依据。
在结构工程中,电测法可用于测量桥梁、建筑物等结构的受力情况,及时监测结构的健康状况,确保结构的使用安全和使用寿命。
5. 个人观点和理解电测法作为一种精确测量杆件弯矩的方法,在工程领域具有广泛的应用前景。
在我的理解中,我认为电测法的核心原理是通过测量杆件产生的电压或电流来间接推导其弯矩。
这种非接触式的测量方法不仅可以提高测量的精确性,还能够避免对杆件的额外影响。
电测法还具有实时监测的能力,可以及时检测到结构变形情况,从而有效预防事故的发生。
6. 总结与回顾通过本文对电测法测量t型杆件弯矩的深入讨论,我们了解到了这一测量方法的基本原理、方法和应用领域。
电测法作为一种常用且有效的测量方法,为我们提供了一个非接触式、精确且实时的测量方案。
工程力学实验指导书提高部分实验分析南京航空航天大学金城学院目录一、动应力测定试验二、叠梁应力、应变测定实验三、复合梁应力、应变测定实验四、压杆稳定实验五、大柔度稳定性实验六、弯曲疲劳试验(示范)一、 动应力测定实验(一) 实验目的1、 了解测量动应变的测量方法,测定简支梁的动应力。
2、 掌握动态应变仪的基本原理与使用方法;(二) 实验设备1、 弯扭组合实验装置WNG-1;2、 DH —5922 动态应变测试仪;(三) 原理及方法结构在承受动载作用或强迫振动时,结构上各点的应变随时间改变而变化,相应的,各点的应力也随时间改变而改变。
这种应变成为动应变,相应的应力称为动应力。
为了测量动应力d σ,通常测出动应变d ε然后通过d d E εσ⋅=得出动应力。
在电阻应变测量中,动态应变测量与静态应变测量不同。
静态应变不随时间变化,可以直接读取或将数据打印出来。
而动态应变随时间改变而发生变化,必须通过记录仪器进行实时记录或存储,然后进行信号处理。
动态应变不但要测量其应变幅值,还要测量其随时间的变化规律,或者测量其变化频率。
不失真地记录动态应变是保证测量精度的基础。
在电阻应变测量技术中,动态应变与静态应变的测量原理是基本相同的,只是测量系统有差异。
由于被测应变的频率不同,各种动态应变记录仪器的频率适用范围都有限制,因此应根据动应变频率范围选择合适的仪器,除此之外还需考虑仪器之间的阻抗匹配以及数据处理方式。
目前,在一般的动态应变测量中,光线示波器和磁带记录仪正逐渐被与计算机相联系的动态应变测试系统所代替。
本试验采用DH5922动态应变测试仪,其试验装置示意图如图6.1所示。
它是由加载装置、动态应变测试系统以及计算机三部分组成。
其中加载装置为一个简支梁中间安装一个带有偏心质量块的可调速小马达,在梁靠近中心位置上下表面上粘贴应变片,组成半桥测量桥路。
当启动马达时,由于偏心质量块的旋转所产生的离心力作用,使简支梁发生振动,在梁的垂直方向上产生了一个按正弦规律变化的周期性动载荷。
第三章基本实验部分§3-1 拉伸实验一、目的1、测定低碳钢的屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ;2、测定铸铁的强度极限σb;3、观察拉伸过程中的各种现象(屈服、强化、颈缩、断裂特征等),并绘制拉伸图(P-ΔL 曲线);4、比较塑性材料和脆性材料力学性质特点。
二、原理将划好刻度线的标准试件,安装于万能试验机的上下夹头内。
开启试验机,由于油压作用,便带动活动平台上升。
因下夹头和蜗杆相连,一般固定不动。
上夹头在活动平台里,当活动平台上升时,试件便受到拉力作用,产生拉伸变形。
变形的大小可由滚筒或引伸仪测得,力的大小通过指针直接从测力度盘读出,P-ΔL曲线可以从自动绘图器上得到。
低碳钢是典型的塑性材料,试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。
用试验机的自动绘图器绘出低碳钢和铸铁的拉伸图(如图3-1)。
对于低碳钢试件,在比例极限内,力与变形成线性关系,拉伸图上是一段斜直线(试件开始受力时,头部在夹头内有一点点滑动,故拉伸图最初一段是曲线)。
低碳钢的屈服阶段在试验机上表现为测力指针来回摆动,而拉伸图上则绘出一段锯齿形线,出现上下两个屈服荷载。
对应于B′点的为上屈服荷载。
上屈服荷载受试件变形速度和表面加工的影响,而下屈服荷载则比较稳定,所以工程上均以下屈服荷载作为计算材料的屈服极限。
屈服极限是材料力学性能的一个重要指标,确定Ps时,须缓慢而均匀地使试件变形,仔细观察。
(a)低碳钢拉伸图图3-1 (b)铸铁拉伸图试件拉伸达到最大荷载P b以前,在标距范围内的变形是均匀分布的。
从最大载荷开始便产生局部伸长的颈缩现象;这时截面急剧减小,继续拉伸所需的载荷也减小了。
试验时应把测力指针的副针(从动针)与主动针重合,一旦达到最大荷载时,主动针后退,而副针则停留在载荷最大的刻度上,副针指示的读数为最大载荷P b。
铸铁试件在变形极小时,就达到最大载荷P b,而突然发生断裂。
电法的原理
电法是一种测定电导率、电阻率和电极化率等电学参数的方法。
它基于材料的电导性差异以及电流通过物体时发生的电压变化。
其原理主要包括以下几个方面:
1. 电导率的测定原理:通过施加电压,使电流通过待测物体,并测定电压与流经电流的比例关系,从而计算电导率。
电导率越高,电流通过物体时电压降低越小,反之则电压降低越大。
这是因为电流在电导率高的物质中传输更容易,电压降低更小。
2. 电阻率的测定原理:电阻率是电导率的倒数,可以通过电导率测定结果倒数求得。
电阻率反映了物质对电流通过的阻力大小,与物质本身的特性有关。
电阻率高的物质传导电流更困难。
3. 电极化率的测定原理:电极化是电流通过电解质溶液时产生的化学反应。
电极化率表示电极(特别是电极表面)在电解过程中被极化的能力。
电极化率的测定原理是通过施加电压,使电流通过电解质溶液,测量电压与流经电流的比例关系,从而计算电极化率。
电极化率与溶液中的电荷转移速度有关,高的电极化率意味着电极表面上的电荷转移速度较慢。
综上所述,电法的原理是基于电导性差异和电流通过物体时产生的电压变化,通过测量电压与流经电流的比例关系来计算电学参数。
其中包括电导率、电阻率和电极化率等参数的测定。